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The cutting-stock problem is the problem of filling ar order at minimum
cost for specified numbers of lengths of material to be cut from given stock
lengths of given cost. When expressed as an integer programming prob-
lem the large number of varigbles invelved generally makes computation
infeasible. This same difficulty persists when only an approximate solu-
tion is being sought by linear programming. In this paper, a technique is
deseribed for overcoming the difficulty in the Linesr programming formu-
lation of the problem. The iechnique enables one to compuie always
with a matrix which has o more columns than it has rows.

OME linear programming problems arising from combinatorial prob-

lems become intractable hecause of the large number of variables in-
volved.  Usually each variable represents some activity, and the difficulty
is that there are too many possible competing activities satisfving the
combinatorial restrictions of the problem. An example of this is the
cutting-stock problem described below in a form similar to that used by
Eisemany, !

The purpose of this paper is to poini out that this difficulty can be
overcome by a method basically identical with the idea that can be con-
sidered as implicit in references?2 and 3, and whichisessentially this.  When,
in the simplex method, we reach the stage of ‘pricing out’ or looking for a
new ¢olumn or activity that will improve the solution, instead of looking
over a vast existing collection of columns to pick out a useful one, we simply
create a useful column by solving an auxiliary problem. In reference 2 (he
problem is a shortest-path problem, in reference 3 & problem in lincar
programming.

In the problem considered here the auxiliary problem will be of the
integer programming variety, but of such a special type (the ‘knapsack’
type) that it is solvable by several methods (see veference 4).  If the same
iechnigue were applied to the problems discussed in reference 5, the eal-
culation of Wasner axp Warmin™ would be applicable to the auxiliary
problem, while for the problem discussed in reference 6 a general integer
programming technique such as discussed in references 7 ov 8 would pre-
sw.nably be required,
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Turning to the cufging-stock problem we assume that a stock of stand-
axd lengths Ly, L, - -+, Ly, of one material is maintained from which one is
to cut lengths to fill incoming orders.  An unlimited number of pieces are
assumed available in stock for each of the stocked lengths Ly, Ly, - - 5 L
An order consists of a request for o given number N, of pleces of length £
of the stocked material, fori=1,2, -+, m. Aslong as for some Jand all ¢,
Liyz4i, an order can be filled. A cost is assigned to each of the stocked
tengths and the cost of filling an order is simply the total cost of the stock
material cut to fill the order. The problem is to fill the orders from stock
at the least cost. :

By an activity, we will mean the cutting of a specified stock length in a
specified manner. Thus, for example, the eutfing from o stock length 17
of three pieces, one of length § and two of length 4, is an activity. By
assigning a variable to each of the possible activities that cut ordered
lengths &, - - -, £, from stock lengths Ly, - - -, Ly, the culting stock problem
can be posed as an integer linear programming problem, where the value
taken by & variable indicates the number of times the activity is to be en-
gaged in. The variables zy, - -+, . assigned to activitics must satisly m
inequalities:

Qi 1+t Lot - Hay, {,U,;;N{, ('L= },, oy ???,)

if an order for NV, pieces of length £; is to be filled, where ay; is the number
of pieces of length {: created by the jth activity. The cost function to be
minimized is then

1 2o 2ot - - b Cn 2, (1)

where ¢; 15 the cost of the stock fength cut by the ith activity. Introducing
slack variables @4, - -, Zasm, the cutting stock problem can be deseribed
as the problem of finding integers 2., - - -, 2. .. salisfying

) -’t2+ e "i'"ain Tn ---«-3},2_1_:-—‘-'—‘_[\'2‘1'7(’?,'::5 1) Tty ??1) (2)
and 371'2()} (J': R n—}—m) (3)

for which (1} is & minimum.

There are two factors conlributing to making this formulation of the
cutting-stock problem impractical. First is the size of n, which can be
enormous when the number & of stock lengths and the number m of re-
quested lengths is any reasonable size.  Second is the restriction to integers.

Consider the second factor first. If the restriction were removed, then
a solution to the cutting-stock problem would in general be noninteger.
Given a noninteger solution there are several traditional ways that one can
determine an integer approximate solution; for example, one can round up
to the acatost juleger adding vecessarily Lo the cost or one ~nn round down
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to the nearest integer and treat the filling of the created unfilled portion of
the order as a separate problem to be solved by ad hoc methods. I the
noninteger volues are large, the fractional change in the cost caused by
rounding out will usually be small. Since the cost first obtained is the
smallest possible with or without the restriction to integers, a small increase
in it can often be tolerated even though the resulting cost may not be the
least possible attainable with integers.  We will, at any rate, only consider
in this report the linear programming solution of the cutting-stoclk problem
in which the variables are not restricted to be integer, since our purpose is
the description of an cfficient method for dealing with the first factor, the
very large number » of variables.

It is worth noting that the removal of the restriction to integers on the
variables allows one to drop the slack varisbles from equation (2), since
for any solution of (2} and (3) in which slack variables take positive values
there exists a solution with the same cost in which no slack variables take s
positive value.  For let there be a solution (&, - -+, &, &wr, - 1, Topem) L0
(2) and {3} for which £,42520.  We can assume that for some 4, @y £2 T
that is, that the ¢th activity contributes in the solution at teast as much to
the order for length £ as the order has been over-fulfilled.  For if there is
no such ¢, let the jih variable be the first taking a nonzero value #; and let
the kth activity be the activity that is identical with the jth in all respoots
except that it does not create any picees of length & that is, the pieces of
length 6 ereated by aclivity 7 are yegarded in activity & as serap. Then
another solution (&, -+, &, Eust, -+, Fugm) of (2} and (3) with the
same cosh as the original is obtained by taking £/ =&, for 1=}, &k, n4-1,
Z/ =0, & = &£, and Frows = Ens1—m; &y since the cost coefficients of x;
and z; are identical. In this new solution the value of the slack variable
Tygr has been veduced. If i, has not been reduced enough to give
@i & 2 D an for some 1, then the above process ks repeated antil o soludion
is found for which one variable does satisfy this inequality. But if
35 ;2 £,51 then the slack variable z..4 can he given a zero value in o solu-
tion with the same cost as the given solution.  Tor let. the kth activily, as
above, be the activity which is identical with the 7ih in all respects except,
that it does not creatle any picees of length £ and define the new solution
(B, &) Fuary oy Fwsm) by faking & =5 for =], k n1,
& =8 (Bp )/ gy B = Bt (Fnay)/ass, and Ty =0, Since the cost co-
efficients are, as before, identical {or z; and 2y, the new solution has a cost
identical with the previous solufion.

Although the slack variables ean be dropped when the restriction to
integers is removed, there may be advantages to not dropping them.  or
without the glack variabies every minimal solution (o the preblem will in
general be in terms of exactly m activities, while with the slack variables a
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winimal solution may be in terms of less than m activities, Tt is therefore
possible when one eonsiders the final rounding out to an integer solution
that the solution obtained with the use of slack variables will bo better than
one obtained without.  We willin any ease deseribe a computation routine
for the problem with slack variables that can be modified 1o a, routine for
the problem without slack variables by dropping one stop.

The simplex computational procedure when used to delermine a solu-
tion of (2) subject to {3} for which (1) is a minimum provides for any
given basie feasible solution of (2) and (3) a successor basic feasible solu-
tion for which the value of (1) is less than for the given solution.

In particular if a basic solution of {2) and (3) is given, the simplex pro-
cedure {ests cach of the other variables in turn until one is found that can
repiace one of the currend hasie variables.  Tet us assume that the variablos
in a given basie feasible solition are L1, T2y o Te Lot Probe the vector
{ari, ey oo, wad and ¢ the cost cooflicient in (1} associated with the
variable ay thus i @, is a slack variable then ¢, is 0 and the veetor hag
a single nonzero coordinate —1. Let P = (q » fay v e, @) define an un-
determined new activity that ents from a stoek length L having a cost ¢,
Iurther Jet A be the matrix with Py, - P oas eolumns, Since Py - P
form a basis there is the wsual column veetor U satislying the cquation

AU=P, (4)

andd the new aetivity ean be used in o solution that will be an imprevement,
over the given soletion Il and only il

C-lUze : {3}
where €715 the row vector with cooflicients Ci, Gty Gme Henee i the row
veetor €A™ hag coelficients by, -- -, b, then from (1) and {5) ean be con-
cided that there exists an activity catting from 7 that can profitably be
wsed 11 and only il there exist nonnegative integers oy, - -+, a,, satisfying

L%—-ﬁ (l.j"f" : "{" f‘m [ {6)
.'IH(I bi (2-1"}" T _}"bm e > C. (7)

Hois of course important that €47 is always on hand as a pari of the
normal sSimplex computational procedure,

One method of determining whether there exist positive infegers «a,
salisfying (6} and (7) would be to determine nonnegative integers satisfy-
ing {6} for which &y ay4 - 4D, aw is & maximum, for if such integers did
not satisly (7] then none would,  Henee the problem of choosing a new



Cutting-Stock Problem 853

variable in the simplex procedure for the eutting-stock problem ean be
expressed as the problem of finding a solution for up o & auxiliary prob-
leres {one for each of the stock lengths Ly, -+, L) caeh one of which is
an integer linear programming problem.  We will show that these E
auxiliary problems can be solved by a single dynamic programming com-
putation or in some cases by an even more rapid ad hee method.

Since the problem of maximizing by a4 - 4D, @, subject to (6) s a
generadization of the knapsack problem, it can be solved by dynamic pro-
gramming in a manner very similar to that deseribed by Dawrzie in
reference 4. Defining F.(2) 1o be the maximum of b, g4 - - by e, suh-
ject o the incquality = G a4 - - £, a,, then

Foa(e)=max, {rh a4 F(z—rl,)],

where r need only be chosen such that 0Zr=ia/t,, 1], and square brackets
are used Lo denote the largest integer part of the argument appearing within
them. That only one complete dynamic programming computation is
necessary in order to introduee a new variable in the simplex procedure
can be readily scen, for if say L, is the largest of the stock lengths then in
the course of computing F.{L;} one has automatically also computed
Fm(Lz), T F?N(LA-)-

But even this amount of computation wiil frequently be more than is
necessary since one need only find some a;, - - -, 0, satisf ying both the in-
equalities (6) and (7) when 1 is taken 1o be one of the stock lengths
Loy oo, Ly and ¢ ds taken to be the cost of the stock length.  Thus, any
simple ad hoc method of solution may be used until the method does not.
vield a solution to (6) and (7) when the dynamic programming computa-
tion may be made.  FFor example, one can use the ollowing simple method
adapled from one deseribed by Dantzig" for the knapsack problem:
Let 4,4, -, 4. be such that b/ zby i,z 20, /6, Choose
an =L/, an=[(L—{t, a)/l,), ent[(L—14 a1 a3/ 0], and so
on.  Only when this simple method has failed Lo provide a solution 1o (6)
and (7) for all of the stock lengths would it he necessary Lo use dynamie
programming to iry 1o find a sohition or show that no solution existed for
(6) and (7) for any of the stock lengths.

I detail, a routine for determining a solution of (2 and (3} for which
(1) is & minimum is the following:

(1) Determine m initial activities and their costs as follows: for each
#, choose a stock length 1 for which 7>, and define the 7ih activity to
be the one eutting a:==[1;/1)] picces of length £ from 7,;, The cost of
the sth activity will be the cost ¢; of the stock fongth L; from which the
tth activity cuts the picces of length £,
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{2) Form the #41 Xm-+1 matrix B:

I — —C L !E
0 a0 0
0 0 e - 0|,
i
6 0 0 o 1

whoere a,; is the number of piecos of length £; cut in the ith activity from a
stock length whose cost is ¢;. Record in some manner for each of the last
m columns of I what activity corresponds to it.  This record will be up-
dated as improved solutions are found, and hence must also be able to
indicate n correspondence between a column and a slack variable.

Form alse nomn-4-1 dimensional column veetors 85, -+ 8, correspond-
ing to the slack variables, where the S; has zeros everywhere excepl in the
{2+ D)sl row where it has —§, and the m-1 dimensional column vector
N with 0 iu the first row and N; in the 4th row and compute B which is

simply

3; ! efty Ot Cuf G ii
L0 Her 0 00
j 0 0 tjamw - O 3i
J\i P PR ii
Lo 0 0 V|

Lat ¥ = BN, Given the current B and the column vector P of o varia-
ble not used in the current solution (e, the first row of P is minus the cost,
the ather m rows are the coefficients a;; ; or in the case of the #th slack
vartable, 15 5)) to determine whether the current solution can be improved
by making nse of the variable it is only neeessary to compute the first
clement of 8- P; 11 i 15 nol positive then no improvement. will result,
while if it ig positive an improvement wiil result. Henee:

{3 The 4th slack vanable i 14 1s not appearing in the current solution
will lead to an improved solution if and only if the (i-1)st element of the
fival row of B is negalive.

(1) 1 no slaek variable will improve the current solution it is necessary
fo determine whether the introduction of a new aectivity will improve the
current solution by determining whether there 15 a stock length 7 with
cost ¢ for which inequalities (63 and {7) have a solution, where by, -+, ba
are the last o elements in the first row of B™ I these inequalities have
na solution no matier which of the given stock lengths Ly, - - -, Ly with costs
respectively oy, -+, e 18 tried, then the carrent solution 1s a minlmum.
The current solution and its cost is then given by the current ¥V, where
the first row of thiz veetor is the cost and the remaining iz rows are, in
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order, the values of the variables corresponding to the m columus of B
If a new activity will improve the current solution forns its colummn vector
P with coefficients, in order, —e, @y aa, « -+, G-

(5 The introduction of cither a slack variable or a new activity will
improve the current solution.  In either case let P he the colwmm veetor
of the variable. To determine the new B and N, which determine an
improved solution and its cost, and which permit an Heration of these
steps (3), (4), and (5) one proceeds as follows: Compute B P; it (he
clements of this vector be w1, -, ¥, ¥wer and let the elements of the
current N be xy, «+, T, Tugr. Determine the 4, ¢2 2, for which 5,>0,
s 2 0, and x/y: is minimun and et it be &) should the minimum rmatio
be zero one must use the method for degeneracy outlined in the next para-
graph. If the minimum ratiois not zero then the kth elemont of P, ., will
be the pivot element in a formal process of Gaussian elimination carried out
stimultancously on B3, B-1-P and & that is climinalion on the (n4-11X
{m--3) matrix G formed from B~ by adjoining as new columns ¥ and B0
P in that ovder.  (For cach 454 the Mh row is multiplied by ./ and
the resutiing row subtracted from the ¢th; the Ath row is simply multiplied
by 1/yr.) The first m-+1 columns of & then form the new B! and the
m-F2nd column of €7 forms the new ¥, The record of correspondence
hetween columns of B-F and aclivities or slack variables is updated by
removing the current correspondent of the kih column and replacing it by
the new aclivity or slack varable, whichever the case may be.

Degeneracy, should it cecur, ean be handied in much the usual way.
Some preeautionary device must be introduced to prevent the possibility
of cyeling. A new column N of positive elements 2y, -+, 2, any inde-
pendent of 4 3¢ adjoined to & and the choice of which >0 for which
=0 1% to be the pivot element s made on the basis of which such @ has
/>0 and 2y mimimam. When the pivet clement has been ehosen,
Gaussian elimination proceeds as before but now on the enlarged matrix €.
The additional columm is mamtained m € untl an 7 exists for which o, /4y,
is posifive and finite when the eohimn can be dropped.  Should it be the
ease that there is no 7 for which either v /g, or 2/ /1y s posiGively finlie then
another colunmn &? of positive elements independent of & and A must he
introduced and used in the decision of the pivotelement until sueh time ng /¥
or MY can be used, Similarly any number of cohunns N, ¥, N7,
be introduced as needed and dropped when no longer needed.  Sinee the
colunns are independent when introduced and remain independent alter
GGaussian climination, no more than w such columns need ever be intro-
duced.  Each column that = mmtroducaed defines a new linear programming
problem that will prevent eycling as long as degeneracy does not ocenr
within it.

- el
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ENAMPLE

Tir araix sleps in the compuiation of a solution of the following example
are given below.  Aw order for 20 pieces of length 2, 10 pieces of length 3
and 20 picees of length 4 1x to be cut from stock lengths 5, 6, and 9 with
coste respectively of 6,7, and 10

Tmtially:

A N T o

Lo 2 00 04 s 120
B=io 0 1 oy N= o)
00 1 120

I T || 240 |

S I S et 10
B=lo o 1 o N=B2A=1
00 0 1y 120

The stock lengths will be tried in order of decreasing size since the longer
stock length permits the definition of a Jarger munber of activities. The
first incqualitios are therelore:

(1} 92 26,4 3as4-4ay and
(2 ey Bae—+-Oay > 10.

The ad hoc method of solution gives {0, 3, 0) as a solution to (1) so that
the new column vector £ has elements — 190, 0,3, 0. Hence:

36 6 260 8]
500 10 0]
010 10 @)
G 0 1 2 0

I
{

where (he last cobumn i B0 P, with the pivol element circled.  After a
Cianssian elimination on the pivol element

31656 810y | zl
s 00 10 . oY
s2 ; e !
noolo0 ey oy B ii 0
0 0 1 20 05 L O]

Sinee none of the elements 3, 105, and 6 in the first row are negative, the
iniroduction of a slack variable will not improve the cost. The inequality
(2% is therefore voplaeed by 3ay--104 ag-bGaa> 100 The ad hac metiod
gives (1,0, 0% as a solution so that B P s the veelor listed next ta &7
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above with the pivol clement eireled.  Thus,

1

Losg 10y 6 ‘”!2;—5 Os z‘
w10 0 0 HEER R 0
TTHo 0 1500 10 0y O

oo o1 2 0| ol

Again the introduction of g slack varlable will not improve the cost and
therefore the nequality (2) g replaced by 24 o195 @e4+-0 a2 > 10, The ad
hoe mothod of solution gives {0, 0, 2) as a solution so that B7P s the
veetor given next to &7, with the pivol element civeled.  Thus,

1B ey 5 60y b
o 000 5 o

ME . B.r i
o o 0 10 1) ool

Again the introduction of a slack variable will nol improve the cost and
therefore the inequality (2) s replaced by 24 a;4- 1248 ao+-5ae> 10, Now
the ad hoc method of solution yields no solution to the inegualities. How-
ever, the ad hoc method can still be tried on the inequalities arising from
the other stock lengths.  The stock of Jength G gives rise to the inequalities:

(3) Gz 2&1“{" 3(1.‘3"%—4(13,
(4) :”3/ a1 9:1 a3 ay > 7

for which the ad hoe method gives (3, 0, 0) as a solution.  Therefore,
B7-P iz the veclor next to &7 above with the pived clement cireled.
Thus,

[1 %% 195 5 840 OII | };[I
;oo 205 1] i p__ |l @
Cmif) 0 ly 0 193 Oifr B IMH ()"
o o o v 10 0 g

and again since the introduction of a slack variable will not improve the
cost, the nequality (4) is veplaced by 74 ai-+1%% @p-4-5aa>7.  The ad hoe
method vields (1, 0, 1) as a solution so that B P is the vector as is
given above with the pivot element cireled.  Thus,

1 2 1tg 5 5205 g
0 1 0 0 20 1 - 1
I Lp_
o 0o 0 w0 PP ap
10 =g 0 14 0 0 o0y



858 P. C. Giliore and R, E. Gomoery

and again since (he infroduetion of a slack variable will not improve the
cost the inequality (4) s veplaced by 2a+198 ay-+5ay 7. The ad hoce
method ne longer vickds a solution to the Inequalities.  Looking again at
the other stock iengths, consider first inequality (1), together with:

(5) 204105 aq-+5a,> 10,
The ad hoe method yields no solution.  Consider next, the inaqualities
(6) 52 201+ 3az-+4as,
(7 20+ 1% ay-- Hag > 0,

which also have ne solution by the ad hoe mothod. It s therefore neces-
sary Lo use dynamic programming Lo maximize 2q, 4194 aa+-Hay subject to
(1), (3), or (6. Computing Fy(2) we get Fy{(5) =018, I(6) =7, Fo(D) =
10%5, BSinee Hlg =6, 7<7 the inequality pairs involving standard lengths
A and 6 have no solution, but since 1014> 10 the inequalitics (13 and (5)
imvolving length 9 do have a solution (1, 1, 1), which has in fact been
produced by owr ealeulation.  Theref ore, B™ P is the vector listed above
next to &7 with the pivol element eireled.  Thus:

if; 2 3 5 170 0;
;,,:Ho Lo—1 0 10 of
;io O 1 0 10 1]
P02 0 15 0 ol

anel again since the introduction of a slack variable will not improve the
cost the inequality (2) s replaced by: 2a,43as-1-5a;>10. The ad hoe
method of solution vields no solution to theso inequalitics, nor does it
vield o solution to the incqualitics (3) and: 2as +30:4-5u,>7, nor {o the
inequalities (6} and: 20,4 3w 450> 6.

[t i therefore necessary to use dynamie programming again t0 maxi-
mine 2 =4-3ay--Hay subjeet to (13, This single computation yvields (5 =
3, (6 =7, 8101 == 10, which shows that none of the pairs of inequalities
are compaiible.  The solution is therefore to eut each of 10 picees of stock
length 6 into 1 piece of length 4 and 1 picce of length 2 and cach of 10
pieees of the stoek length § into 1 piece of length 2, 1 piece of length 3,
and 1 pieee of length 4. The cost is 170,

That integers shonld result as the solution of the example is, of course,
fortuitous,
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