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V. CRITICAL POINTS AT INFINITY AND
FORCED OSCILLATION

Ralph E. Gomory
INTRODUCTION

The problem of oscillations, both forced and free, 1s central in
non-linear differential equations. Poincaré [1] and Bendixson [1] in their
fundamental papers discussed the exlstence of free oscillations in a pair
of first order equations

(a) %% = X(x, ¥), %%‘ =Y(x, y)»

while the interest aroused by van der Pol's equation has caused more modern
writers to turn their attention especially to the system arising from the
second order equation

2
(b) d z

— * (%) ax g(x) = o.
dt dt

The free oscillations of this equation and the forced oscillations of

2
(c) X 4 £(x) &+ g(x) = E(t)
dt dt

have been investigated in numerous papers, especially Levinson and Smith
[1], and Levinson [1].

A central condition in these investigations is that the equations
be of the type called by Levinson [2] "dissipative for large displacements.”
This condition ensures that with increasing time all solutions tend to the
interior of some circle in the phase plane. This makes it possible to
apply the Brouwer fixed point theorem to (c), or, provided there 1s an un-
stable critical point at the phase plane origin, to apply the Poincaré-
Bendixson theorem to (b).

The main contribution of this paper will be to drop this condition,
85
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and Lo prove the exlstence of forced perlodic solutions to a varicty of
differential equations not dissipative For large displacements. In fact
many of these eguations will have, in addition to their periodic solu-
tions, other solutions which become unbounded with increasing t, and still
others which become unbounded with deeressing  t.

The notion of critical point at infinity due to Poincaré will be
uged throughout. Poincaré extended the plarar subonomous system

ax . d
GOy " TOogT

to a sphere, (the doubly covering surface of the projective plane), and
discussed his eguations on the entire sphere including the egustor znd its
critical points, (the doubly covered iine ab Infinity and its critical
points ). Labsr Bendixson briefly discussed a aipgle point at infinity, but
since that time, with the excepbion of a recent paper by Lefschetz [11],
authors have dealt mainly with the finite plane. This may be due to the
fact that while Poincaré restriched himselfl Lo equations with simple cribi-
cal polnts at infinity, the systems arising from {b) rerely have this prop-
erty, and so are not as easily treated.

In Part I, systems of the Polncaré type will be treated, and
thelr forced oscillatlons related to the nature of thelr criticsl points ab
infinity. In Part 1I the nature of the critical points at infinity arising
from a wide clasz of eguations (b) will be completely analyzed. This snaly-
sis gives the asymptotic behavlor of trajectories that become unbounded.
Geometric informatlon, such as bhe existence of limilL-cycles to eqguabtions
of the wvan der Pol type; wlll be deduced. In Part III the results on
critical points from IT will be applied to obitain new criteris for the ex-
igtence of ogcillations in (c¢).

The general condition which in one form or snother will be used
to replace dissipativity may be stated roughly as follows. Let the plane
be completed by the addition of a single point at infinity. This point is
generally a critical point, and in a dissipative system it must be an un-
gtable node or foeus. Qur condibions are roughly equivalent to requiring
that the index of this point be # 2, and that it have no saddle sectors.

PART 1: PORCED O3CTLLATIONS IN A CLASS OF
FIRST ORDER 3YSTEMS

§1. In this section we wlll consider the system

{1) %‘}%:X(X; ¥ %%2Y(XJ y)
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where X{(x, v); ¥Y(x, y} are both polynomials of degree n > 0. The theo-
rem stated below will relaste the nature of the critical points at infiniby
of (1) to the guestilon of the existence of periodic solutions o
dx N s d -

(2) See Klx, y) o+ B(6),  FE=¥0q ) v By (E)
whare E](t) and E,{t) have continuous derivatives and are periodic with
period T.

We will start by exbending eguation (1} to the projective plane.

Adopting homogensous coordinates (%, ¥y, 2), with (%, ¥y, 1) a
designation for the point with affine coordinstes (x, y), we see that (1)

and

have the same solubions. However we can easlly extend (3) to cover

points for which =z = 0.

Uging (3) and multiplying by 2 gives
Pl (z —g%— - x %_iz) = ZXH(K, Vs 7)
(4) )
P (z gy-m v 3% ) = ZYH(X, 7, z),
where XH and 'YH are the original X and ¥ wade homogeneous of degree
n with #. Adopting a new parameter +t such thab %fvw an? we obtain

from (b) in the roglon covered by coordinstes (x, 1, z)

dz

S5 - - zYH(X, 1, )

dx XH(X, 1, &) - XYH(X, 1, %)

dr

and in the region covered by coordinates (1, y, =) using the parameler

o such that %§~z 20t

az H

a%—a — Z2X(, v, 2)
(6)

- v, 3, 2) - N T, )

Tt is easily seen that solutions to (5) and {6) with z # 0 trace oul the
game trajectories as those of (1), vhe paremetrizations only belng differ-
ent. As (5) and (6) are defined for =z = 0, we can consider them as
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extending (1), vhich was defined enly for (x, ¥ V), Lo {x, 1, 2}, end
(1,9, 2).

A critical point on the line at infinlty is simply a critical
point of (3) or (6) on 2 = 0. An elementary or simple critical point is
cne for which the linear terms in the Taylor expansion about the point
have a non-zero determinant.

§2. We are now in a position to state the theorem.

THRCREM: If the critical points at infinity of the extended
equation (1) satisfy the following conditions:
{z) there sre izolated critical poinks and they
are simple;
(b) their index sum iz o 1;
{c) there are nc consecubive saddle pointa;
then eguation (2) has a periodic solution of period T.

It is probvably worth while to olarify exactily what is meant by
"oonsecutive saddle pointe." As the line ot infinity is topologleally a
circle we may trace 1t through in some Fixed sense, encountering in
succession all critical points. Condition (¢) is that 4n this cyclic
arrangement saddle pointes should not follow saddle polints. In particular,
i there is only one critical point snd it is o saddle, condition (¢) is
not satisfied.

Yo facilitate application Lo specific equabions, the conditions
for the theorem will be restated entirely in terms of the origlnal poly-
nomiais X and Y. To do this, designate by X, Yn the terms of degree
n of X, ¥. Condition (2} is readily seen to be agquivalent to

(a1) th -~ an has real roots, no mulitiple roots,
and does not vanlish ldentically.
(a2} xYn - an and )(I?1 have no roots in common,

and the same holds for xYn - yX, and X

n’

As the index sum of a vector dislribubion in the projective plane
is 1, condition (b} is thal the sum of Lhe indices of the Pinite criti-
cal points of {1) be # 0. Condition (¢} may be tested for directly by

using the followlng observation from Polncaré {i+1, D. 25).

The coordinates of criticsl points atb infinity have ratios
% = o« which satiafy xYn - an = 0. If, when o incresses from o - ¢
to o + ¢ the expression

oy
X

£

changes from negative to positive, the eritlical point is a saddle point;

e
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if the expression changes from positlve to negative, 1t is & node.

In terms of a single point at infinity the conditions ensure an
index ¢ 2, and the absence of saddle sectors.

§3. PROOF OF THE THERORIM. The first step in the proof willl be
the construction of & large closed contour J, containing all the finite
eritical points of (1) and with the following specisl property. A sclution
%(t), y{t) of (2) which at time £, is at & point p on J, never is at
p agein for L > t,.

We will start by extending (2). Eguation (2) is merely (1) with
time dependent additlons to the constant terms in X snd Y. Hence from
(5) the extension to (x, 1, z) is

%i" = -7 {YH(X, 1, %) anq{t)}
(1)
g.—:_ - {}{H(x, t, 2} o+ zn}ﬂ}(t)} - X{YH(K, i; ) + znﬂ‘.?(t}}

or, aryanging in povers of Z,

dz . _ Z{PO + P,Ez + oeee (Pn + Eg)/.n}

adr
{8)
%% = {G% ST AL (Qn LA er)zn}

shere P; and Q, ore polynomisls in x. TFromw condition {s) we have that
P, eand Q. do not vanish identically znd have no common real zeros. Also
QO has real roots, all of which are simple.

et x° be s zero of QO and consider (8} near %% on = O.
Such a point ls a critical point at Infinity of {(1). As PO(XO) £ 0 and
£, 1s perilodic, %% is 4 0 for all 1t throughout some sufficiently

small box B, 0 <z < B, % - B, <X < P 5, {Fig. 1)

2
K3 i

2l x4, xhE, xs X

FIGURE 1
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a0 %% has constant sign In B. As %° ig oa siwmple zerc of QO, ther
» such that QD(XO + 8,50, Q,lx - 52) are 4 0 and have opposite

signs. Hences at x = o + Bp on % = 0 we nsy erect perpendiculars P

and P! of some helght b <"81, and %% will have the slgn of

QO(XO + 82) on these lines (Fig. 1). If we theps comnect P and P! by

is a &

any line z = &, 0 < a <h we will have formed & three sided box whose
sides are seguents without contact; that is they are never tangent to the
vector distribution (%% P %%). With Incressing + these sides may be
croassed in various directions by solutions of (7). As %% has opposite
signe on P and on P! there are exactly four possible combinaltions of
crossing directions as i1s indicated by the velocity vectors 1n Fig. 2.

Caze 1 {l_ ds Case 2 [ e
m) dx (ﬁﬂ >0 > Vh)
(a"'? P =0 (HM)PI dr P “ p
8z . 4 4z < 0
K] at
A ,
- U -
R ¥
Case 3 . | Case B | .
o= Q
(2&) >0 > (QE) (%5) <0< (gi)
(45 P dT P 2T P ik P!
(17 [#5:4
o >0 EER

FIGURE 2

TP x° is a node of (1), then elther case 1 or case £ occurs, if %7 is
saddle then case 3 or case b occurs. We will still apply these names

o] . - . . !
X even though the vector field srising from (2) is Lime dependent. Thus

s - - o] . .
ift case ' holds we call x a repulsive node with respect bo the parasmeter

T, designating 1t by ER if' case 2 holds, an abtbractive node NAT, ir

o

case %, a repulsive saddle SRT, if casze b, an attractive saddle bAT.

These boxes of segments without contact, formed near critical
. wmake up part of the final curve J. The boxes cannot

. o] .
points x7, Wi

follow each other in any random order along =z = 0, for by considering the

=)

sien off @, on the sides of successive hoxes it appears that the only

o

possible successive palrs are NRT, NAT; NRT, SRT; NAw, oAT; SRT, SAT; and
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&%,3&_:&Gﬂdﬂbdbyomﬁﬂﬁm1@}OftMEHEMEW
These boxes lle in the domain covered by the owiglnal X, ¥ co-
ocrdinates vhere bthey appear as Plat ended wedges open toward infinity

(Pig. 3)

y AR

TIGURE 3

The ends are lines v = consl., the sides are lines = const. I
(1, 0, 0} 48 a critical point we simply edopt {1, y, 2] coordinates and
proceed in exactly the same way bto Povm o sultable box.

more segments

The next step is to join these hoxss together usl
without contact.
In the region covered by {(x, 1, 7) consider a closed Interval
fabl on 2 = © which ig free of critical points. Then Q(xo) £ 0 on
1. 8o if a' ids chosen sufficiently swall {PO + Pz e (Pn + Eg}zn}
is hounded and bound-

[ab
Te T e y , o R
is bounded, and (QO + Q]A +oeee (Qﬂ + 3?-3 ~ XJE:Q Y}
ad away from zero in the box B, 0 g5 <8, 8a<xX <D, and for 21l L.

Tpom (8) then for points in B

{(9) - Mz < %% < - Mz

for some constants M oand M'.  Therefore the portions of the curves
{3 WM (xen) - .
1 d), z = z{ale M (-2 ) lying in B' are srcs without contact,
. . dz . .
one having siope 3¢ greater Lhan the slope of solutions to {8), the other

having smaller slope {(Fig. ). dince z(b) —> 0 as 7o) —s 0, it

7 = z{ale

foliows imnedistely that one may connect any arbitrarily small perpendicu-
lar st & o an aybibrarily smail perpendicular at b using srcs wlthout

.

contact. One arc will be crossed only by parametrized solutions which, as



92 GOMORY

F4
kw_‘?’?:‘;r
zl@) === |
o AN

v lncreases, move into the sector under it, while the other will be crosa-
ed only by sclutions moving outward (Fig. ).

Although in this constructlon we have assumed thet a and b
were In the reglon covered by coordinates (x, 1, z), the same construc-
tion applies to any & and b on 2z = 0 vhose perpendiculars form a box
not containing a critical point. Tt is only necessary to divide [ab]
inte subintervals lying enbirely in one coordinate system or the other,
and connect the separate arcs obtained for ecach.

We pow return to x, y coordinates and the parameter + and pab
together boxes and arcs to form J.

For each singularity at infinity we have a flat ended vedge. We
will take the solution curves as parametrized with €, thus when we refer
to an attractive node, we will mean with respect to & (Fig. 5.

FIGURE 5
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Successive boxes at infinity give rise to wedges which succeed each other
angularly. It is easily seen that the only possible successive wedges are
NRy, NAy; NRy, SRy; NAp, SAp; SRy, SA;. The last is excluded by condition (c).

We construct J in two steps. First, we connect any palr of
nelghboring wedges by an arc without contact. As the sides of the wedges
are perpendiculars to 2z = 0, and the sides of successive wedges form the
ends of a box wilthout critical points, the previous construction applies.

If an NRy 1is belng connected to an NAt, choose the arc with-
out contact so that solutions cross it outward with increasing t, i.e.,
toward the line at infinity (Fig. 6).

FIGURE 6

If an NR; 1s being connected to an SRt, let the connecting arc be chosen
8o that the solutions cross it moving away from the line at infinity. If

an NAp 1is connected to an SAt let the arc be crossed toward the line at
infinity (Fig. 6).

Now the wedges with theilr connecting arcs bound a 2-cell. With
one modification the boundary of this 2-cell will be the curve J.

We remember that in constructing the boxes at critical points on
z = 0, the top of the box was a segment of 2z = a, where a could be
taken arbitrarily small. We now choose a new a' and a new segment z = a!
so near z = 0 that the segment cuts the sides of the box below the inter-
sections with the connecting arcs (Fig. 7). This change will be made only
on saddle boxes. The new boundary of the central 2-cell is the curve J.

We will now show that a solution through a point p on J never
returns to p.

First, suppose p 18 an attractive nodal wedge (Fig. 8). Then
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Gh

FIGURE &

enters the wedge and can never leave it, hence cannob

the path through p
he

return to  p. Similarvly, 1f the node is repulsive, the path lesving
wedige can never re-enter it; so cannot return to  p.

If now p 1= on an ave connecting lwo nodal wedges as in Fig. 9,

FIGURE 9

wedge combined with the box between the nodal wedges forms a region

then one
See Flg. 9. —ABCDEF

wvhich is only entered and never left by solutions.
Thus the solution through p cannot return to p-.

Finally, suppose p 1is on & saddle wedge, or on an arc
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comecting & saddle wedge with & nodal wedge. Since there are no two con-
gecutive saddle wedges, every saddle ig flsnked with nodal wedges (Fig. 10).

Ly

PIGURE 10

Combining &ll three wvedges and the two enclosed boxes we form another region
only entered by solutvions. Thus p agsin has the desired property, and
thizs last argument clearly holds vhether the wedges involved sre attrachive
or repulsive.

As we have now covered all possible loecatlons of p we concluds
that J has the desired property.

It is also clear from the mode of construction thal one msy select
4 as far out in the plane as deslred. In particular, for reasons which
will appear later, we will take J 8o large that it containg 51l the Linite

critical points of (1) and of
Tt « Kz, y) o+ By (o), %%—ﬂ s, y) + By (0).
We now congider

%§={x@,y)+EJM}F@,y)
{10}
%%: {YM,y)+Ek%)}F@;Y%

vhere P(x, y) has contimvous derivatives, iz always positive, and is
identically 1 in some circle conbaining J; vwhile az K - o,
F(x, y) —+ 0 80 rapidly that the right hend sides in (10) are bounded in
the entire plane. An appropriate F  can essily be found.

Now the curve J hag its speclal property for the solutions of
(10) as well as for those of {(2}. For the velocity vectors of {10) have
the same direction as those of (2) and so peint into or out of the same
wedges. Thus, 1f a solution to (10) is at p on J, it never reburns
there at a later time.
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Also eguatlon (10) gives us & mepping of the plane into itself.
For, tet ult, u’) be the position at time t of that solution to {i0)
which is at u° for & = 0. Then define the mapping 9. by @tuo = ult, u’l.
Because of the boundedness of {10) 9, 18 defined for =211 ©.

I we assign to the point u?  the vector @tuo - u° we obtain a

contlinuous vector distribublon in the plane which slso varies continuously
with . We will now compube the index of this disteribution on J.

First of all, the index 18 the same for all % > 0, for the in-
dex is an inbeger and the vector distribution variles continuously with +t.
In this situation the index can only change with € if for scme point u”
on 4 and some G, the vector @tuo -~ 1% vonishes. But this means
e = u{t, u®)  which camuot ccour on J as on J ne solublon mey return
to its starting point. Therefore, the index 1s the same for all .

As we have seen before, J mey be taken so large that the veloclty
voobors vi(x, g) o= (K{x, ), ¥(z, ¥v)), and vg(x, v o= (X(x, yv) + Ei(o),
¥{x, y) + E,(0)) venish only inmside J. Therefore, both of these are
vector dlstributions with & well deflined index on J. We wlll see that the
two indices compulted with respect to these vector distribubionzs on J are
the aame, and 1n facht that they are both equal to the index computed with
respect to the vectors @tuo -,

The first eguallty resulis from the fact that addition of EE(O)
and EQ(O) to # and Y does not affect the nature cof the critlcal points
at infinity; they remain nodes or szddles as before as is evident Ifrom (8}).
Az the sum of all critical point indices must be 1, and in both cases all
the finite critical points are in J, we have for both vector distributions

{11) index (J) = 1 - ¥ index (pi),
i
the py being the critical poipts on 2 = 0. 5o the two Indices are equal.

. L L0 .
How at any point w? o= (%7, v°) on J we may write

. 2o L2
2(t,x%,7%) = x(0,x%,v9) « %%(O,X YO0+ gz%(t‘,xo,yo)%;
acr "

2 2
Y(E:KO:YO) = F(O:XO:YO) * %%(ijo’yo}t * gﬂg(t”fxo’yo)%r
at*© i

where x(t, =%, ¥°), v(t, x°, 3°) are the components of ul(t, u’)  and
t' and 1" are less than t. Because the right hand sides in (10) ave
bounded in the entire plane, ult, uo) iies inside some finite region R,

for all v’ on J and 81l  less than any fixed t,. DBut in
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" x  aly
R s ~—%~ are bounded, @0 az t ——=» 0,
at” at”

Oy O
u<tlﬂfgly;-m~m>vb(xo, +9)

uniformly o J.

Therefore, for some tO sufficientily small, the angle between
vp(xo, v9)  and Py u? - u® is less than « throughout J, and the in-
B O
dex of the vector distribution Py u® - uY is the some as the Index of
o
vy, namely 1 - 2 index {p;). By condition (b) of the theorem,
2 5 :

1 - % index {pi)_% 0.

Since the index 1s the same for all Py it ds 4 0 for Py
T being the period of the ;. Hence there is a ixed point under the map
Pipe Thab is, there exists ab ieast one point u' Inside J for which
eput - u' = 0. The solution through u' must return to wu' after T
seconds, and s0 i3 evidently & perlodlc solubion to (10).

However, because of 1ts pericdiclty, this solution must lie in-
gide J pot only for © = 0, t =T, and zo forth, but for ail t. Hor
if at any btime 1t cut the curve J, say ab p, then it could never re-
turn to p for later €, and this contradicts 1ts periodicity. There-
fore, it must be inside J for all t.

Az P(x, y) is ldenticaliy 1 inslde J, the soluticn through
' is in fact o periodic soliution to (2). This establishes the theorem.

&k. It is not reslly necessary for the Ei(t) to be purely
time dependent. If the E; are replaced by E;(x, ¥, b)), Eé(xy v, L),
where the E; are polynomisls of degree less than n in =z and ¥y with
coefficients“boriodic in t, the proof of the theorem goes through

unchanged .

PART IXI: CRITICAL POINTS AT INFINTTY OF A CLASS
OF 3HCOND ORDER EQUATIONS

§1. The second order equation
dﬁ
&

{12} f + £{x) as glx}y = 0
- at

Qs

glves rise to the phase plane gystem
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, Az &
(13) ST gh= - flay - oalx).
n this section the critical points at infinity of (1%) will be

completely anslyzed in the case where £(x) 1z s polynomial

=} o
25 a_x of degree m,

and gi{x) a polynomial
n
zz beS of degree n,
gm0

and m > n > 0. The nature of these c¢ritical polints will be shown to be
conpletely determined by the leading coefflclents g, and b of the
polynomisals, snd by the parity of m and n. IFrom these PacLs geometbric
results will be deduced sbout the behavior in the large of trajectories.

As in Part I, consider in place of {13)

i, d (=Y ¥ ;1(30 5 %
(i) a“ﬁ“(z)“z’ ald) - - o3 - el
and proceeding as before, wilh %%-: 2% [or the reglon covered by

(x, 1, z) we obtain

%% =z [fH(X, )+ AT Z)}

%%_m e {fH(X, 2) 4 ghen H(x, Z)J v 2

at kif]

and for the region with coordinates (1, v, 2}, using a5 7

%g_; ~ Zm+?y
(16}
dy
do

A Ty ]“
N fH(1, 2y - Zm nf1gL(3) Z) - ZmyE

vhere U(K; ), g'{ %, z) denote I and g made homogeneous with z.

It is evident from (i5) and (16) that 2z = 0 is a trajectory
comnecting critical points, and that the only critical points on 2z = ©
ave (0, 1, 0) and {1, 0, 0). Defore proceeding with an analysis of
these critical points, we will mention some lemmas on trajectories near a
singularity.

§2. Let C be a trajectory of an analytic system approaching an
igolated crifical point P. At a regular point ¢ on ¢ any sufficiently
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small circular nelghborhood H{g) is divided by © into cells lying on
opposite sides of C. These cells will be called half-neighborhoods,
N}/Q(q}a We will often refer to a curve C  together with & side A of
¢ slong which all the half-neighborhoods are 1o be chosen. The cholce of
side will be indicated by a subscript A or B.

In terms of half-nelghborhoods we will define what is meant by a
prolongation.

Tet OA approach P with a definite 1limiting direction. Then
any sufficiently small circle S around P will be cubt only once by~ C,
and the intersection polint ¢ will not be a tangency.

We will say thet CA has a prolongation with respect to B 1if
there is another curve CA; cutting S at g! and approaching P such
that for every N 2(q‘) there is an N]/Q(q} such thal any trajectory
through N]/Q(q) in 8 cuts NE/Q(q'), and lies entirely inslds 8
between the two neighborhoods. (IMg. 11)

FIGURE 11

Tt is further stipulated that no trajectory shall tend to P belween C
and C'. Heve bolLween means in the cell gPg'g that intersects the
half-neighborhoods.

We are now in a position to state a lemna which 1is an lmmediate

congequence of theorems of Bendixson [1}.

LmmA 1. Let Cp tend toward P wlth a delfinite
limiting direction. Then for any sufficlently small
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cirele & around P out by € at q either
(a} G, has a prolongstion with respect
to 5, or
(b} there is a helf-neighhorhood NT/Q(q},
such that every trajectory through leg(q)
approaches P lying always inside 5.
(Pig. 12)

)
'.Q
e

HTGURE 12

Provided we have taken 5 sufflciently small, it

is clear that if case (a) holds, it holds also when
G is referred to even smaller circles 3'. There-
fore, the same remark must apply vhen case (b) holds.
S0, although this is not aslways the case for non-
analytic systems, ve can use here the phrase ",
has a prolongstion” meaning (s) holds for all
sufficlently small &, on "CA finishes" meaning

[a]

{b) holds, without specifying & particular circie 2.
Another useful lemma is

TEMA 2. Let B8 be a circle containing the isolated
erltical point P, and which contalns no closed
trajectory, no critical point other than P, and 1s
not itself a trajectory. Then elther
(a) there is a curve tending tc¢ P which
hes a prolongatlon, or
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{b) there 1is a nelghborhood N of P such that
if g e N, +then the trajectory through g
tends to P In one direction or the other;
ard without touching &.

PROOF: 1In this proof we will use half-trajectory or half-characteristic to
indicate a trajectory pursued from s starting polnt in one direction or the
other. By positive (negative) half-trajectory is meant the path traced out
by the starting point as parsmeter values increase (decrease).

Now suppose {b) does not hold. Then there exists a sequence of
points pn-mm%'P such that both the half-trajectories through P, elither

(1) fail to tend to P, or

(z) cut 3.
In fact we may assume {(2) holds, for il a trajectory C Cfails to tend to
P it must tend to another singular point, to s closed trajectory, or to
a curve with prolongations, Bendixson [1}. Under cur hypotheses this im-
plies it cuts B, or else tends In 5 to a curve with a prolongation,
wvhich already proves (a), therefore we moy sesume {2) holids.

With the trajectory Cn through Pn assoclate the points 8y and
b, the first intersections with & of the positive and negative half-tra-
Jectories through p,. Then aﬂpnbn divides the interior of 3 into two
2-cells. We will call the one containing P the exterior, and the other the

interior. The two arcs anbn of 3 will be called exterior and interior ares.

Because of analylicity, & has only o finite number of tangencies
with the wvector field, these occur ab points Tm. Consider all the Cn
having T, on thelr interior arc. For some w  there 1s an infinity Cn'
of these. As the Cn‘ cannot cross, they may be arranged in order, with
each containing its predecessor in its interior 2-cell (Mig. 13 3.

FIGURE 13
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Dencting by d(CH,, P} the distance from Cn’ to P, it is
clear that every Cn, has points at any distance d! from P,
d(Cn‘, P} < ad! « R, where R is the radius of 3. Since d{Cn¢,P) —_— D
as n' —cw, ye may alvays find a seguence of points pg1, pﬁ; € Cn,,
auch that the pé, have a 1imit polnt Q' at a distance 4d' from P,

0 < d! <« R.

Choose such o seguence with a limit peoint Q' at distence 4!
from P. It will appear that the characteristic ¢! through Q' must
tend to P in one direction or the other, for if it merely connects two
points of B we have the following consegquences. All Cn, 1ie in the ex-
terior of C! for n' grester than some Ng, for these Cn' will have
peints at a distance from P < d{C!, P), and therefore will have one point
in the exterior of C', and so lie entirely in the exterior. Now choose a
nev sequence pﬁ{ on the Cn‘ with 1imit Q'! at distance d4'' from P,
0 <d't «ad'. The characteristlc C'' through Q'Y lies In the exterior
of €', and the Cn" n' > Né' lie in the exterior of C'', bhoth by
the same argument zs before. Thus the pé, 1lie in the exterior of &',
nt! > Né‘, and so Q' cannot be their 1llmit point, a contradiction. Hence
C' tends to P In one direction or the other.

We will show C' to heve a prolongation. €' approaches P

with a definlite limiting dirvection. (A characteristic either approaches a
critical point with a definite limiting direction or else its apgle in-
cresses without Iimit, this latter is Jwpossible as €' would cross some
Cnﬂ‘) Thus there is a sufflclently small clrcle 3% such that ¢! cuts
5% at Q% apnd then always lles in the interior of 5%,

As  C!' 1dis the characteristic through Q', by conbinuily there
are characteriastics Cn, arbitrarily close to Q% on one side of CF,
these Gn, of course, do net ftend to P. 'Therefore, the conditions for
case (b), Lemme 1, are not fuifillsble, and case (a), Lemma 1, must hold.
Thers is a prolongetion. This establishes Lemma 2.

§3. Ve will now analysze the critical points at infinity, start-
ing with the point (o, 1, 0}, or the =z = 0, 2z = 0 of eguation (15).

Let @ = arctan (- %J and R° = x° 4 22, then from (13)
M-+ 1
(17) 9 . 2
dr R

so that 1f the axes are taken as in Fig. 1%, trajectories below the line
z = O move counterclockwiage, those above counterclockwise or clockwlse

accordingly &8 m 1s odd or even. It is also clear that 2z = ¢ x > O,
and % = 0 X < 0 are btrajectories tending to (0, 0} with directions of
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X
LA
z
 FIGURE 1k

motion glven by

dx m+ i
(18) (e;«) = a X .

d7 ) g o

8ince these are trajectories tending to 7 = (0, 0) with a defi-
nite limiting direction, it follows by Bendixson [1] that any characteris-
tic approaching P will have o limiting direction for its tangent. The
posaible limiting directions are nolt arbitrary but are those that satlsfy

oo (18X {8z e
(19) o_.z(df)T wl(dr{)jﬁ

vhere the subscript 1. indicates that only the terms of degree

) dx i dz
T, = min (deg:r'ee q5? degree 3‘%)

are taken. S0 any trajectory approaching P onust approach tangency with
2z = 0, elther {rom above or below.

Tt will also be useful to distinguish the two sides of a hslf-
trajectory % = 0 near (o, 0)., A side will be called positive if 1t
borders on & quadrant in which the sign of g%- is such that the acute
angle @ Dbelween =z = ¢ and a radius vector to a point P In the quadrant
consbantly decreases in absolute value. It will be called negative if

fo| increases. As %%« has constant sign throughout each guadrant, there

18 no amblgulty.

VWe have at once this simple lemma.

TIMRMA 5. Let C be a positive (negative) half-
trajectory tending to (0, 0). Then C approaches
gangency with one of the half-trajectories 2z = 0
on a positive (negative) side.
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PROOE: As C, a positive half-trajectory, approsches P, it must approach
tangenscy with one of the half-charscteristics gz = 0. Bince C  cannot
reach or cross  zo= 0 it will always 1ile¢ in the same quadrant for 1 >

some  T,. At time Too 1@l = b >0, while for -, sufficiently large

fel < b. Hence for some !, o < T < g, dégl < 0, 80 the quadrant is
such that the side approached is positive. A similar proof applies in the
negative case.

We will now proceed with a case by case analysis of the singuw
larity at P = (0, 0).

Case {1a). wm even, By, > 0.

Equation (18) shows that z = 0 consists of two negabtive half-
trajectories approaching ® : C', z = 0 x > 0, and ¢", 2z = 0% < 0. If
we adopt A and B for their lower and upper edges, we see from equation

1
(17} that CA and Cé are positive sides, and CA and Cg negative
(Pig. 15).

5
G N g

./
NG

z
FIGURE 15

We next notice that there are in fact no positive half-trajec-
tories approaching P. For if we consider the curve o

(20) fH(."x, %)+ zmH—ngH(x, 42) = 0

the tangents to the varlous branches of the curve at {0, 0) are the direc-
tlons satisfying

(21) I‘H(X, z) = 0

for fi(x, z) is nomogeneous of degree m, while 2" ell(x, z) 1is or
degree m + 1. 3ince z does not divide fﬂ(x, Z), z = 0 is not a tan-
gent to any of the curves, so there will be an €,> and an €, auch that
the region D, ¢ < x| « €15 i%l < g, is not entered by any of the branches

of o {Fig. 16).
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A

FIGURE 16

In each of the two open triangleas of D fh(x, £+ zm+1“ngﬂ(x, 7z} carmob
change sign, and therefore has the same slign as for =z = 0, that Is sign
(amxm). Eence from (1%) in these triangles

(22) sign %% = 2ign (zamxm) = gign (2).

4ince any positive half-trajectorles must approasch tangency to
%z = 0, they must lie inside the triangles for all -+ greater then some
: . If they are nobt the trajectories C!' or C" thomselves, then
EZ(TO>I >0, spd |z(t)] —> 0 as 1 -—rw. But (22) states that for
these trajectories in D, Qé%i > 0, a contradiction. As £ and C"
themselves are negative half-irajectories approaching P, no positive half-
trajectories tend to T.

Since any prolongation obviously involves both a pesitive and a
negative trajectory, thers are no curves through P  with a prolongatiocn.
Hence, uzipng Iemma 2, all curves inside a sufficiently small circle St
tend to P as t —> @ Or 88 1 —> - w without leaving a second small
eirele 8. By the above we know that In fact curves can tend to P only
as 1 —> - w, thevefore they are all negative trajectories and by Lemmd
3 can tend only to the negative sides of €' and ¢". Since 2z = 0 can-
not be crossed, we see that for 2 > 0 the trajectories tend with de-
oreasin% T  toward btapngency with CK; and for =z < 0 toward tangency
with Oy (Fig. 7).

Cazse (1a)

FIGURE 17
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Bo for m even; g, > C P dis = {(non-simple) unstable node.

Case (1b). m oven, 8, < 0.

From equation (18) we see that €' and €7 are now posilive
hall-trajectories approaching P. Az (17} shovs, %% 1g wnaffected by the
sign of a, so that the sides C, Cp, ote. are positive or negative as
before. The argument immedlstely preceding equation (22) applies again

only (22) now hecomes

(23) sign %% = sign (/ .:\:m) = - sign (2)

and the srgument which previously showed thst no positive half-trajectory
approaches P, now shows thab no negative ones do. Again there are no
prolongations, ond now inside some small cirele all paths are positive half-
trajectories and tend to P. Only now they must tend Lo posibive sides,

and so tend to CA and Cé (rig. 18).

Case (1)

o

FIGURE 18

S0 P is a {(nop-aimple) stable node-

Cage (2a). m odd, 8, > 0.

Equation (18) shows that C! is a negative, C” a positive half-
trajectory. Wguation (17) shows %wg to be slways non-negative, so C}L

o " P P 1 n 4 P "
and CB are positive sides, and CB and CA negative. Also using once

more the argument based on %{{i we find

(2h) sign %% = sign (zamxm) = aglgn (xz)

for the sign of %%~ inside the small triangles. This implies that nega-
tive trajectories camnnot spproach tangency to CK and Gg, and that posl-
tive ones cannot approach CA and Cé- As C; 18 a negative side, this
means that no characteristilcs at all approsch bangency to it, and aa CA
ig positive, no characteristics approach 1t. So no characteristics other
than €' and C" enter P from the lower half plane. Therefors CE
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must have a prolongebtion, for If it finished at P, by Lemma 1 there would
be a half-peighborhood on the A ailde, through vhich pgssed a cheracterls-
tic tending to P, ard clearly tending to P from the lower half plane.
As this is impossible; case {a) of the lewma must hold, 30 Cx has a pro-
lengetion. The prolongation cannot iie in the upper half plane, for then
oharacteristids pagsing near a point on ¢" apd a point on its prolonga-
tlon, would cut Cf. As there are no characteristics other than C' and
¢" tending to P from the lower half plane, the prolongstion can only
bhe CT.

Thus the lower half plane near P 1s a saddle sector as shown

in Fig. 19.

H — r
o+ P Cp
Ex— 7 T x
P I
A +Cy
z

FIGURE 19

We will next show that there are no curves with prolongations
tending to P from the upper half plane. For suppose there existed a Ci,
a positive zemi-characteristic with a prolongation on some side A C_I
must Lend to tangency with Cg, and its prolongation CE, belng negative,
must tend to Cée By Lemma 1 there exlats a trajectory T passing srbi-
trarily close to points of () and then proceeding with increasing =
arbitrarily cioge to points of G, while lying alvays inside a small circle
around P. Now when near QT, T is near Cg and hence hes & @ ¢o-
ordinate preater than say -é r. Ab a later time, near Cz’ it is near Cé
and thersfors has a & coordinsbe less than %-x. 3o e has decreased
with time. However, in the region in whilch (17) applies, and in which T
always lies during the time under discussion, %%- ig non-negatlive, a con-
tradiction. Hence such a prolongation 1ls lmpossible.

Denoting points z < 0 Dby U, and repesting the arguments of
Temma 2 bub restricting ourselves to points in U, we conclude that as
there il no prolongation, given any circle 3, there is another cirele B!
such that if p belongs to S' M U, then the positive or the negatlve
half-trajectory through p tends to P inside 5 » U. Prom Lemma 1 1%
follows that as there are no prolongations, the set of points inside B!
whose positive half-trajectories tend to P in & is cpen, and of course
the same applies bto the set of points vhose negative trajectories tend to
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P. As the union of these two sets is the interior of' the connected set
3! U, thelr intersection is not vold, so there 1s a polnt p vwhose
positive and negative half-trajectories tend to P. Takling & new semi-
clrcle 81 through p, we mey find o smaller semi- clrele S which is
dideeG into three sectors by the positive and negative half- tragocborles
¢ (p) end ¢C “(p) through p (Fig. 20). 3, may alsc be taken to have
the property thet if g is in 3,5 elther ¢ lq) or C7{q) tends to

P inside ST.

My “p-_______

FIGURE 20

If we consider q in the central sector, € {q) and C {a) 1lile
always inside C(p), 80 both must tend to P. If we conslder d in either
of the other sectors, then either ¢'{q) or ¢ {q) tends to P inside
B, and outside C(p). In fact as Cg is a poq]tzve, and C 8 negative
slde, 1f ¢ 1is in a sector bordering CB’ then ¢ (q) Londs to P in
3, end C (g) does not, nd 1 g 1s in a sector bordering Gg, C ' {q)

tends to P in 3,, and c*(q) does not.

Thus the configuration at P is as in Plg. 21.

Case (g2a)

FIGURE 21
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Cose {eb). m odd, a, < O.

Fguation (18) shows €' to be a positive, C" to be a negative
half-characteristic. The sides of the characteristics are positive and
negative as before, as %%— i1s unchanged. With obvious modificatlons all
arguments go through as in case {2z) and the singular point again has one
prolongation and ons closed nodal region, albthough with positions reversed

a8 indicated in Fig. 22.

10

Ty

ELC S S

z
FIGURE 22

We have thms determined the nature of the singularity x = 0,
7z = 0, which is the only singuiarity on the line al infinity for y ¢ O.
The nature of this singularity has turned out to be completely determined
by the parity of the degree wm of £({x), and the sign of ibs leading co-
efficient a.,.
Ye next Lurn to the coritical point Q = (1, ¢, o). Using ¥, 2
coordinates and equation (15) our differential equations are of the form

dz . d ] )
(25) So = Ay, 2),  gho= ooy v dz o+ Xy, a)
where V¥ and 7 consist of terms of degree » 2. In (16) ¢ = - 8. # 0,
while ¢ = - b if m = pn, and is zerc othervise.

1n
The possible directions of approach are given by

(26} 0=z (%%) -y (%%) = z(cy + dz),
L L

and are 2 = ¢ and the 1ine T, : ¢y + dz = 0. O course z =07y > 0,
snd % = 0¥ < 0, are actually trajectories of (16). Now for egualblons

of the Torm (25) we may use results dus to Bendixson. First there are two
and only two characteristics tending to Q tangent to 2 = 0. In (16)
then these arve the btwo trajsctories gz = 0. Becondly, considering the
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curves tending to Q tangent to I, we may divide bhem into two groups,
those near @ with 2z > 0, and those near Q with 2 < 0.

If the index of §Q 18 1, both of these will form nodes, l.e.,
there will be an infinity of trajeciories tending to Q in each group, and
if € tends to Q, =0 do all trajectories through & neighborhood of €.

Indax 1

FIGURE 23

If the index is - 1, there will be a unique curve in each group
tending o Q, and 1t will have as prolongation one of the trajectories
tending to =z = 0. That 1=, we will have & saddle.

Trdex -1

FIGURE 2%

if the index is zero we wilil have one nodsl snd one saddle side.
In this last cage there are two possible arrangements depending on which
side 18 nodal and which saddle. However, aslde from this we see, following
Bendixson, that the nature of the singularity @ is largely determined by
the Index. Now the index of Q is given by

(27) index (Q) + index (P) + © index (py) = 1
1 .
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Index ©

¥

|

FIGURE 25

where the py are the critical points not on the line st infinity. The
index of P may be computed from a2 formula of Bendixson

2{- index (P) + 1) = ¢ - s

¢ being the number of curves having proiongations, e the number of
closed nodal regions. Referring to cases (1a), (1b}, (2a), (2b) we find

slways
(28) index (P) = 1.

The Dy are, of course, the polnts where %%- and %u vanish

simalteneously . “fence, referring to (13}, all the p; must iie on the
w-axls and have x-coordinates g guch that g(ai} = 0. If we assume for
the moment that g{x) has only simple roobs, & routine calculaltion shows
that the polnts (aij 0) are simple critical points, and that they have
index + 1 if g‘(ai} >0, and index - 1 if g'(ai) < 0.

At successlve intersections of the curve g(x) = 0 with the
x-axis, g'(x) will change 1bs sign, hence at successive critical points
the index alternates from + 1 to - 1. If g(x} is of even degree,
i.e., n even, there will be cqual mumbers of both types so (27) glves

(29) n even, ind(Q) = 0,

wvhile if g{x) is of odd degree there are two cases

i
-

n odd, b, <O ind(Q)

{50)
n oodd, by >0 ind(Q)

H

Hence the index of Q is determined by g(x) alone.



T2 GOMORY

Equabions {29) and (%0) hold even when g has maltiple roobs,
for these multiplicities can be removed by small chenges in g which, as
they change the vector field only slightly, cannot sffect the index sum.

In the cases covered by eguation (30) the index conpletely detar-
mines the nature of Q except for the direction in which the trajectories
are Lo be pursued. This last is directly determined from (16) and depends
on the sign of By

In the case n even, it remains fto determine which side of
2 =0 at Q@ is a saddle and which side a node. Remembering that =z = 0
is a trajectory, we cbserve that if the side 2z > 0 is a saddle side the
vector field should rotate through - x  along any curve connacting a point
on the positive y-axis with a point on the negative y-~axia through the
half-plane 2 > 0. 3imilarly, if the side is to be nodsal, the rotation
should be + =. We will acltually obtain this rotation along a simple path.

Tet the path consist of the sidesa formed in the half-plane 2z > ¢
by the lines y = + a, z = ¢ > 0 {Pig. 26}.

@

FIGURE 26

Frow (16) 1% appears that at (a, 0) and (- a, 0) the vectors
{%%—, g%J are vertical a?d oppesitely directed. On v = a z > 0, and on
%= € ¥y > 0, we have %? < G, 80 the vectors point toward the right
half-plane 2z < ¢. At v = 0, g%-: - Em~n+$gﬂ{1, ¢} which for ¢
sufficiently small has the sign of - bn° So at Z =€, ¥y = 0, the vechor
polnts toward the half-plsne - ¥, > 0. n z=¢ yv<o0, and on
y= -3 z>0, %g > 0 and the vector points into the left half-plane,
z > 6. This gives a rotation of - = if bn >0, and + « 1T bn < 0.
80 if n is even and b, >0, z >0 1s a saddle side (Rig. 27),
and if bn < 0, z >0 1s a nodal side (Fig. 28}. Ve find thal that the
form of the trajectories near §, that is, whether they are saddle or
nedal sectors, is determined by the parity of n and the slgn of bn- 30
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f{x) controls P and g{x) controls Q.

T eve o> 0
ven, b,

N4

FIGURE 27

o even, ‘oy1 < 0

FIGURE =28

We can now glve the varicus possible modes of behavior in the pro-
jective plane nsar the lins ab snfinity, thalt is, the asymptotlc behavlor
of solubions to (13) thabt become unbounded cither for increasing or de-
creasing t  (Flg. 29). In these Clgures the trajectorles in the finite
plane are given perametrized by t. The projectbive plane ls representod as
a circle and its interlor, wibh opposite points on the clrcumference identi-
fied. The circiumference itsslf consists of the trajectories z = ¢ and
the critlecal points P and Q.

Wext consider a < 0. For mw even the following changes should
he made. First the dirsclion of the persmetrization ls reversed, and
secondly, the curves approachlng P are now tangent at the other side.

For example, from 1 comes 1A (Fig. 30). Similarly from 2, 3, * come
24, 3A, kA, For m odd the role of the upper and lower gides of P is
interchanged. Thus from 5, 6, T, & come SA, 64, 74, 8A (Fig. 1.

The informatlon obtalned about behavior at Infinlty can be used
o deduce pvesulis aboul the behavior in the large of the trajectories. For
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Case 1. n odd, ‘ou > 0

Oase 3. n even, b, >0

FIGURRE 298, w even, By, > 0

Cese 5. n odd, by > 0

Case 8., n even, bH < ¢

FIGURE 29b m
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FIGURE 30

example, a glance &b flg. 29 shows thabt the only eguations dissipative for
lerge displacements are those of case (1), n even, wm odd, 8, and by
positive. Furbthermore, if we take one of this class which, Llike van der
Polls equation, has o single unstable singularity in the finite plane, ve
can readily deduce the existence of Limit cycles. ¥For the trajectorles
emanating from the finite singularity must have as thelr limit sets elther
a limit-cycle, a eritical point, or a graph mede up of separatrlces and
eritical points. As no trajectories tend to P or § with increasing
time, the last two possibilities are ruled out and limit cycles exist, in
fact every point cutside the cutermost limit-cycle must tend to it with

increasing time.

FIGURIEE 31
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A similar remark applies to 1A with s single stable singularity.

If we take case (6) wibth a single simple singularity R in the
finite plane, R will necessarily be a saddle. Consider the limlt sets of
the two positive separatrices ¢, and C, emerging from R. Thers sre no
limit-cycles since a limit-cycle must contain singularities with an index
sun of 1. For the same reason nelther separatrix can return to R, =0 a
loop of linked separatrices is impossible. Hence, each must tend either to
P or to § along 2 possible direction of approach for positive trajec-
tories. They cannot both tend to P (or Q) for if they did, RC}PC2
would enclose a certain region A free of singularities and every positive
and negative {rajectory in A would have to tend to P between G, and
C,« But this is a direction of approach for positive trajectories only.
Hence, C, tends to @ ang €, to P (Fig. 32). The paths of the other
trajectories are then completely determined. G, and another separatrix

bound the closed nodal region of P. i

FIGURE 32

A single singularity in case (2) sgain gives an easily determined
configuratlon, while Iin (%) there are many possibilities.

In (3), (&), {7}, and (8) the simplest csse iz g(x)} never zero.
With ne finite singularities the destination of the unique separatrix
lesuing from Q is uniquely determined, and in turn it debermines the
destinatlons of the other paths. In case (3) it tends from Q@ to Q, in
case () from Q to Q, in (7) from Q +to P, in (8) from P to Q, a0
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that the paths in the finite plane are as shown 1n Fig. 33.

FIGURE 33

We see that 1n all cases (1) to (8) and (1A} to (BA) trajectories

tend to infinity with s definite ssymptotic directlon. They are asymptotic
to the line at infinlty at P, and to a finlte line at Q. Tf m > n,
In no case

they are in fact asymptotic to the x-axils as they tend to Q.
is there & gplralling toward infinity.

PART I1T: WORCED OSCILLATIONS IN A CLASS OF
SECOND CORDER EQUATIONS

§1. In this section the method of Pari I and the knowledge of

critical points obtained In Part IT will be used Lo prove a forced
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osclillation theorem aboutl

2,
(51) S5 o) v glx) = W)
at” at
Here, ag before,
m n
- o - 5
Plx) = EL ax,  glx) - 2; b %",
B0 5=0

and m >n > 0, wvhile the forcing term E(Lt) has a continucus derivative

ad 1s pericdic of periocd T.

THEOREM. Tf n 18 odd, and if we do not have both

b, >0 and m odd, then equation (31) has a

periodic solution of pericd T.

§2. As a first step toward establishing the theorem we will in-

troduce & palr of equations closely related to the phase plane Form of

{51).

Chioose any ®' greaber than sup [B{t)!, and let
t

- B, ¥ >0
h1(¥)£{ }
+ o v <0

mt,
and
+ B, yz0
h, {(y) x-{ }
- B, ¥y <0

then introduce

: dx &

(527, 7 Ty Ty)
and

y ax | dy

(32), ¥y TETEERR, T

In all the following we will only consider these equalbions in the

sxterior of a circle S which surrounds all the zeros of all the polynomials
- glx) + ¢, lc] < B,

At every point of this reglon the equations (52)1 gatlafy Lipschitz
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conditions either in x or in ¥, 20 that we have unlque trajectories,
and in fact, in a sense to be mede more precise below, bhese trajectories
will have the same behavior abt infinity as the trajectories of the corre-
gponding squation (13},

Gongsider first the singularity P = (6, 1, 0). Near P and on
one side of the trajectory = = 0 the trajectories of (32)1 coincide with
those of

dx

(331, ar ey - Plx)y -~ glx) - B

while on the other side they colnclde with the trajectories of

(33, %% =y %% = - M{x)y - gz} + B

The argunents used in Part IT to determine the behavior of the Urajectories
of (13) at P can be applied separabely boc each of the equabions {33},
to find the behavior of the trajectories of (52)1 on each side of 2z =Jo°
As the (33). differ from (13} only by a constant, and the type of singu-
larity obtained al P is determined by m and &, we will have only the
same types of sides and the same combinations of sides as in the corre-
sponding cquation (13).

The same remark applies to (32)p.

Near the critical point & = (1, 0, 0} conalder the alde =z > 0,
(x >0 in x, v coordinates), and notice that ¥ = 0 is a segment with-
out contact. Suppose % > 0 18 an abttractive node or saddle side for {1%)
and hence for (55)1 and (53)9, Eguation {16) shows that we have
[o¥4 w1 -
qy = A
the unique trajectory), tending to § do 8o in the half-plans §y > 0.
This behavicr then 1is not affected when the trajectories of the {55)j are
pleced bogether aleng ¥ = 0 to obtain the trajectories of the {52}1.

v for all three equations. Therefore z11 the trajectories, (or

Similar remerks apply to repulsive nodes and saddles and to 2z < 0. The

following more precise statements may be verified at once.

Let the trajechtories of the (52)1 he gilven the paramelrization
obtained naturally from the approprilate (ji}iq Suppose flrst that the side
z >0 of § iz an attractlive nodal side for {(13). "Then, glven any semi-
circle 3, around Q, there will exist an Sp, such that if x° s in
8,, the trajoctory of (32), througn x° tends to Q inside 8,. Now
suppose that 2z > ¢ is a saddle side of Q for (13). Then Tor each
eguation (52}i there is & unique trajectory tending to Q, and its pro-
Jongations are the parts y > 0 and y < 0 of the 1ine =z = 0, exactly
a8 is bhe case for trajectories of (1%).
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These statements may be vepested for a repulsive node or saddle,
and for the side 2z < 0.

We will now introduce some notations needed for the main

) 4 -+ o - ep s .
lemma of this section. By Ci’ Oi will be meant positive and negative

half-trejectories of the (ﬁe)j, the parametrization being obtained from the
appropriste equation (33). The region x* y2 > R? will bhe denoted by
K{R). Alse, given some K(R), the set of points %© in K(R) such that
Cg(xo) tends to infinity in E(R) will be denocted by A;(H)e Simitarly
from the Ci we obtain the sets A7 (R).

A large part of the proof of the thecrem consists of establlish-

ing the Tollowing lemma.

LEMA. If the f£{x) and g(x) in (32) satisfy the
conditions for the theorem, then, given any sufficient-
ly large R there is an RO depending on R such
that

A‘j‘(R) v AZ(RY DE(R).

PROOF.  The proof will proceed by a case by case snalysis. The conditions
ffor the theorem wesn that we deal only with the cases 1, 2, and 6, 14,
2A, and 64 of Fig. 2¢. We will give the proof of the Lemms only for cases

1, 2, and 6, the modifications for the other cases being obvious.

We take a fixed R, and consider all the following constructions
58 being carried ocubt in K(R).

Case 1, m even, n 0484, 2, > 05 bn > 0. P is an unstzsble
node for both of the eguations (32),. Censidering especially (52)2, we see
that glven a clircle , around P, there is an SQ guch that if x% is
inside B,, C,(x°) tends to P inside 5,. So the interior of
B, C A;(R}. Also for x > 0 and near & choose anobher x° so thet
C;{xo) iz the unigue trajectory tending toward Q. As the line st Infinity
forms the two prolongations of this trajectory, it follows imnedistely from
the definltion of prolongation that we may find a short segment without
contact, ax’b, orthogonal Lo C;(xo) and such that C;(a) and G, (b)
cut S, (Fig. 34). Repesating the construction For x < 0 with an x°
and 2 segment 2tx%'pt and trajectories C;{a'} and C;(b') we see that
By G;(a), C;(b), Cg(a'), and Cg(b‘) bound a reglon A which clearly
has the property that i x° ¢ A, C;(XO) lies entirely in the region
bounded by the same four trajectorieé and  5,. Thus A C AE(R), and any
K{#,) C A is a K(R,) fulfilling the condition of the Lewna.

<1
i

Case 2, m even, n odd, a, > 0, bn < 0. As P 1s an un-
steble, Q a stable node for the (32),, Just as In case 1 we may find
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FIGURE 3k

circles, Sg around P, Sé arvound &, such that

B, € A;(R}

C AT (R)

Also, sinece 2z = 0 i a trajectory, using contlinuity with
respect to initial conditions, we may find an x° on 3, with =z co-

. - O ! .
ordinate so small thatb 63(x ) cuts 35, and an 2 on S; with =z
. oot , i - . N
so small thatb L?(X ) cuts B, (see Fig. 30). BSo if p Iies under both

e, S,
x° \/_ .—7[\
gy —
@ =0 P

FIGURT 35

these trajectories C;(p) will enter S,, and Ci(p) will enter 3.
Thus p liles in AT(R} and in A;(R). In thig way the circles may be
conmected by long pipes slong 2z = ©, the pipes lying in AT{R) and
AE(R}. Thus combining pipes and circles we obtain a region A lying in

AT(R)(J A;(R), and any R, such that K(RO) CA is a E(R,) as required
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in the Lemma (Flg. 36).

FIGURE 36

Case 6, m odd, n odd, By, > 0, bn < 0. In desling with the
critical point Q we construct a circle & as before. The part of the
cirele nesr Q with » > ¢ will belong to Af(R); the psrt with % < 0
o ﬂg(ﬁ). But in dealing with P on the side ¥ < ¢ we have a more
complicated singularity and must slightly medify the procedure.

In Part IT in discussing this criticsl polnt we saw thab the in-
terior of any sufficilently smzll circie S? around P, y < 0, would be
divided into three sectors by a trajectoryiof (1%} there referred to as
C{p) (Fig. 20). Turning to equations (32), and (52)2 we have different
circies and different divisions, but cheosing & circle sufficiently small
to serve For both equations, we have it divided into the thres closed
sectors Ty, B, EE’ by & suitable trsjectory C](a) of (52)1, and into
sectors  Bl, EL, Eé, by a suitable Cg(ai) off (32),. The properties
ageribed to the sectors in Part II show that BowE, C A?(R), and
B} LJE% 4 A%(R), Also, as £,(A) and C,(a') both approach P tangent
to z = 0, we have for a sufficiently small circle Sg, B, o Bl o=
BN E5 = ¢ (the null set).

Using thils circle then we may write
124 ¥

] Enl " T i At - z - -1
(E]‘J B, v Ei) f\(E1=J B} bfbﬁ) Sg and interior



FORCED G3CILLATIONS 123

= (B, v E,) v (}@:5 aRIPRY (E5 m E.;'.\) (B, v E,

S0 we have a cilprcle around P, v < 0, of the deslred type.

) w (B VEL) CAT(R) w AR,

ps

We may now consbruct pipes to the circle around & by linking
8 {of Q, x> 0) with 52 by & CT which starts on SP and cuts 2
with x > 0, and a Cg Istarting on 82 and cubtting S, x < 0 (Fig. 37).
The points under this C] will belong to AT(R), those wnder L. to
— ¥ . -
A7 ()

FIGURE 37

Since the line =z = 0 1is ihs own prolongstion at Py > 0), we
may consbruct a tube linking Q{x <« o) with Qix > ¢) past P{y > 0},
The points in the tube will have the property of belonging to A;(R) or
AZ(R) or to both. Together the tubes and circles fomm a region
A CAJ(R)w AZ(R). Thus any K(R,) in A is a suitable K(R,).

As we have now dealt with all the cases, the Lemna ls establlshed.

§k. TNow take any specific C(x) and g{x)] satisfying the con-
ditions for the theorem, and consider the corrcsponding egquations (32}] and
(32), together with an R and R, such that

A';'(R) v AZ{R) D E(R,).

Choose any point p = (&, b) ldying in K(Ro)e We will assoclate with p
a helf-trajectory and a ray 1ln the following manner. 1If p e A?(R), the
trajectory is Cf(p), if poe Ag(R) the trajectory is C;(p), if b is
positive, the ray is the ray x = a, y 2 b, 1f b 1la < 0, the ray is
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X = a2, y<b.

The chosen trajectory through p may behave 1n one of two possible
ways (Fig. 38 is an exampls), elther 1t culs the chosen ray again after
leaving p, or it does not. I it does cub again at p',; then the tra-
Jectory and the segment pp' divide the plane into two regiong, and a path

FIGURE 38

proceeding from one reglon to the other must cut pp’ or the trajectory.
If the trajectory does not cut the ray agsin, fthen by the definition of
AT(R) o A;(R) the trajsctory wust tend to infinity inside ®(R). Thus
the ray and trajectory combined ogoin sepasrate Lhe plane into two reglons.
We will always call this separating curve through v, J(p).

ow consider the phase plane form of (31).
; ay -
(5) g% =¥, oqb - - £lx)y - glx) ¢ B(L).

Comparing the slopes of trajectories of (32),, (3k), snd (32),, we have
for any point (x, v), ¥ 4 O,

“C)-glzxh (7)) - (x)y-g(x)+E(L) nf(x)ng(x)+h2(y)
¥ = 7 < 7

Thisg shows that 1f Gf(p) s pursued in the direction of in-
creasing time, the motions of (34) will cross it from right to left excapt
possibly at points vhere ¥y = 0. Similecly if Cg(p) is pursued in the
direction of decreasing time, the mobtions of (34) cross it from right to
left. Also, as %% = ¥, the same statement holds for the ray through 1,
provided it 1s traversed in the dirvection of decreasing |yi.

We may run through J{p) by first traversing the ray with ivi
decreasing, and then running through the aggligned trajectory after reaching
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p. All along this path, with the possible exception of points ¥ = 0, the
trajectories of (34%) cross from right to left. Since the polnts v = 0 on
J(p) are isolated, it follows from continuity that even at these points
the motions of (34) cross J(p) from right to left. Hence, all solutions
starting on J(p) and moving with increasing t will enter only one of
the two regions into which J(p) divides the plane, while with decreasing
t they all enter the other.

We conclude that any trajectory of (34) cuts J(p) at most once.
In particular, the solution through p itself never returns to p, where
p 18 any point in K(RO)- We are now in a position to duplicate the argu-
ment of Part I.

§5. Consider in place of (34)

F -7 Fx, )
(35)
F = - £x)y - glx) + E()IF(x, ¥)

wvhere F(x, y) has continuous derivatives, is always positive, is identi-
cally 1 inside some circle of radlus R!' > R,» and tends to zero so
rapidly that the right hand sides of (359 are bounded in the entire plane.

As the speclal property of the separating curves J(p) depended
only on the direction, not the length of the velocity vectors of (34), the
curves J(p) have this property again with respect to solutions of (35).
Thus a solution to (35) passing through a point p in K(R,} never re-
turns to p.

Just as in Part I, equation (35) gives us a mapplng
Pp ¢ u? — u(t, v°) of the plane into itself. If we consider the index
of this mapping on any circle S 1lying in K(R,) with radius R",
R, < R" < R', we find, just as before, that since solutions cannot return
to thelr starting point the index of 9y on S 1s independent of t. In
fact, by the argument of I, it is equal to the index on S of the veloclity
vectors taken at t = o.

But, as the theorem assumes that g(x) is of odd degree, this
last index, obtailned from

%% = - f(x)y - g(x) + E(0)

must be # 0. Hence even the index of op 1s # 0, and there is a point
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u® inside § with mTup = u®. The solution through uw is a periodic

golution to (35). However, this solution passes through no point of
K(R,), for a trajectory through p in K(R,) camnot return to p. So
the solution lies always inside S. Here however, F(x, y) i1s identlcally

1, 80 we have a periodic solutlon to (3%) and hence to (31). !
This establishes the theorem. ﬂ
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