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The problem of finding the best solution in integers to a linear program-
ming problem arises naturally in several ways. In an allocation of resources
problem involving indivisible items such as ships, a solution involving frac-
tions is one that cannot be realized in practice. Sometimes this matters and
sometimes not. If the numbers involved are large and especially if the data is
a8 poor as it sometimes can be in practical problems, one can round off to the
nearest integer and probably not make too great an error. However, when
a combinatorial problem is formulated as a linear programming problem,
as in Dantzig [1], the data is usually quite precise and the numbers in the
solution are often restricted to be zero or one. An example would be the
task of selecting the largest possible expedition from a group of available
people, subject to certain restrictions such as “persons 7 and 8 cannot both
be included in the expedition.” This is converted into & linear programming
problem by assigning variables z; to each of the people. In a solution
z; = 0 means that a person is included in the expedition, 2; = 1 means he
is excluded. The problem then is to minimize 1 % subject to a series of
restrictions such as

xy + xg = 1.

If & solution can be obtained in which the variables are 0 or 1, the inequality
above implies that either person 7 or 8 has been excluded from the expedition.
In a problem such as this one the numbers are automatically small (0 or 1)
and a fractional solution is meaningless. In this particular example it is
enough to demand a solution in integers. The minimization condition then
asgures that the solution contains only zeros and ones.

A close connection also exists between integer programming problems and
problems involving piecewise linear, but not convex, domains or objective
functions.

This paper outlines a finite algorithm for obtaining integer solutions to
linear programs. The algorithm has been programmed successfully on an
E101 computer and used to run off the integer solution to small (seven or
less variables) linear programs completely automatically.?

1 This work was supported in part by the Princeton-IBM mathematics research

project.
2 More recently a FORTRAN program on an IBM 704 has been used to run problems
up to m = n = 15. The problems (only a few were run) ran rapidly.
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The algorithm closely resembles the procedures already used by Dantzig,
Fulkerson and Johnson (2], and Markowitz and Manne {3], to obtain solu-
tions to discrete variable programming problems. Their procedure is
essentially this. Given the linear program, first maximize the objective
function using the simplex method, then examine the solution. If the
solution is not in integers, ingenuity is used to formulate s new constraint
that can be shown to be satisfied by the still unknown integer solution but
not by the non-integer solution already attained. This additional constraint
is added to the original ones, the solution already attained becomes non-
feasible, and a new maximum satisfying the new constraint is sought. This
process is repeated until an integer maximum is obtained, or until some
argument shows that & nearby integer point is optimal.

What has been needed to transform this procedure into an algorithm is a
systematic method for generating the new constraints. A proof that the
method will actually give the integer solution in a finite number of steps is
also important. This paper will describe an automatic method of genersting
new constraints. The proof of the finiteness of the process will be given
separately.

Let us suppose that the original inequalities of the linear program have
been replaced by equalities in nonnegative variables, so that the problem is
to find nonnegative integers, z, z;,- - -, Zp, £1,- - -, ta, satisfying

z = ao,0 + a0,1(~1) - ao,a{ —tx)

1 =ay0 + ay,{—t1) - -ay,a( ~1ty)

(1
Em = Oy, o + a’m,l("*tl)' . 'Gm,n("tn)

such that z is maximal. Using the method of pivot choice given by the
simplex (or dual simplex) method, successive pivots result in leading the
above array into the standard simplex form,

5= b + Gha(~8): - ag(~1))
) T R A
Tpo= g £ (—)

where the primed variables are s rearrangement of the original variables and
the a;; and a}, are nonnegative. From this array the simplex solution
tj = 0, z; = a;, is read out.

An additional constraint can now be formulated. The constraint which
will be generated is not unique, but is one of a large class that can be pro-
duced by a more systematic version of the following procedure.

Let us consider the equivalence relation, equivalence modulo 1.

We will write @ = b (a equivalent to b) if and only if @ — & is an Integer.
This equivalence relation will be used to produce a new constraint.
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If the a/, are not all integers, select some to With @ , non-integer. For
this ¢o we have the equation

j=n
(3) x‘:'o = a’éo.o + Z a’go,j(wt;)'
i=1
Any nonnegative integer solution 2” Z' o, Xy, t, -, 8 must satisfy (3).
Since x] is an integer we have
(4) zy = 0,
3o from (3) and (4) we have
j=n
(5) D, Tt = al,,.
=1

If G, ; is any number equivalent to @, j, then since the ] are integers,
j=n
(6) i ] = al, o
i=1
If the dq,; chosen are all nonnegative, then the left hand side of (6) is
also nonnegative since the t; are nonnegative by assumption. So the left
hand side of (6) is both nonnegative and equivalent to af ,. This implies

j=n

(7) Z dio.jt; 2 f‘go,O

i=1
where f] , is the fractional part of a;, o-

This inequality, although satisfied by any nonnegative integer solution to
(2} is not satisfied by the present simplex solution since the simplex solution
hast; = 0,j = 1, n.

The only restrictions placed on the d4,,7 80 far is that they should be
nonnegative and equivalent to the a; ;. If any one of the chosen Ay, ; 18
replaced by a smaller equivalent number which is still nonnegative, the
result is a new inequality which is easily seen to imply the old one. A
succession of such replacements then results in a series of inereasingly strong
mequalities. The strongest possible one, which implies all the others is

j=n
(8) 2 fidi Z fion

i1
4 !

where f; ; are the fractional parts of the %,; That is fi ; = ai ; — n{
where n;, ; is the largest integer < aj, ;-
To transform (8) into an equation we introduce the variable 81, required

to be nonnegative, by
i=n

(9) s1= ~floo = 2 Fioi =)
J=1

and add equation (9) to the set (2). The new set will be referred to as (2%).
Since sy is the difference between the left and right sides of (8), and these
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ExamrLr
Maximize w = 2z + 3y + 2z +1 —f  —ly —l3
8 — 8By = 7
rTWE N T
—~x 4+ By =0 h 40 40 40
T+ y+zs86 = 2_2% Z% 4% 0
Introduce slacks iy, ¢g, ¢a —
39 1 8
i —p -y - i lm 40 10 °
. = 17 7 16 1
w = ¢ -2 -3 -1 - 40 40 40
4 = 7 8 ~—8 0 o = 39 L .
tg = 9 -1 6 0 40 40 490
i3 = 6 1 1
End of regular simplex method
+1 -t —8 —i3
7 1
1 ~ ~ty -z W 9§ 3 3 1
7 i
1 = ol
w o= | 4~ mz-% 5 ~1 z = 1z 8 1 0
@ Yy = 1 0 1 0
o= 1|12 6E 1-1— 0
3 3 1 1
z 3o —= 2 1
TR 58
vy = 2 8 6 7 1
tg = 4 - - —5 0
S O M
s = 2 6 6 .
8o = ! ! 0 0
2 8 8
+1 —48z —8 —i3
1 — 3 by -z
w = ?_ 1 3 1
25 15
’ Yy o= 1 0 1 0
r = 22—3 ;%- 4—80 0 i -
Pz =14 -1 2 1
39 1 8 i
y =15 % w ° gtz = | 4 1 —5 0
_ 7 716 =17 -8 0 0
B=11% % " !
Integer solution
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two sides are equivalent for any integer solution, s; will always be integer
whenever the other variables are, so we still require all the variables appear-
ing in (2%} to be integers.

The procedure now is to maximize z over the solutions to (2*). This is
done using the dual simplex method because all the ag; and a;, are already
nonnegative, and —f/ , is the only negative entry in the zero column of

the equations (2*). This fact usually makes remaximization quite rapid.
The process is then repeated if the new simplex maximum is non-integer,

Of course the equations (2*) involve one more equation than the equations
(2), and an equation is added after each remaximization. However, the
total number need never exceed m + n + 2. For if an s-variable, added
earlier in the computation reappears among the variables on the left hand
side of the equations after some remaximization, the equation involving it
can simply be dropped, as the only equations that must be satisfied by a
solution are the original ones. This limits the total number of s-variables
present at one time to n + 1 or less.

Of course even the process just described involves an element of choice,
any of the rows ¢ of (2) with af, non-integer might be chosen to generate
the new relation. Some choices are better than others. A good rule of
thumb based on the idea of “cutting” as deeply as possible with the new
relation, and borne out by limited computational experience, is to choose
the row with the largest fractional part f; ¢ in the zero column.

This class of possible additional constraints is not limited to those pro-
duced by the method described here since it is easily seen that some simple
operations on and between rows preserve the properties needed in the
additional relations. These operations can be used to produce systemati-
cally a family of additional relations from which a particularly effective cut
or cuts can be selected. A discussion of this class of possible additional
constraints together with a rule of choice of row which can be shown to
bring the process to an end in a finite number of steps—thus providing a
finite algorithm—requires some space and will be given as part of a more
complete treatment in another place.

A small example, illustrating the method, is on the preceding page.
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