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INTEGER PROGRAMMING AND PRICING
By Rarven 15 Godory axp Winniay J. Bavmon

in this article Gomory's mcthod of selntion of integor linear programming
problems is described bricfly (with an example of the method of solution).
The bulk of the paper is devoted to a discussion of the dual prices and their
oo indivisible resources and their

relationship to the marginal viclds of son
efficient allocation.

LoINTRODUCTION

Tr 1as been known for some time that a method of solution of the general
Inear programming problem in which the variables are required to take
integer values would also permit the solution of a considerable varicty
of other problems many of which are not obvicusly related Lo it Tor
example, Markowitz and Manne (18] bave shown that ithe difficult concave
(nonlinear) programming problem (c.g., a cost minimization problem in
which the total cost function is shaped Itke a hill} can, at least in principle,
be approximated as an integer program which permits the determination of
a global, and not just a local minimum. Nonconvex feasible regions can also,
at least in principle, be handled by integer programming. Among the
cconemic problems which are related to infeger yrogramming are the
travelling salesman preblem and problems in which fixed (inescapable)
costs are present. A surprisingly wide range of problems including diophan-
tine problems and the four color map problem?® can be given an integer
programming formudation. Some of these applications will be deseribed
greater detail in section five of this paper,

Recently one of the authors of this article developed a method, which he
calls the method of integer forms (MIF), for solving integer programming
problems. In the next section the method of selution will be described in
some detail. No proof that the algorithm arrives at the optimal integer
solution in a finite number of steps will be deseribed since it is rather
Iengthy and 15 being published elsewhere (sec Gomory 16 and [7], For an
alternative approach sce Land and Doig [127).

The bulk of the paper, however, will be devoted fo a disenssion of the
pricing problem in the integer programming case, that is, in the case where,

b For an excellent survey of the applications of integer programming sce Dantzig (31

2 Tuteger programming methods have not suceeeded either in confirming or rejecting
such conjectures as the four color hypothesis. Rather, the technigue permits the solu
tion ol individual problems when solutions cxist. Thus, for any specific map, if ters
exisls o solubion to the four color map problem, integer progranmiming can be used
to finedd o sofution, i.e., to assign four colors among the different territorics in such & way
that no two tarritories with the same color have a common boundary,
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in economic terms, the inputs and outputs are “lumpy” (not perfectly
divisible}. We shall show that the MTI7 algorithin produces a dual problem
whose solution also imputes shadow prices to the scarce inputs. These prices
possess a number of the properties of the dual prices of ordinary linear
programming. In particular, they possess one of the most important proper-
ties of ordinavy dual prices—they permiat the constraction of a decentralized
deciston analking avvavgement which, in principle, will achiene some of lhe
possible effrcient allocations of vesources. We shall see, however, that the price
system no longer suffices to achieve epery efficient allocation, and that, when
the consumer side of the market 1s taken into account, the entire ideal
output theorem of perfect competition runs into difficultics. These integer
dual prices also possess a number of peculiar features. First, they will them-
selves be integers, Second, they are fo some extent arbitrary and will vary
with the procedure by which they are computed. Third, they will tend to
impute a zero price Lo a number of resources to which the ccomomist will
want to assign a higher value, Fourth, the dual price of a resource will not
always be equal to its marginal revenue product, and, in fact, the marginal
revenue product of an input itself becomes a somewhat ambiguous concept.

Belore actually describing the method of integer forms it seems worth-
while te state the result it preduces, a result very shmilar to the one produced
by the erdinary simplex method.

In the ordinary simplex method, starting with the infeger inequalities in

1 original variables x;

B ) _ 5 .
(1.1 j>"f| @i Sy {i == 1,. .., m, af;integers)

and an objective function

- E
o gy -l 2@y (~ %) (a5 Integers),
i1

one introduces slack variables %3, one for cach inequality, converting them
into equations

. L .
(1.2) Xf s ahe b Jehg (%) (fe= 1, ..., m),
S

whete the a§,, are the @z of (1.1),

In the usval language of linear programming the x% in {1.2) are the “basic”
variables, the x; are the “non-basic” ones. In the simplex method one tries
out m succession different sets of basic and non-basic variables, each time
changing one variable from “‘basic” to “non-basic” and vice versa. Every
such interchange of two variables is referred to as a “pivot step” of the
simplex method. After a series of such steps (1.2) becomes (1.3)
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n,
T == g, g b 24 o~ 1)
(1.3) Y
U= @i,0 - 2ty (— &) (f==1,..., m),
el

where the £f are the current basic variables and the aq,; arve the coefficients
used to express them in terms of the current non-basic ones, the 4. The
simplex method guarantees that eventually we can reach an expression
(1.3) in which all the a0, ¢ == 1, . . ., m, are nonnegative and also all the
Aoy, 7 == 1, .. ., 1, are nonnegative,

At this point we have cbtained an optimal solution, for in order to
maximize z all the non-basic variables (the 4} must then be set equal to
zZeT0 since every nonzero f; must involve some subtraction from # (first equa-
tion in (1.3)). Each basic variable 5 must now be equal to the appropriate
as,o since all other terms in the equations drop out. This, then, is the solution
to the programming problem where it will be noted that, since all aq,, are
nonnegative, all variables automaticaily get nonnegative values, as required.
The a4, alse have economic significance, for, as will be noted later in this
paper, they are the shadow prices of the dual problem.

In the method of integer forms one proceeds exactly as in the simplex
method, only from time to time certain new variables and inequalitics,
which will be described presently, are added to the problem. The result is
again a final set of equations

&,
2 == lo,p ~~£“ 241 @o;f(“*“ {?} ’
(1.4) .

i == @iyo - .X: @g,5(— lg) {4 ceeL )
with the a;,, and ag,s {except possibly ag,.) nonnegative, and again the
solution to the linear programming problem is oblained by setting #5 == a4,
But this time there is a different number of equations, m', (where m <Tm’ <
m - ). These involve m’ basic variables £ all of which were present in the
original equations. There are still only » non-hasic variables, #. However,
while some of these are variables may appear in the original equations,
others may be new variables added during the course of the computation.
The essential point is that now all fhe ay; are integers. Thus the solution
is in integers.

2. THE METHOD OF SOLUTION

A geometric picture of the integer programming problem will give
the reader an intuitive grasp of the method of solztion. In Figure 1 we
represent the feasible region, OABCD, of an ordinary linear programming
prablem. The dots within this region represent ali feasible points both of
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whose coordinates are integers (the integer lattice points). The solation
to the ordinary programming probiem will occur on the boundary of the
feasible region and in the diagram none of the boundary {other than the origin)
goes through an integer lattice point. Suppose, however, that the feasible

Frouwe b

region could somehow be shronk o the convex hull of the feasible lattice
points (the shaded region). It is to be noted that this, too, would be the
diagram ol a linear programming problem—in fact, of the original problem
modified by the addition of several supplementary lnear constraints such
as KR This new programming problem has two other important feafures:
(1) 1t includes every integer feasible solution to the original program and {2)
every basic {corner) solution of the new problem is an integer solution, for
the boundary of the convex hull consists of lincar segments which join
lattice points. 1t follows at once that a {basic) optimal solution to the new
programming problem must be an optimal integer solution to the original
problem,

In practice it is difficult to cut the feasible region down to the convex
Iadl of the feasible integer Tattice points. The MIF method of selution does
consist of a sequence of steps involving the addition of constraints to the
original fincar program and the subscquent solution of this expanded
near program. These constraints are chosen in a way which gives them the
following propertics: (1) they normally reduce the feasible region; (2) their
graph {e.g., 557) ordinarily goes through at least onc Jattice point (point
G in the figure) but it must be emphasized that s lattice point need nol
tie i the Jeasible region; {3) they never exclude from the new feasible rogion
a lattice point which was originaily feasible; and {4) they produce, in a finite
number of steps, a new lincar program whose solution is in integers and
which is therefore the optimal integer solution of the original programming
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problem (if any such selution exists). Tt is to be noted that the feasible
regicn of this final programming problem will include OF FGH, the convex
hull of the feasible lattice points, and will itself be included in the original
feasible region, OABCD. In this diagram it is clear that, with a suitable
objective function, an optimal integer solution will oceur, e.g., at point &
at the imtersection of the additional constraint lines RR’ and S&°.

Tt remains now to deseribe the construction of these additional constraints.
Consider any equation that occurs in the course of the solution of the prob-
lem which we write as

(2.1) £ s diyg 4 2ade gl ly) (= 0,00, 5

In which we happen to have a;,; = 0 for§ == 0, .. ., n (Slack variables have
been included in the set of varizbles ¢ where necessary so that each con-
straint is an equation.) I'or later reference note that (2.1) smay be ihe
objective {profil) funclion z = o, + Xite; (—i4), where z is the variable
whose value is to be maximized {total profit). In other words, (2.1) neced
not be a constraint equation. For reasons which will Tater be emphasized,
the 73 are the cwrent basic variables and the & are the corrent nonbasic

variables.
Write @z, == & - fi,o where & is an integer and 0 < /g, -2 1. Inserting
this in (2.1) and rearranging we have

{2.10) i agly

the left hand side in (2.1a) must be a noinegadive number. The left hand side,
however, differs from fi,0 only by the integer & - 4 So the Ieft side can only
be one of the nonnegative numbers [io, 1 4 o0, 2 4 fo ..o, vle.

I every case

{2.2) Zianty 2 foo

an additional inequality which must clearly be satisficd by any nonnegative
integer solution to our original problem.

[Further, since we require the 4; to be integers, any change in the ay,; by
an integer amount fo, say, a?,j, where a?,j is also nonnegative, produces
another valid incquality such as{2.2). For such a change in az,; must change
asty and hence Xiaqgly by an integer amount, so that ag, - X a;,]( rrrrrr i)
must still be an integer, call it #7. Repeating our reasoning with £; repiacing
tz and the (z“ replacing the aq,; we obtain

(2.3) o < Zyality,  afy 0.
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‘The strongest possible inequality which can be obtained by this process
is clearly

bid
(2.4) Joo < j_}:i]"i,jfff ,oallfy; =0,
where the fi,; are the fractional parts of the a;,; in (2.2},

Note forther that while in {2.1) we assamed a;,; = 0 this restriction is
unnecessary for the derivation of inequalities (2.4). For il in some original
constraint we have, say, a5 <2 0, since £ s required to be an integer, we
can wrcrease the ag; by some integral amount to obtain af,, > 0 and sG,
repeating this procedure for all other negative coefficients, we end up with
an inequality of form (2.3) from which we can again obtain (2.4). These
inequalitics (2.4) or the corresponding equations
{2.5) Se oo oo Rfu(—1), sz 0,all fiy >0,

where s is a slack variable, arve the additional restrictions (corresponding
to the equations of lines such as 5SS in Tigure [} that are employed in
solving the integer programming problem. Other restrictions can be obtained
by adding together two or more equations or integer multiples of equations and
then deducing a new restriction from the new combined equation, The class
of possible restrictions is discussed in [§] where these restrictions are shown
to form a finite group under certain simple rules of combination.

Several characteristics of (2.5} are tobenoted: (1) s, is itself required to be
an integer for it is the of k- term of (2.1a); (2) if the optimal solution of the
original programming problem containsany noninteger valuesit will not satisfy
(2.5} so that (2.5) normally excludes some of the original feasible region;?
(3) by the nature of its construction any feasible integer solution of the
original programming problem will satisiy (2.5) so none of the original
feasible lattice points is excluded by (2.5); finally, (2.4} is usually satisfied as
an equality by some (not necessarily feasible) lattice point (so that here s; = 0
in (2.5)).4

¥ For whenever the constants, @,e, in {2.1) are nonnegative, the solution obtained
by setting ail the non-basic #; equal to zero is a feasible one. However, setting all §
equal to zero i (2.4} violates that inequality except in the case [, = . If any solu-
tion is noninteger so that j,0 3 0, the formerly feasible point in which & o= 0, all 4, is
thus excluded by the new inequality {2.4).

This also shows that constraint (2.5) normally cuts off some of the “top” of the
{easible region in Figure 1 (857 cuts out optimal point €) despite the direction of the
inequality in (2.4) which scems Lo make it cut off a bottom picce. The explanation is
that Tignre 1 and (2.4) are expressed in terms of different variables. The £'s in the
figure are all in the current basis and hence, usually, positive while the variables on
the RALS. of (2.4) are all indtlally nonbasic so that no constraint can decrease their
{zero) values any {urther,

1 Ior suppose all the s in (2.3) are rational, Then that equation may be rewritten

as 87 = e — 2l (—45) where all the I7,; are integers. The greatest common
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The algorithm for solving an integer programming problem is then:
step 1, solve the original problem; step 2, if the solution is noninteger add
any additional constraint (2.5); step 3, repeat this process until an integer
solution (if any exists) is obtained. Tt should be noted that some of the
additional constraints will becomeredundant and can be dropped so that no
more than s additional constraints will ever be required at any one time,

it is also mmportant from the practical point of view to realize that the
sneessive reoptimizations usually require only a few steps.®

It will he noted that at any intermediate stage of this process there will
ustally e a number of possible constraints of the form (2.5). Any one of them
can be nsed.8 The solution process may be hastened, however, il in some sense
the inequality (2.5} is chosen so as to make some sort of average f4,0/fs,; as
large as possible. The reason for this is most casily seen geometricaliy. In
terms of Figure 1, our objective is to choose (2.3) is such a way that ifs
assoclated graph S5 cuts off as much as possible of the “vedundant”
feasibie region (the unshaded portion of the original feasible region). But at
the old optimal point, C, all of the & in (2.5} were zero, i.e., this constraint is
expressed in terms of the old nen-basic variables. In other words, tomove as
fay as possible from point C we require these formerly zero 4; to be dncreased
as much as they can be. That is, we wish the hyperplane in these £y obtained
by setting s; == & in equation (2.5) to be as far from the origin in their
subspace as is possible. But f,0/f1.; is the nonzero coordinate of this planc
on the #; axis, so that by making these fractions as large as possible we
bring this plane as far as we can from the origin.

In the ilfustrative computation below we shall cinploy only the roughest

divisor, G, of the Fyy @ 2 8, can be represented as an integer combination of these

. T f e et .
numbers so that we have & == — 21 My {-—{3) with the {7 integers. IS the Fy,; have no
common divisor we obtain G == 1 so that multiplying through by the integer 7y, and
£
oo . n S . o - " . d . ’
writing 8% we 78, we have the integer solution I, = — 2 Fyy {4} for which s
and hence s; = ()

5 This is because the problem, before the additional constraint has been added,
has been brought into optimal form, ie., it is both primal {easible (ali g, = 0, ¢ £ )
and dual feasible (all agy = 0, 7 # 0} (sec Section §, helow), Alfer the constraint is
added it is still dual feasible, and only one 44, the fi,,, added is negative, conse-
quently, using the dual simplex methed, the problem can usually be brought back
to optimal form quite rapidly.

§ The proof that the process terminetes in a {inite number of steps given in {6]
actually requires that new inequalities be chosen by a certain rule. The prooi can
easily be extended so that the rule need De followed only once every f steps, f a
fixed integer, and a {ree choice made the rest of the time. In actual computations so
far what has been done was to choose a karge /o as described above. Some recent
computations indicate, however, that the finiteness rule may have to be followed on

larger problems.
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approximation to this ideal by choosing that inequality (2.5) for which f;,,
is as Iarge as possible,

3. THE DUAL PRICES AND MARGINAL VALUATION

The solution to the integer programming problem which has just been
described involves the solution to an ordinary linear programming problem
which is identical with the original program except for the addition of
several (at most n) “artificial” constraints, For convenience we may
refer to this new program as the augmented linear program. Clearly, as to
any linear program, therc is a dual program which corresponds to this ang-
mented program. Moreover, if the augmented program has a solution, i.c.,
if the original program has any integer solution, the dual probiem, too,
will have a solution which consists of the shadow prices corresponding to
the constraints of the primal problem (where the primal probiem is inter-
preted as that of selecting the optimal levels of several activities).

These dual prices are obtained just as they arc in linear programming.
If in the solution to an ordinary linear programming probiem, the 4 in
(1.3} is the slack of the &th constraint {the one involving the kth good),
then the a,,; for that  is the shadow price of the Zth good. In (1.4) the 4
may be slacks of original constraints or added ones, but the prices are deter-
mined in just the same way. Since in (1.4) all of the ay,; are integers, the
prices will be infegers,

Since these prices are the solution to an ordinary linear programming
problem they will possess the nsual characteristics of ordinary dual prices.
They will be nonnegative; except in cases of degeneracy they will impute
zero prolits to any activity that is carried on at a nonzero level in an op-
timal solution and negative profits to all other activitics; they will make
the total imputed value of all “scarce inpuis” equal to the value of the
optimum output combination; zero prices will be imputed to fnputs that
are not used o capacity, ete.

In several respects, however, these integer programming prices will he
pecihiar. As just indicated, the prices will themselves be integers, More
important, these prices will vary with the choice of additional constraints
(2.5). Finally, we note that prices will be imputed not just to the scarce
facilities of the original program: corresponding to each of the added
constraints of the augmented program there will also be a shadow price.
Belore discussing the prices corresponding to these added constraints {call
them the artifical capacity prices) let us see what happens to the prices
of the original scarce facilities,

Some of these prices may have risen. Ifor example, in Tigure 2 suppose €
is the optimal solution to the noninteger program, that 7 is the optimal
integer solution and that SS is the added constraint of the aungmented
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progranm. Then the input associated with constraint 447 is not used to
capacity at C but it is at 7. Hence its price will be zero in the noninteger
program and rise to some positive value in the integer program.

Frourie 2

Many prices, however, which would be positive in a neninteger solution
may be expected to fall to zero in the integer programming case. Thus the
prices corresponding to constraint segments DC and CB are both positive
when € is optimal, but they are both zero at the integer optimum 7. The
economic interpretation of these zero prices is easily given. If a warehouse
has a capacity to store 36,463.4 cascs of some item, an integer solution

come in fractional batches. But the calculation fakes some of the ware
house’s space to be idle, and hence labels it a free good—it is given a zero
price.? Clearly this is not a fully satisfactory imputed price. We will return
to this issue presently,

We see then that the requirement that the solution be in integers may
increase some shadow prices and will normally reduce others. However, if we

Pt s tempting to jamp to the conclusion that “almost all” prices of original Tacili-
ties will be driven to zero, for if, e.g., there is one capacity €, and one output cach
unit of which uses up X units of capacity, then between any two adjacent integer
values of C/X, say woand » -4 1, there will be a nondenumerable infinity of noninteger
values of C/X for which it will be impossible to use up the capacity completely. In
practice, however, this observation seems to be an exaggeration. Experience in
problem solving shows that nonzero dual prices occur frequently. We seem to make up
problems in a way which leads to this oceurring. The same phenomenon is enconntered
elsewhere, say in the solution of linear difference equations where unit or multiple
reots occur with a freguency which is surprising in view of the fact that the equations
which possess such rools constitute a subset of measure zero of the set of ail possible
linear difference cquations.
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know that the capacities, (4, of the scarce facilities, including the capacities
associated with the additional inequalities, are all nonnegative {as is proved
in Appendix A) it is easy to show that the arithmelic mean price of the
original facilities (when ecach price is weighted by the capacity of the
corresponding facility} must fall. For Iet the augmented program have m
original constraints and n additional constraints. Let the optimal noninteger

- . . . . Py py
prices be Py, ..., Py oand let the optimal integer prices be 1, . . . Poa.
Finally let the capicities of the scare facilities be ()1, . . ., {msn. Then, smce

the additional constraints can never increase the maximum profit Irom the
total output (equals the total imputed value of the scarce facilities), we have
S P = ST PEQs = i PO . Dividing through by 227010 weob-
tain the desired result.

There is a ower bound to this fall in average price. Tor suppose of the
various constraints that could have been added in the angmented linear
program we had chosen those which correspond to the boundary EFGH
of the convex hull of the lattice points (IFigure 1), Since no constraint line 557
of our original augmented program has any points interior te this convex
hull it can be added to the convex hull avgmented program without affect-
ing its solution. It follows that the convex hull augmented program consists
of any other angmented program plus some additional constrainls. Tt is
then a divect consequence of the preceding theorem on average prices that
the average doal price of the origipal capacities in any other augmented
program will be greater than or equal to that of the convex hull augmented
program. It is templing to consider the latter to be the “true” integer pro-
gramming prices since the convex hull of the integer lattice points represents
the smallest convex hody containing the entire integer feasibie region (it can
be shown though that even these prices may themselves not be uniquely
determined. This is becanse what would be called degeneracy in ordinary
lincar programming is particularly likely to arise in integer problems). We
would then say that the computed dnal prices are usually overvalutions of
the “true’” dual prices. However, it will be shown, presently, that any such
prices are themselves likely to be undervaluations of the marginal value
product of a capacity,

So much for the prices of the original facilities. There remains the problem
of interpreting the prices which correspond to the addition constraints
(2.5}. These may be viewed as a measure of the opportunity cost of indivisibil-
ity—e.g., the loss imposed on the businessman by a unit of the artificial
capacity constraint which prevents him from secking to stuff that Iast four
tenths of a case into his warchouse. This interpretation, however, amounts
to our thinking of these prices as the marginal revenue products of these
inputs and we shall see now that, in the integer progranuming case, this
concept runs into difficulties.
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The basic dilficulty involved in evaluating marginal revenue products in
integer programming is that inputs come in indivisible units, For that
reason we cannot speak, e.g., of the marginal profit contribution of a small
change in input, ie. we must deal with ARJAX rather than dR/dX where
AX is anindivisible unit of input X and R is total profit. But the dual prices
represent dR/AX which may change over the range of a unit change in X,

More specifically, in Figure 3, we consider the effect of a unit decrease
in the capacity, X, of the facility associated with constraint line UU where

f2
D

0] e Uou f,
Ficure 3

53 is the original optimal point. Suppose this produces a shift to constraint
line U0 which intersects C3 at 3. This means that the new corner #3’
still ies on the intersection of the same constraint lines as before. The
decrease in profits produced by the shift is strictly proportionate to the
distance of the shift because the iso~profit lines such as LL’ are all paraliel
straight Tines. Hence dR/dX is constant over this range and equal to
AR[AX so that the dual price is equal to the marginal profit contribution
of X as it would be in an ordinary linear programming problem.

But if a unit decrease in X shifts U beyond U'U7 to U (past a
corner, C, of the original feasible region) it is clear that AR [dX will change
(more specifically, its absolute value will increase) beyond point €. In that
case the marginal profit contribution of X, that is, AR/AX will no longer
be equal to dR{dX at the oplimal point, 3, which is the value of the compuf-
ed dual price of X.

This argument also indicates, incidentally, why the value of the com-
puted dual price will vary with the choice of additional constraint (2.1).
Thus let 557 be the graph of such a constraint. Note that there is consider-
able choice in the slope of such a line, for so long as it goes through point B
and has a negative slope less than that of the iso-profit line ZL" it will still
lead to the same optimal (integer) point 3. But the value of the dual price of
X, dR[dX at BB, varies with the slope of S’ as we have just seen.,



532 R. E. GCOMORY AND W. J. BAUMOL

Normally, then, in integer programming there will he #ree marginal
revenue product figures: dR/dX, AR/AX- where AX~ is a unit decrease
in X, and AR/AX* where AX " 1s a it sncrease in X,

FFor reasons which have just been indicated we shall normally have
{in absolute value} AR/AX - = dR/dX (the dual price), that is, a unit
decrease in A will reduce the objective function by no fess than its dual
price. It can be shown by numerical examples, however, that AR/AX
may be either greater or smaller than dR/dX. The reason is that an outward
shift in one of the constraints can change the shape of the feasible region
in a {fairly unpredictable manner, because the change in this constraint can
in turn cause a shift m some of the artificial constraints which are derived
from it. This phenomenon docs not affect the value of AR/AX because
when the feasible region is reduced any constraint which was inttially valid
will stili be valid since its graph cannet lie inside the smaller feasible region.

There is one Iast matter to be discussed in this section. As mentioned
before, the prices we have obtained have the unsatisfactory feature that
they give zero prices to goods not normally considered free goods, goods
that would be uselul if available in larger quantities. The positive prices
tend to be awarded instead to new “artificial goods” (capacities) whose
Hmited availability shows up in the new inequalities. However, as a gencrali-
zation of eguation (A1) of Appendix A {o the » artificial constraint case
shows quite clearly, the new inequalities are merely weighted sums (with
nonnegative weights) of the old inequalities where we may use the symbols
¢5,; to designate the weight which is given the old inequality, 4, in the
expression for any new mequality, 4, This suggests that the prices associated
with the new inequalities might well be imputed or distributed back to the
original goods (inchauding some of those with zevo prices) whose Hmited
availability lies behind the scarcity of the artificial goods.

Appendix I3 is an attempt in this direction. The method proposed there
can be described as follows. Let o represent the price of any artificial good 4.
In imputing back, we then add to the price, 5, of any initial input good
{capacity} § the amount gy 7. In other words, we obtain the recomputed
prices ) - ~

af ey b g W, all g,y = G,

i
g ==
for all artilicial constraints ¢, where we note, incidentally, that we do not
normally have

These recomputed prices have the following desivable properties in
common with ordinary lnear programming duai prices, as is shown in
Appendix 13
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I. These prices are sufficiently high to climinate the possibility of any
profitable cutput, and an ontput will be produced if and ondy if it vields
zero profits,

2. Any input with a zero recomputed price will be a free good in the
true cconomic sense. That is to say, an unlimited increase in the stocks
of this good will make absolutely no difference to optimum output levels,

Although the recomputed prices depend on the actual course of the
calealation, as is shown in Appendix 13, there is one case in which type
of uniqueness prevails.,

3. It there is some set of n original inequalities such that these # alone
determine the same integer solution as does the full set of inequalities, then,
if all other inequalities are dropped, the recompiited prices for the reduced
problem are wnique, and are identical with the prices obfained by solving
the reduced problem as an ordinary noninteger lincar programming prol-
lem,

Aside from this, virtually nothing is known about the possible range of
recomputed dual prices and the interpretation of this range.

The recomputed prices, however, will also have a number of unusual
characteristics:

[. The converse of the preceding proposition 2 does not hold ; that is,
some free goods may not be given zero recomptted prices. This is hecouse
more than one subset of the constraint set may suffice to produce the ultimate
optimal integer solution. In that case any one constraint which is not com-
mon to all such subscts can be considered redundant (i.c., to represent a
free input) since elimination of that one constraint will make no difference
to output levels. But it is not possible to eliminate all such constraints and
so at Jeast some of these must he chosen fo receive a nonzero price. It
should be noted that a similar situation can arise in an ordinary lincar
programming problem in cases of degeneracy.

2. Among the inequalitics which make up the artificial constraints there
may be included some of the final output nonnegativity conditions, x; = 0,
it follows that some of the artificial constraing prices may be relmpuled, in
part, o some of these final owdpuls. In other words, the process of price
recomputation may well result in some changes in the prices of final outputs
(activities) from the values given by the cocfficients of the objective func-
tion. Far purposes of the next section sueh a price change may conveniently
be visualized as a per unit subsidy to the final outputs or activities affected.

4, PRICING, RESOURCE ALLOCATION, AND COMPETITION

Let us now see what role integer dual prices can play in welfare cconomics,
and, in particular, in an arrangement for achieving an optimal allocation
of resources through decentralized decision making,
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Let ws first note that the prices of the artificial constraints of the integer
programming problem can be made very real to a firm by debiting them
for the nse of these artificial scarce resources. That is, il the fifth additional
comsiraint involves the term 3#;, and the corresponding price is sct at
twelve dollars per unit, the firm would on this arrangement be charged
36 dollars for the use of this “scare resource” for every unit of ontput 7 it
produced. Alternatively, the same resource allocation effect could be
achieved by the use of “imputed back’” prices as described in the previous
section,

Suppose then that either a competitive market or a central planning
anthority were to compute the dual prices and output combinations neces-
sary to maximize the value of total final output at any fixed set of commodity
prices. Tt will be recalled that any such output combination must he an
efficient output.? Moreover, if individual firms arc charged for the use of
hoth real and artificial scarce resources either directly at the computed
dual prices or indirectly at these prices as imputed back to the original
scarce resources, they will be forced to produce only the outputs contained
in this efficient bundle since, by the usual properties of dual prices, each
unit of any other ontput will incur a loss. If these outputs are then expanded
as far as possible it fellows that the firms must end up producing the
efficient output in question.

We see then that every value maximizing {competitive) output will, by
the usual argument, also be efficient, even in the integer programming
case.% Unfortunately, the converse dees not hold., There may be elficient
outputs which are not competitive,'® Le., for which there exist no prices,
P;, at which this ontput combination maximizes the total value of output,
5.Pit. This is easily proved by counterexample, as shown in Figure 4, Here
the shaded triangle, OBC, is the convex hull of the feasible lattice points.
Point A, with coordinates (2.1}, lies in the interior of this triangle. But
{because the feasible points are isolated) it is possible for such an mterior
point to be efficient. This is in fact the case with 4 for there is no leasible
Jattice point which “dominates” A, i.e., no point which les directly above
it, directly to the right of it, or abeve it and to ifs right. Now consider
any straight line, such as PP’ {equation. 2P = &), through 4. Any such

8 Jor if the culpnt combination ¢ were not eflficient then there must, by definition,
be some other ontput combination, ¢, which contains larger ontputs ol some items and
no smaller culput of any item. Tlence at the fixed prices the value of @ must exceed
that of (0, i.e., il @ is not efficient it cannot maximize the value of output.

% TFor the classic discussions of the problems of ihis section see Koopmans {8,
Chapter 3], Arrow {1], and Debren [4]. See also Dorfman, Samuelson and Solow {5,
Chapter 14] and IKoopmans {9, Iissay 1.

10 Phis has already been suggested by Koopmans and Beckman {107,
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fine must lie below cither lattice point B or lattice point C. This means that
there must exist another parallel line such as P7P" ( 5Py == k¥ = k),
i
which fies above PP’ and goes through one of these corners of the
convex hull triangle OBC. In other words, in the case in Fizure 4, at the
& ! o]

I URE 4

prices involved in the price (iso-output-value) lines shown, the value of
output at point  exceeds that at 4. And, similarly, at any other possible
set of output prices the value of output at 4 will be smaller than that at ;3
or that at . This shows how there are, in the discrete programming case,
likely to avisc efficient outputs which are not competitive outputs and
which cannot be enforced by the standard type of decentralized control
procedure of the economic literature, in which the central asthority makes
only simple price decisions.

It is to be noted, however, that it is possible to find familics of nonlinear
or piecewise linear price curves such as RR for which the value of output
is maximized at 4. This has a simple interpretation. The prices which are
set up are discriminatory and vary with the magnitude of output, Output
combinations which are close to 4 are given relatively high prices but as
outputs move further and further from A prices are made increasingly un-
favorable to the seller so that there are sharply diminishing returns to de-
partures from A. In other words, an output, 4, of any commodity at A is
broken arbitrarily into a sum of sub-outputs f1y & fin - .. b Ly = I
and each of the sub-outputs #; is assigned a different price, Iy as just
described. Such an arrangement could, in principle, he enforced by govern-
ment fiat. But it is difficult to see much advantage to a decentralized con-
trol procedure when it becomes so complicated, and in any event it would
never result from the spontancous operation of competitive market forces
which preclude the existence of different prices for different units of a
homogeneous product,

The so-called basic theorem of welfare cconomics runs into even more
serious trouble in integer programming. It is in this situatien not generally
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possible fo attain a Pareto optimal peint by means of a price system.

This is obviously so for the case of interior efficient poinis such as A in
Figure 4. For let RR' now represent a community indifference curve so
that A is now the optimal feasible point. There obvionsly exists no line that
separates the remainder of the feasible lattice points from the region socially
preferred to or indiflerent with A (the region above RE"). This means that
with any fixed price arrangement producers will find it more profitable to
manufacture either output combination 73 or C than to turn ouf the secial
optimum combination, 4.

Moreover, even If the optinnum peint @ is a corner of the convex hull of
feasible lattice points there may well exist no hyperplane which separates
the feasible (producible} points from the lattice points which are preferred
to or indifferent with (. A way in which this may arise is illustrated in the
following three dimensional diagram (Figure 5). Here the shaded region is

fa

Ircune 5

the convex hull of the producible (feasible) lattice points such as B, € and
the optimal point Q. Similarly let T1° 7 "represent a portion of the convex
hull of the lattice points which are preferred to or indifferent with Q.
It will be noted that Q@ is indifferent with nonfeasibie lattice point 1),
The segment QF of the Hne QD, which connects indifferent points ¢ and D,
lies below triangle O BC which forms one of the {aces of the convex hull of the
feasible region. ¢ is the (unique) optimal point because no other feasible
lattice point lies (on or) above “indifference swrface’ IT'7". It is obvious
that no plane surface can separate the feasible lattice points in the fgure
from the lattice points preferred to or indifferent with @ since any such
plane must either e above point D which is indifferent with @ or it must
be below feasible points B and C.
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Let us summarize the results of this section:

I. Every competitive outpat combination is efficient and any such point
can be attained by a system of fixed prices set by central authority, all
other decisions being leit to the individual firms in the economy. This is
no different from the resulf for the ordinary finear programming case,

2. Unlike the ordinary lincar programming case, however, not every
etficient output can be achieved by simple centralized pricing decisions or
by competitive market pricing processes.

3. Morcover, it is possible in the integer programming case that there
exists no hyperplane which separates the feasible lattice points from those
which are preferred to or indifferent with the optimal lattice pomt. In
other words, there may exist ne set of prices which simultancously makes
the optimal point, {, the most profitable among those that can be produced
and the cheapest among those that consumers consider {0 be at least as
good as Q. That is, at any set of prices cither producers will {ry to make,
or consumers will demand, some other ontput combination.

Tt should be observed, in conclusion, that these limitations on the price
system in the integer programming case should not be entively surprising.
For, as has already been indicated, cases of increasing returns to scale can,
at least in principle, De reduced to integer programming problems. And
n such cases it has long been recognized that the price system runs into
difficultics,

B, NONCONVEN FEASIBLE REGIONS AND CONCAVE PROGRAMMING

Several of the nonnumber-theoretical applications of integes programming
should be clear to the economist. The choice of magnitudes of indivisible
outputs obvicusly calls for integer programming, though bere ordinary
prograrmming methods will olten do as an approximalion (e.g., an answer
which calls for a retailer to carry 47.9 automobiles i stock may reasonably
be taken to indicate that 48 is the optimal car inventory}). Such an easy
compromise is not available in “yes or no” problems like the traveling
salesman problem or the following problem of “choosing the largest harmoni-
ctis expedition.” Suppose an expedition is to be made up from 2 candidates
with the condition that no two candidates who can’t get along with cach
other are o be taken. Assigning a variable x; to the (th candidate, we
shall interpret a value of 0 to mean that that candidate is included in the
expedition, a value of | to mean that he is excluded. The variable %5 is to
be restricted to these two values. The problem of constructing the largest
harmonious expedition then is the problem of minimizing Mt %, the
number left out subject fo restrictions

R
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for all paivs 4,j of candidates who can’t get along. The effect of each such
restriction is to insist that at least one candidate in the 4,7 pair is left out.
It is not hard to see that if the problem is solved as an integer programming
problem, the variables in the minimum solution will not only be integers,
but actually 0's and s, for il any larger integer is included in the minimal
solution it could be decreased to 1 without violating any constraints,
This would produce a solution with a still smaller objective function. Thus
the problem can be solved as an integer programming problem, but it will
be noted that an ordinary linear programming solution involving fractions,
has no obvious meaning,

Less obvious are the more gencral applications of integer programming
to monconvex feasible regions and to concave programming problems.
An example will now be described briefly.

It will be recalled that fixed costs are defined as costs which do not vary
with the magnitude of some operation (at least within limits), and that
these costs can therefore be escaped only by closing the operation down
altogether. We will sce now what computational problems expenses of
this type can produce,

Figure 6 represents part of the profit function of a multi-branch firm
showing how company profits will vary when the scale of operation of one
of its branches, BB, varies, the outputs of ail other branches being given,
This relationship is prolit curve 7RR'.

TOTAL
TOTAL PROFI F_
PROFIT ki
T I
\ i
. |
\\ Vo Mﬁfyﬁxﬂ
- 1
Rp="w !
!
1
;
:
I
! 0]
i
0 M Q
Ficore 6 Fgure 7

As the diagram shows, if this branch is kept in operation, the larger its
output, ¢, the farger will be the firm’s profits (RR’ slopes upill toward the
right). But in the case shown, if the branch goes out of operation altogether,
the fixed costs which it escapes aresolarge that company profits will suddenty
jump from K to . In fact (asswming that there is some upper fimit, OM,
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o the demand for its product) even if the branch produces every bit that it
can sell, the profit contribution of this branch will not suflice to cover the
fixed cost, because point R, whose height represents profit at the maximum
saleable output, lies below T, where OT represents company profit when
the plant is closed down altogether.

We see, then, that point R’ is a local maximum but T is the global
maximum. However, any computation which tells us to go uphill along the
profit curve will move us in the wrong direction. Even at a point like
which is very close to R there is not the slightest hint in the shape of the
curve that profits can be increased by reducing cutput, Thisisa particularly
nasty feature of the fixed charges problem. An ordinary increasing (marginal)
returns profit curve (a convex objective fanction maximization problem),
stich as curved line TFR, will at least indicate the direction of the global
maximum point when we get close enough to it—at point V' going uphill
takes us toward global optimm T, even if starting Durther to the right the
“go uphill’” rule would take us in the wrong direction.

it is, of course, only because we are dealing with a multi-branch firm
that our problem is really difficult, As a result, even our graph is hkely not
to give us the right answer. Perhaps it is best not to close our branch B
after all. Instead it might be better to close some other branch, €, and
save the fixed charges at €, meanwhile serving C's former customers from
R, for this increases the maximum demand for branch B's products and
so permits us a higher move along our profit curve to the right of point K"
With a large number of branches the problem of examining the possibilities
case by case, to decide how many and which to close, leads us inte an
enormous problem of permutations and combinations which rapidiy grows
astronomical. A more systematic computation is required.

A similar problem arises in the scarch for optimal vestment criteria,
Suppose, for example, that a country has limited investment funds to be
divided between two competing projects. The lirst yields a low rate of
return but has low fixed costs of entry into production, and the reverse is
true of the second project. Which of the projects should be chosen will
clearly depend on the magnitude of the fixed costs.

The role of integer programming in such a prohlem is casily represented
schematically. For this computation it is necessary to introduce an artificial
variable, A. o the three dimensional diagram, Figure 7, point ¥ from the
original profit function is placed where 4 == 0, while line RR" is moved to
where 4 = 1. The three points 7', B, and R’ are then connected by the
plane TRR' which can now serve as the {easible portion of an artificial linear
programming objective function. But if we include the constraint 4 = ¢
and A << 1 in the problem and require that A take only integer values it is
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point 1" or on line segment RE’, i.e., we must remain somewhere on the
original profit curve T'RR of Figure 6. Thus by use of integer programming
we have been able to substitute for our original fixed charges problem
another ordinary linear programming problem which gives the same an-
swers, H

In principle, this transfation can be made for all of the company’s branches
at once and so the entire problem can be transformed into one I: arge linear
integer prograimming problem and thus he solved, Unfortunately, in
practice this has not so far proved practical for cven moderat cly large scale
problems where the number of artificial variables which must be added can
make the computation prohibitively time consuming and expensive.

0. THE SIMPLEX CALCULATION: A CONDINSED FORM

Before giving numerical examples of the infeger programming computa-
tion it is convenient to call attention to a number of short cuts in the
simplex computation in which we follow the work of A, W. Tucker.

The problem s set up in the form

Max 7z e doa b Eor{—0} b o g i)
subject to
(6.1) o= e @) bk (et
Lo = e - (’m;]{ {1) 4 ﬁ'mm( —fw} )

with all of the variables required fo take nonnegative values. First we note
that if all the elements in the first colemn {the constant terms) are nonneg-
ative a (basic) feasible solution is given byiz

(&2} B = diye, .o, by == o, F=5 0w gy e

Thus the system is said to be priviad feasiblo i for all 1 4 0 we have ag,, = 0.

H o Note that as deseribed this is @ “mixed” prablem in which some but not all of
the variables are vequired to be integer values. The MIIF method does not apply
direotly to such problems. The difficulty can be evaded, at least in principie, by measur-
ing outpuis in very small units and taking their optimal dufeger values as approxina-
tions to their trne optinmat values. By making the units of measurement small enough
this approximation can, in principie, clearly be made as close as possible, though we
da not yet have enongh computing experience with the MIF aly govithm o Jnow how
rapidly it converges when dealing with the large numbers which arve likely to 1<,suH
There has also been some promising work on the mixed probiem. CfL Beale 12] and
Gomory 81

12 We note again that in this computation the basic variabics are expressed as
functions of the variabies outside the basis. Phis is the reverse of the more usual view-
point, It permits us to solve directly for the values of the basic variables af the relevant
corner, as shown,
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Similarly, for obvious reasons, it is said fo be dual feasible if the coelficients
of the objective function a,,; are nonnegative,

It should be clear by inspection that if the system is transformed into
a form that is both primal and dual feasible then (6.2) is also an optimal
solution. The primal simpiex method then proceeds by starting with the
problem in primal feasible form and then transforming it by a sequence of
steps in & way which leaves the a:,, nonnegative while increasing the g,
until (6.1} becomes both primal and dual Teasible,

To describe the simplex steps consider the Tollowing two illustrative
constraint equations of the prohlem

t o= a4 ang(h) b oane(-ta) boan,s(—ts)
lo == @z,0 4 a1 (1) b anal—ls) |- an,a(—Ls) .

Suppose that the computations have reached a stage where there is to be
a change in basis from ¢, ¢z to, say, ¢, {3 (we say that we pivol on coefficient
dz,3, 1.€., we replace ¢g by £z in the basis). Then we solve for & by dividing
the second cquation through by as,s and substitute the result into the
first equation to obtain

Yoo f 1,3 1,3 |
f-?‘z,a) 4 (5’-1‘,1 e ﬂz,l) (1) 4 (th) e el £¢2,2) (=)
@,3 a9,3

IRy

2,3

More generally, the reader may readily verily that a pivot on element ay,;
wilt replace element go,w (o 5 4, w 55 1) by

Uiy

Ly = = — thysf .
s
A slight extension of the argument leading to the preceding equation

shows that any pivet step will lead to the following changes in the values
of the coefficients in (0.1} (the elements of the matrix of the system):

a) The pivot clement, aq,;, will be changed to ag; = 1ag;.

b} Any other element a,,; in the pivot column 7 will be changed to
g = ""ﬂ"n,jfﬂ?ﬁ,j -

(6.3} ¢} Any clement g, in the pivot row 7 will be changed to

@tyap = Cf-é,wfjat,j .
d) Any other element @y, will, by the preceding argument, he
changed t0 @u,u — @1,wl0,7/00,; .

One feature of the method we are using is that the same transformation
(6.3} 15 applied to the objective function as to the constraints. This has the
effect of expressing the objective function always in terms of the non-basic
variables (the £;) only, so that we always end up with an objective function



542 R, BE. GOMORY AND W, J. BAUMOT,

of the form taken in (6.1). As a result, as soon as the system is transformed
into both primal and dual feasible form the solution (6.2) is immediate,

The primal simplex method sceks to increase the value of the objective
function, @,,,, and so, like the dual simplex method, it pivots in a column
with the first element negative, but unlike the dual method, it always pivots
on a poesitive element. For with aq,; > 0, 2o, < 0 and ag,, > 0 (by primal
feasibility) it follows from {6.3d) that @', > a4, as required. The corre-
sponding result for the dual simplex method in which we scek 1o reduce
(minimize) the value of the objective function, is obvious.

The procedure used in the solution of the integer programming problem: is,
then, the following

A, The condensed form primal simplex caleulation.

1. Set up the matrix (simpiex tablean) for a primal feasible system (6.1).

2. Choose a column, 7, with the {irst element a4,; negative (in the illustra-
tive computation we always choose the largest such clement in absolute
value).

3. Cheose as the pivot that positive element in this column which minimizes
@i,0/04,5. (This clement is chosen to keep the next matrix dual feasible.
Forsuppose instead we chose as pivot ag,; such that ay,ofar,; = a;,/das. Then
by {6.3d) we wenld have Qe = i0 — G4,3@p,0f@r,; << .)

4. Transform the matrix in accord with (6.3).

5. Repeat steps 1-4 until the matrix becomes dual feasible so that
optimal solution (6.2) apphes,

B. The addition of an MIF constrainl.

H solution (6.2) contains noninteger values, form an additional constraint
(2.9). This is done by choosing a row § and writing an additional constraint
with the same variables but whose coefficients are the negative fractional
parts of the corresponding clements in row 7. (In this computation we
choose Tow 7 to be the one whose first clement has the largest fractional part
for reasons indicated at the end of Section 2, above.)

C. The dual stmplex calewlation.

The problem is now in dual feasible form (since the last step of the
primal simplex computation put it in that form). However, it is no longer
in primai feasible form since the new constraint (2.5} enters the negative
element —f;,, into the first column. The new optimum is therefore found
most conveniently by the dual simplex method which differs from the primal
method only in the choice of pivot element. Here sclect we a row ¢ whose
first element ay,0 is negative and from that row select we a negative pivot
element a;,; which minimizes —ag,ofas,s. Once the new optimal solution is
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found, if it contains noninteger elements we repeat steps 13 and C until an
optimal integer solution is found.

7. ENAMPLE

Maximize 2 = 4ay |- Bag -+ xy

subject to; 3x1 - Zxag = 10,
ap i dag <11,
3ar b 3an f-ag < 13

Introducing slack variables %, #, %3 we obtain the following sequence
of simplex tableaux, where the asterisk indicates the pivot clement and the
arrow indicates the row from which the new inequality is formed

| B — Xy Xy i ! —Xy iy
z 0 —4 —3 e | 4 2 4
- i i Z ow 19 e |
1 H 3 o 0 1o 34 1o
wn aefy
3 4 2
2 I ! a0 . i TR v
fy == 13 3 3 I "3 i 3 o
oy . I
FABLEAU | " L
a 3
» An ( O [ 1
B 10 e 10
i - - Ay A3
! 3 1 7 1 T
. 13l it [ e G um —h e
& P i 3 1 10 10 I 0
. 2 %5 2 0
Ay 4}; “4 T - TavrLian 4 (L. optimaiy
B 1 '
Aa 2-‘ y 3 {
i :
_ 3 o1 3 1 1 ~$) va
Ay 4- 2 - |
1 4 1 1 4
> 5 omm i9 - ]
T 3
FaLeay 2 3 5
FE 2 - = 0O
£ ’
1 | -~ iy vz 1 3 .
Xa - i - - 0
Y v
7 1 7
r o] 18- I -1 G 3
i 16 16 3 1 e ? f
7 7
8 p ;
Py (} 1 3
! 1 19 10 i) iy 1 - I 0
3 1 1 0 ‘ ‘
Hy = 10 10 10 -
7 S 3 . S 4
g = Sp wm B - - 0
e 18 e 7 7

TanLiau b (nteger sotation)

TanLravw 3

13 i1 the original coordinates the inequality s; > 0 becomes the new integer in-

7 3 . P ? -
equality (see Appendix A) - ‘1—1 (FO = 31 - 2xa) - oo (11 p g} 22000

ie., ¥ - 3. <2 Bl
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{ 82 -1
E 1 [ 0 i
%y 2 3 2 5
Ay 2 -1 -] 0
3 | — 6 3 I
Yo | T - & b
F 0 i 4 0

Tapreau G (@ integer mafrix}

APPENDIX A

SOME PROPERTIES OF THID ADDED INEQUALITIES

To fill the gap i the prool in Section 3 that the average price of the original capac-
ittesis reduced by the artificial constraings (2.5) we must show that the Q; = 0. We can
assume this for the ¢ of the original problem because of their capacity interpretation,
but 3t remains 1o be shown for (u, ¢ = . We adopt a wmiethad of prool that brings out

some interesting properties of the added inequalities.

I we express the new variables, £, in (1.4), above, in torms of the original variables
x in (1.1} and substitute the result into the new inequalitics, these inequalities are
rewritten entirely in terms of the original variables. We will show now {hat they are
then all-integer incqualities, Lo, all coelficients and constants are integers. To see this
we will first assume that the inequality under consideration is the first new inequality
to be added. Tt s derived from an equation

"
H oo e 4 Ny (1)
#e0
where the variables, £, are either 2's or slack viwiables of the original problem. For cach

7y on the right we substitute its original expression in ferms of the xy, 1e., i s
the kth slack, we substitute Qp — Yy a.:u,-\:, {== afg) and 0f £ is some gy we simply
substitute riy. We thereby obtain an expression giving i in terms of the ;. As the
expression for any variable in terms of the original noun-basic variables is unigue, this
e one of the original all-integer equations if ¢ is a slack, or the expression #p = x4y if
£ is one of the #'s. Tn any event, the now right hand side is all integer. 1 the same

process is applied to the new equation
) i » »
(2.5) se == o fre = L fog{—ty) (?"fm 4 23w b) ) h (“'}a 1 2 s y) )
ol - ok

where the gy are the integer parts of the ;s the result is again an all-integer right
Band side. This is obviously so for the all-integer expressions involving the wy,;, and
we have just shown the same thing for the second parenthesis. We conclude that the
ew dnequality s; > 0, is an all-inleger tnequality when i s expressed in the oviginal

variables.

e
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Looking at the substitntion process in more detail, using J for the set of indices §
whose /3 are original variables xg,;, we have

no
(A 5 rw o foe b 2 foatewy 2 fas (Qu > f"'f.(f)xfs*“'ic)
jet

it L1

or, assembling constant terms and the coefficients of the various g, the inequality
- (3 Decomes

Hi

e . S
—fra :Zx,/-i.jgf,f o W fapegy b (E,fi,jff-i(j)ﬂ') g
fer

ied jet Bl

The telt hand side containg only nonnegative terms except {01 —fg,a, honce it is = 1.
We have already shown, however, that all tevins are integers. Hence the fet it hand side
st be = 0, and this left side is the Q5 of the new inequality.

[ this argument we assumed we were dealing with the first added inequality. How-
aver, now that we have established this inequality as an allinteger one with nonnegative
(O we can go on without any difficuity to the sce ond, third, ete.

We oblain one more piece of informalion by a similar argument. Suppose that the
cocilicients ag,p, 4 = 1, ..., &, of some variable xy are ail nonnegative in the original

probiem, then the cocjficients of xy are also nonmegadive in fhe new tiegualilies. For the
coeilictent is either

2 far e

jed

or, i xp ds one of the sy, 7ef, the same expression with the additional tern —fes’

1{ the (,;" g are all o0, as we assume, this term, too, i = -1 and an integer and
henee = 0.

In ;);Lru_cnl;u‘, it the original inequalities involved only nonnegative terms, this is
also true of the added inequalities il these are written in terms of the original variables,

APPLENDLIX B3

TAMPOUTING BACK T PRICES OF THE ARTIFICIAL CONSTRAINTS

It will be ohserved that each parenthesis on the right ineguation (A1) of Appendix
A, ilset = 0, givesoncoltheor 1gm.1]111(‘(|11,U1i1o (1.1y. Thus, each of the new inequalities,
s = 0, difjers by a constand, o6, [roin weighted swin of the eriginal constrainis.
(Note that this statement refers both fo the explicitly given inequalitics such asg
O — Niios dapry = 0 and to the implicit final output nonmegativity incqualities, a3 = 0.)

This suggests that the prices associated with the new inequalities can be distributed
back to the original inegualities which compose them. This is not hard to do. To
simpiify the exposition we will lirst consider the case where only one new inequality
has been added. This extends casily to the general case.

Suppose, then, that on solving the integer pr pgramming problem we obtain prices
sip [or all the onfmml goods (capacities) and for the artificial capacities, We already
have “prices” for the final goods—these are the unit profits of the activities—the
coelficionts of the activity levels in the objective function.

e,
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To display this price information symmetrically we write the original inequalities
augmented by the conditions, #; = 4, together with the associated prices m;:

[ )
2asg, = O om
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gl
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— X
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The additional inequalities, as {A.1} shows, can be thought of as being obtained Ly
ackling together nonnegative muttiples of the preceding inequalities and then reducing
the right hand side by o certain constant to obtain the now integer inequality

il
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Tror simplicity let us suppose further that the Integer solution bas been obtained
ctension of the method to the more

aiter the addition of owr single new inequality.
usual situation will not require any additional eifort,
Wehave then prices g, & 50 1, . b o@ ety and m bow o | inequalities
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where we include the inegualities —x; <
‘The prices obtained from the solution have the usnal linear programming property

o bl w i ,
Gl TU gy Ny L TGNy,

ie.,

(B.1) midny < 0 (G =1, .. )

with equality required for all § having 4y 3 0, this last reguirement ol equality being
equivalent to

bt

2: g2} Q1
=]

(3.2} _

3

with Q:f the amount of the ith capacity or input good nsed up or, if 4 is & final good, Q:k
represents the amount produced. '

(B.1) represents the reqnivement that cost exceed or at best equal the value of the
finad good produced, and {13.2) asserts that ai the prices ;i the value of input goods
used equals the value of output goods produced, This is equivalent to the requirement
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that equality must hold in (8.1} in all cases where the final good, 7, is actually produced
in a positive amount, for

kil mal -
0 == B ag A g ¥y,
i1 iwi Feol
noogmebatl -
0 == 25 ( 5o }-) x5 .
§l il

Since each parenthesis is <0 0, the only way for the zero total to be achieved is for

(E;ﬂ”“ ¢ aiy) £0 be zero for cach nonzero ;.

In this situation in the case of an input good it makes no difference in (73.2) if we
use the Q: the amount nsed, or the ¢y, the amounts available, as these quantities will
differ oniy for goods of price zero.

Let us now describe a procedure lor imputing the prices of the artificial constraints
back to the original constraints of which they are linear combinations, If we denote
the row vector of coeflficients (af,;, afe, .., a?,u) by g, welknow by (A1) that fa g0
is o nonnegative combination of the preceding Ny, ie.

Rm‘i»n $1E X gil?g.
g1

(Flere, because only one ineguality has been added, the nonzero go ave the f; used in
forming the new inequaldity.) (8.1} requires

mEndl i n min
e 3 p - ? ' . V' ; s e
4 = 21 vy £y it Wt e -} }_; g £y e 24 (Rm-[- w1 Fi Jﬁi)-]l)i .
il £l RS

5 are assigned

This equation shows that if new (increased) prices ah == Ty ener £ -+
} T H

to the original goods, and the additional inequality disvregarded, ie., given zero price,
. . . . . . s Wkl

255 production is still maintained. Also since . sry g o

i b

the condition of profit
N Ry, e, TSR (&i; o Bl Al agy = profit per unit of final good 7 for
every f, the sume final goods as before are made at zero loss, 5o the property (13.2) still
holds with recomputed pricesi.c., 3;’7’1;‘” "z;Q: (),

To obtain these prices in the case where more than one inequality has been added
one takes the last added inequality, which represents a known weighted combination
of carlier inequalities, and uscs the explicit expression lov this inequality to generate
new prices just as above. Flaving thus gotten xid of this inequality one proceeds to
the next to last, and so on until only original inequalities remain. The prices obtained
by this process will have another desirable property:

Result {1}, An orighnal input good receiving a zero price will abways be a free good
in the sense that if unlimited amounts of it were available, the output of final goods
would still not be affected.

To sce this we consider the computation which has been gone through te obfain
the original dunal prices noting first thatl a nonartificial input with a zero recomputed
price must always also have a zero dual price becanse the price recomputation process
never lowers the price of such an item.

The original computation can be repeated step by step with the zero-priced inequality
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removed simply by regarding the slack x; of that inequality as an unrestricted
variable rather than a nonnegative one.

When the computation has been completed the zero-priced slack variable x:, even
ifitis non-basic, must, as we have noted, have a zero dual price (zero coefficient in the
top row). In either of these cases, despite the presence of an unrestricted variable, the
final tableau still gives the old optimal solution to the problem because of the nonne-
gativity of the ay,, and a,,;, provided only that we still know that those non-basic St
having nonzero coefficients in the top row, i.e., nonzero prices before any redistribution
of prices, are still required to be nonnegative. Now the nonnegativity of each s; stems
from its being given be an equation

se = —fi— X fi(—t) .

If, however, #; was among the # accompanied by a nonzero f;, this reasoning fails, and
we can no longer require s; = 0 and the final tableau no longer gives an optimal
solution. But if the th inequality received a final redistributed price of 0, this undesir-
able sitnation can not have occurred. For if s; received a nonzero price =, then, upon
redistributing, the inequality with slack #; would have received an increase in price
of zify and so its price could not be zero after redistribution.

The situation is somewhat more complicated if s; is originally expressed in terms of
other earlier s-variables whose nonnegativity has been endangered by the unrestricted
sign of ;. However, the same argument, though it requires more words, does go through
step by step.

Result (2). A second conclusion is the following. If there is some set of 2 original
inequalities such that these # alone yield the same integer solution as does the full set
of inequalities, then it is possible to redistribute prices in such a way that the prices of
all input goods are simply the ordinary linear programming prices, i.e., the prices
obtained for the goods if the program involving only these » inequalities were solved
as an ordinary noninteger linear programming problem, omitted goods receiving zero
price.

A consequence of result (2) is the fact that, in general, the converse of result (1) is
not valid. It is not always true that if an inequality can be removed without changing
the solution, i.e., if it represents a free good, that this good will receive a zero price.
The connection is illustrated in Figure 8 in which Ly, Ly, Ly represent constraints and
the dashed line is an isoquant of the objective function. It is clear that restrictions
Ly and Lg alone determine the solution P, and consequently, according to result (2),
it is possible to redistribute prices so that L, and L receive the ordinary (usually
positive) linear programming prices that would result from an ordinary noninteger
programming problem with Lz omitted, and Lg receives a zero price. However, in the
problem Lz isa free good in the sense that, since Ly and Lg also yield the same solution
P, unlimited availability of the good involved in the restraint Ly would not alter the
solution.

This difficulty also arises in ordinary linear programming whenever several subsets
of inequalities separately determine the answer. However, in ordinary linear pro-
gramming this is comparatively rare since it must involve degeneracy (this is precisely
what is meant by degeneracy). Such a situation is shown in Figure 9.

We now take up the proof of result (2). To obtain the prices in question we simply
ignore the constraints other than the N singled out, and proceed to solve the problem
first as an ordinary noninteger linear programming problem, and then as usual, by

Since sq is an integer, and if the t; ave nonnegative, we have s; > —f;, and hence s; =0
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acdding new inequalitics to obtain the integer solution, At the solution point of the
ordinary linear programming problem, all N inequalities are satisfied as equalities, Lo
all the slack varviables are nonbasic {we may regard x as being the slacl of the inequal-
< 0, for il we introduce an &7, with —x - % = 0, we have x == z7), This

ity

Lo fz

CONVEX HULLI
OF FEASIBLE |
LATTICE POINTS |
IF Ly 1S }

Fiourr 8 Froure 9

point may well not satisly the inequalitics that we arc temporarily disregarding. This
fact makes no differcnce, however, when it comes to generating the new inegualities
whose validity 1s not affected. Of course when we reach the final integer solution, which
is the same for the problom with or witheut these inequalities, the disregarded in-
equalities will be satisfied by hypothesis.

Now on redistributing the prices we distribute them back to exactly » incqualitics,
the original » inequalitics. In other words we express each new variable in terms of
the w slacks x5 joued, o0, N

n
(13.3) St o -+ X st}

el
Thus all the final non-basic variables are expressed this way.

If each non-basic variable (or the inequality it represents) receives a price ag in the
usual linear programming way, then, on distributing the prices back to the #j, they
receive prices

~

(B@) 7."’7 B E Ity By .
gl

To see thal these are in fact the ordinary linear programming prices we note that
the final sef ol equations can be angmented to express all the variables in terms of
the noun-basic ones. The basic variables arc already given in ferms of the non-basic
ones, and the non-basic oncs can certainty be given in terms of themselves. Having
then an expression for all variables in terms of the non-basic ones, we substitute (13.3)
for the s; to obtain an expression for all variables in terms of the i,

The s-equation of the final tableau

. .
PR (7-,',-,0 E }4 EI# (---A.S‘i)
Enl

becomes

3 A ,
4 Eom Hs.n) + (Lm gm) {—a7) -
7

il wl M-l
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Note that the coefficient of (_x_;) is the price given by (B.4). Now the expression for
the variables in terms of the non-basic set x; is unique, so all the coefficients must be
identical with those obtained in solving the » inequalities of an ordinary linear pro-
gramming problem so that the ordinary linear programming price and the redis-
tributed price coincide for input goods.
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