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The network flow preblem was first considered by Ford and Fulkerson
1] who introduced the basic concepts of flow, ent, ele, used here and pro-
vided the main tool, the maximum-flow minimum-cut theorem, Ford and
Fulkerson wrote abeut the flow betwoeen two speeial points, the sowree and
the sink. Mayeda 2] then took up the multi-terminal problem, where
flows are considered between all pairs of nodes in o network, and Chien
[3] discussed the synthesis of such a network. In this paper we continue
with the multi-terminal problem, giving results on realizability, analysis,
and synthesis. Although this paper is self-contained we will use thronghout
many of the noiions of {1, 2, 3],

We consider connected networks eonsisting of nodes &, and branches
By connecting the 4th and 7th nodes. Each branch {or are) has associated
with it a nonnegative number b;; called the braneh capacity. The branch
mpacity is the maximum amount of low that ean pass through the hranels,
from N, fo N We assume by = b thronghout, Given such a network
there is for each pair of nodes a maximal flow possible between 1hem. The
value of this flow between the th and jth nodes will be denoted by [y, .

Consequently for cach network there are two associated symmatric
malrices: The matrix B of the by and the matrix ' of the resulting flows
Lo Not any matrix ean be an fo; matrix so it is natural to ask when ean
a given sel of flows fi; be realized by some notwork. One answer in terms
of the ability to repeatedly partition the matrvis of fi; in o partienlar way
has already been given by Mayeda [2]. Here we give another necessary
and suflicient condition—a sort of “triangle inequality.”

This condition reduces the problem of deciding whether or not a given
medrix /' is realizable by some network to the well known problem of con-
strueting o maxtmal tree of a network-—a problem already solved in o very
effective mamner fiest by Kruskal (4] and even more efficiently by Prim
[5].

Tusonum. A neeessary and sufficient condifon for « malriz I' o be vealiz-
able is that

{1 T zomin (i, F)
forall 2,3, k.
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Geometrically this means simply that the flow from K to &)y must he
at least as groat as the smaller of the {wo fows round by way of node & ;

We first show necessity. Suppose the theorem were faise and for some
By gy oy S << min (fiy, fu). Then there exists by the maxinum-flow mini-
mum-eut theorem [1] a cut or division of the nodes into two sets A and A
with N, € A and N, © A such that the total capacity of the links connoecs-
ing nodes in A with nodes in A is £ . Now N belongs either to A or A. I
it s in A, then it is cut off from Ny by the cut; since the apacity of the
cul is <LA , this is a contradiction. Similarly N; can not be in A, for then
i is eut off from Ny . Therefore fie = min (£, fu).

Oncee established, the relation fu 2 min (£, fie) has, by induetion, the
mnediate conscquence

(2] f{j: 2 min (.-lffj' 5.)r3'k :Jrf\'l PR ;f@.ﬁ)

where the N, Ny, -+, N, Torm any path from N, to NV, .

Now for ihe suﬂmvmy IFor this we n(‘od first. the notion of spanning
tree, then the notion of maximal spanning tree. The notion of free we take
as Es.nmm, see for example [7]. A spanning tree is simply a tree that includes
all nodes. If there are numbers ny; atiached to the ares of o free one may
introduce the value of o tree as the sum of the numbers 75 on the arcs of
the tree. We ean do this using as mumbers cither the b;; or the i for the
are connecting N; and N ;

Among spanning trees there is one or more whose value is wmaximal
among spanning trees. This is & maximal spanving tree and can ecasily bo
constructed by Prim’s method. \ny maximal spanning tree has the Tollow-
ing casily established property. Let Ny and N, be two nodes whose direct
conneciing are is not in the tree, then the number in that connecling are
salisfios 7, = min (nig,n, -+ 1oy where thengy, - - , Tap a0 Munbers
on the ares of the (unigue) path connecting N; to N, wilbin the trec.
Forif the incquality did not hold, the smaliest arc in the tree path could
he removed and the direct are ¥V, substituted to form a tree with value
larger than the maximum.

Using the fi; as attached numbers we consider any maximal spanning
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tree. From the maximality we have as above for o direet are being com-
paied with a path through the Lree,

S Emin (f, - L),

while from (2) we have the opposite Inequality. 5o for any are not in the
{ree

(1) Fowmemin (fy ) oo fun)

However this is precisely the flow which results if o nelwork i con-
structed with branch eapaciiy by = [ for ares in (he tree, and by =10
otherwise. Thus any F matrix satisfying the condition is realizable. This
eids the proaf,

Toseeif a given matrix s in faet readizable one cowld construet o maximal

spanning tree wsing Prim's method, then cheek to see it condition (3) is
satisfied. Actually 1{ is far more eeonomieal (and extremely oagy ] Lo check
(1} during the course of Prim’s algerithm as deseribed in the appendix.

We next tum o the prolilem of analysis, fe., given a network of ares
B with eapacities b, | what are the resulting flows £,;7 We have seen from
(3) that any flow & numevically equal Lo some flow in the maximal spAnnInY
trees As there arc only n— 1 ares in a spanning tree (where nis the number
of nodes) there are only 2 — 1 numerieally different flows possible. This
makes it reasonable Lo suspeet that all n(n — 1372 flows £; ean be obinined
hy something better (han doing n(n -~ 1)/2 fiow problems. We will in

WA
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fact show that ol flows con be deduerd aftes iy 1w — 1 flow problens hor
been. compitided,

Consider fivst o network sueh as the one <hown i 1 g, Towith aominims
ent (o) separating Ny and N PR G U P

The et ws construet a slightly different network, one in which all 1roedes
in L are veplaced by a single s pecial node 7 to which all the ares of Uhe ey
are attnched (we can replce ; (‘\'(‘i"lf ares eonnecting the same {wo node:
by one are having the (ofad capacity). Tn this condensed nefwork (T 2
ler us econsider the maximal fow 1)(%\*.{’(\}1 two ordinary nodes, N, wued N,
We will shm\‘

Lasma 1 The flowe between hoo ordinary nodes No ond Ny oin the con.
frn,wf nr{uruf 8 mmmzrm‘/r/ cqual fo the flmo fo o the original netword:
Proof. Lel (B, BY be a minimal eut se parating N and ¥, in the original

nelwork and define sels of nodes
ANp ¥ =A405
- AN B, V= A0A
Here X is the ('{)mg)lomon Lof X in d, ¥ is [hv complement of ¥V in A
We may assume § lm Ne CX,NC X and N6 X Tt by = = %h;; where
JC X and Ny ¢ )
Case 1. N; ¢ Y. Now
baz = bxy 4 byy - bey + by,
bui = byx A bxp 4 bey F byg .
Since (B, £} is a minimal ent separaling NV, and Ny | and sinee (XY U ¥
U ¥, X separates N, and &, | we have
(3.1) buis = bxyrys s = bay -+ byy — bey £ O

Since (A4, A) s o minimal eut s parating N, and N; | and since (X U
WY, ¥ separates N, and N , then

(3.2) bai = byoxus.y = byy + by — byp S 0.

Adding (3.0 and (3.2) shows that b5 < 0 and henee bey = 0.1t then
follows frem (3.1) ‘m(i (3.2} that byy — bry = 0 also. Tenee (YU ¥
U Y, X)) = (XU A, X isalso a minimal eut separating N, and Ny .

{'ase 2, N,- ov. \ similar proof shows that (X, XU Ay is 2 minimal
cul separafing &, and A, in {hig easc,

Vi
(W)

Fra. 3.
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I other words, there is always o minimal ead separating A, and &, el
that the set of nodes A & on one side of this enl. Stnee the fow value is
determined by the value of this minimwn enl which b= wnebanged by The
condensing process, condensing A to a single node does not altect the value
of a maxinal flow from: &, (0 N .

Thus any flow between N, and N in the condensed network gives rise
to an equal flow in the eriginal network, This gives the desired inequalily.

Sinee acub i the condensed network gives aeut in the original, and
the maximal flow values are the same, o minimal eut in the condensed
network gives, simply by replacing P by 4, aminimal ent in the original,

We now proceed to Lhe ‘mnlyﬂ:i% .

One proccdure is simply this. We take two nodes and do s maximal
fow computation 1] {o ;’md a minimal ent (A4, A) We represent this by
{wo generalized nodes conneeted 1,_' an are bearing the eut v 1|nr‘ (Fig. 35,
I one node are Hsted the nodes of A, in the other those of 1. We now re-
peat this pracess. Choose two nodes in 4 (or two in A ), and so?\'c‘ the fow
probiem in the condensed network i which 1 (or .13 is a single node.
The resulting eud has o value w and s represenied by o link comecting
the two parts inte which A is divided by the eut, eav 1 and 4,01 s
attached to A4, 8 06 1y in the same part of the eutas 4, o L Ui s in
the same part as A; (Fig, 4.

The eatting up is then continued. At each siage we have eerlain gon-
aradized nodes {which may represent many nodes of
and eortain ares conneeting them, To procecd with the eomputaiion we
geloet a generalized node A and two ovigingl nodes N, and ¥, in .-i ;. Upon
removing all ares which conneel to A, the 1}{!%\\'0}'1{ of generalized nodes
falls into a number of diseonneeted components. We condense ench com-
ponent, exeepl A, Hself, inlo a single node ‘md solve the nefwork flow
problem (:Unsi.sling of these condensed nodes and the original nodes within
Aqyand using &, and Ny oas sowrce and sink. The minimal ent oblained
by this flow ealeulation splits A4 into two parts, AL 1, This s ropre-
sented in the dingram by replacing A4: by two generalized nodes 4| and
iy conneeted by an are bearing the ent vahie, M other ares and general-
ized nodes in the diagram are unchanged exeept those aves which formerly

the aviginal network ),

Ay
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G, 5.

conneeted to ;. Such an are is now attnched (o A ool its component was
on the same side of 1le eut as the nodes i A oy and attached to A4 if ils
acomponent fell on the other side,

This process is repeated until the generadized nodes of the dingram con-
sist of exacily one node each. This point is reached alter exactly n — 1
cuts, for the array is a tree 2t all Hmes so when the process stops it is an
n-node free and so has n — 1 branches each ercated hy salving a flow
problem in a network cqual to or smaller in size than the oviginal.

We then assort

Luvva 20 The flow between any fwo poinds 4s stuply

min (v v, o0 w0,

where the v are values aof @ series of arcs of the (re connceling the lwo peinds,
Before proceeding to prove this lust assertion it is probably a good idea
to dustrate the process hy an cxample,
Taking as our B,; network the net in IFig. 5, we arbitrarily choose nodes
2 and 6, and upon doing a flow problem we | m(l the minimum cut to be
(as indicated in Tig, 5) (1, 2,13, 4,5, 6) with capacity 17, This js repre-
sented by

To get the flow 1.2 we consider 3,4, 5, 6 as a single nede, obtaining
Figo 4, in which the minimum cut 122 5« (| P23, 405, 6) with capacity

g” ¥ ! 7 ¥ >
18, s

. @ " {3456
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We next choose 3 and 6. Considering 1 and 2 as 2 single node, we find
the minimum eut (1,2, 613, 4, 5), eapacity 13. 8o

(T\ I f:K 17 {:?\ 13 /%:5
NS \\\

We next consider the flow £5, taking 1, 2, 6 as o node (Fig. 8), the resulting
minimum cut being (4171, 2,4, 5, 6) with eapacity 14, So
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Finally we consider the flow 3-3, taking 1, 2, 6 as one node and 4 as the

other to get the sawme network as above,

3
%h\{,, 8
Q)

4

5 7

the minimum cut 3-8 being (3] 1,2, 4,5, 6} capacily 15, giving as the fina

iree,
O

i4

ie NET 3 5
OS0LON0Z0

53

We would now assert that the maximum flow 123 is 13, the maximum
flow 1-G, 17, ete.

We now proceed to prove Lemma 2. Consider two nodes Ny and &
We certainly have

f.i = min (i))_, T L’,-\),

for cach v, on the path connecting N and & corresponds Lo o enl separatinge
| 2 j ! g

N;and N;. To show the roverse inequality is a little more difficult. Con-
gider any stage of the construction

where we have ares representing cuts and nodes representing sete. We
agsert that if an are of value v conneets sets A, and A; then there s node
N:in d;and a node N, in A; such that f;, = »
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Thix is cortainly true after the fivst cut. We will show that the property
is maintained. Consider an A, about 1o he out,

with A representing the set attached by ». By the induction hypothesis
thore is an Ny in A and N in A5 with fi; = o After enlting N, from
Ny A divides into A, and A - We can assume A is attached to A,

G

Clearly N, and N, provide the desired flow f,, = o across the new link.
As to the old link of valne ¢ there are two eases:

() Nooo A ‘

Then the Now £ = ¢ is still applieable.

() N. ¢ Ay, .

Then cousider the nodes N N N, and N, L From {(2)

Fio & min (Ja, ey Fon)

See N and N oare on one side of the eul whose value is o and N, and
N, are on the other, we know that the flow f;, is unaffected il A f, 15 TO-
pinced by asingle node or, what is the snme thing, i all ares within 4 iy 4T
given an arbitrarily large valne 3. Doing this mukes [y, lnirge so we have

S 2 min (fy s Jan)-
Sinee fio= pand [, = o, we have

T 2 min (p,0").
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sinee the cut separating N and &4 s of value o, we must have o = s
= eono finally £, 2 20 As ¢ ds the value of a et separating &, and N
this implies [, = 2. Thus N; and &, provide the two needed nodes.
sinee we now know that in the final tree the values on the Jinks aetually
represent flow vadues between the adjncent points, the rveverse inequality

.lr(j ;: min (‘I-‘l » ur)
1 oonce again just an applcation of (2.
This establishes the desired resul
Joj = min (o, o0, 0,

Hence the fow mairis fov our example is

1 2 3 4 b5} O
1 d 18 13 13 ~Ia 17
2 18 d ] 13 13 i7
3 13 i3 d i 15 13
4 13 13 14 d 14 13
5 13 13 15 14 d 13
G 17 17 13 13 13 o

In any tree diagram an are from &, to N; can be considercd as repre-
senting o cul of the nodes since its removal divides the nodes of the tree
into two sets, A and A. 1f in addition cach cut so obiained is o minimal
cut befween N, and N in some network N, and the attached branch value
in the tree is the capacity of the cut in &, then the free is ealled o cut tree
of N,

We have just shown a way of obtaining a eut Lree of a network by
solving n — 1 flow problems.

Given an n X o matrix of nonnegative numbers rog(ry; = 750 we will
ol an m-node network A satislactory i its flows salisly

(4} fopz oy (all 4, 54 5% ).

The synthesis problem we consider is the one of finding a satisfactory
network having smallest eost. If we say that the cost of installing one unit
of branch capacity between N and N; is ey, then il scems necessary o
use: the apparatus of linear programming and (his approach is developed
in [6]. However il we {ry to find the satisTactory network of least toial
branch capacity, ov what is the same thing, 1ake the case when ey == |
for all 2, 7, special methods can be devised, and it is this problem we take
up now. {I'or other approaches applicable to a realizable requirement
matrix in partitioned form sec [3] and [8]).
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We first introduce a tree T of dominant regquivements. This 1s simply
any maximal spanning tree constructed uging the ry; oas sre values, For
cxample given the requirements

O © 6 ® 6
D x a 9 { 3
& 4 % 6 5 3
@ 9 3 % ! 2
@ | 5 ! % 7
@& 3 3 2 7 %
an enstly congireeled dominant requirement free is
2
\es\ O @ @
™ 2 ®x 0o 9 0o o0
I 3
© 5 © @o x» 6 5 0
@9 6 % 0 0
O, 4 P o 5 0 x 7
® o o o 7 9«

Any satisfactory network must of eourse satisly all requirements [;; 2 7y
where 7 are attached 1o ares in 77 This Is alse sufficient since the missing

rop sndisly the usual relation

Fea 5o (T, P, o0 Tap)

?

when the s referved {o form a path in 7. In any network salisfying the
dominant tree reguirements {dominant reauirements for short}, the fow
Lo must sutomatically satisfy

f%n = i (.'rff z.tri!-' y ‘P.f‘?ﬂ\) = min (ri_if T rrw) = Tip s

and =0 salisfy all requirements,

Becanse of this we will heneeforth consider only the dominant require-
ments, This i nol necessary, only convenient: the methods we will develop
can eagily be modified te apply direcily o the original requirenient not-
work, but the exposition is simplified and essentials hrought out more
casily by working with the doeminant requiremoents.

We define the total braneh capacity 1o be '2'5‘}”_:‘541‘{);;]'. We now follow
Chien B3] v introdueing o lower hound (7, for this rantity. Consider any
node N of the vetwork, Lot w; = max;#;;, that is, w, is the largest {low
recuirement out of N Define €, = 12w, Then as any satisfaciory
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network N sust provide capacitios &, enpable of carrving this fow ond
of Noy 250 2wy and thus the total braneh apacity = 424,
.]1 2“«!' U, = ':’f» .

The number € can also be computed diveetly from 7" without reveriing

to the original requirersen(, sinee the swme w; resudis if the maN; e, s
taken ondy over hranchies of 7 adjacent (o A .
Now consider a fixed tree T with atiached numbers rooand resulting

y Y . / ,

bound (1 the vy are yeplaced by o different sel o anew hound ¢ ye-
~ " ’ . -

sults. If we use #; = 7%, 4 #,; on the ares of the same fixed tree wo gl

€7 abways with

/

.YLII ,_/: (-IYI,’ _l_ (.’w{‘)

. I L o . . . rre
but if ;5 (or7,;) are “uniferm” requirements, e o= glorall e pin T
then obviously ecquality holds so

(3) G = 0+ Oy,

a result we wil use In what follows,

One further remark is needed. If a branch capacity network Biyowith
wpacitios Oy and fows f4; i superposed on another having the same nodes,
. L. 9 F ! .
ares, and different capacitios by and flows f7; | then the resulting nefwork

. - . e ” 'R ry

is taken as having ares with capacities 67, = D5, - b, . The new flows
~ -

Ii; clearly satisfy

2] i i
(()) fi'j 2 fij 7{7 _ari_y .
Consider o regquirenent tree 7 with 7 - 1 requivements which wo will
{ i

now designate. Let the smallest be ri, . Sinee afl reguirements ean be

{a} {h)

o 5 . o 4

anc
(e}

g, 9,
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WEHHLOI 2% rans b {7 = A ) we enn regard 77 as heing obtained by super-
posing o unilorm requirement tree 10 with aniform requirement, rog, on
two sndler trees with reguiremoents v — rog . For example the domingni
reguiirement tree in the preceding exiunple ean be regarded as the super-
position of a uniform 5-lree, Le., dominating requirement free with 7 = 5
(g, O},

If the uniform tree and the residual parts can be synthesized by net-
works N, Vo, Nooso that their individual ;s are actnally atltained,
then by simply superposing the synthesized networks we get new flows
which by {6) equal or exeeed the regnirements, while the tofal capacity
used iz by (3) equal to the Jowes{ possible amount ¢, . Frem now on
we shalf use the phrase “synthesizing (rees” to mean “constructing a not-
work wilth paximum flows greater or equal {0 the requirements in the free.”

The synthesis problem {or 7' then has been reduced to the synthesis of
smaller trees and a uniform requirement tree such that their lower hounds
are actually obtained.

However we ey vepeat the decomposition process on the smaller frees
until only uniform trees remain so that the problem is actually reduced to
synthesizing uniform trecs. _

This however is extremely easy. Given any tree 77 with uniform require-
ment 8, the lower hound O is 2372 and & suitable network is constructed
by drawing any loop through the sodes and then assigning capacity 3/2
to each arc of the loop. (In the smallest case, n = 2, hoth links of the loop
coineide and a single are of capacity # is used.)

In the case of our example, to carry out the proeess we continue the
decomposition begun in Fig. 9 by decomposing (b) further so that the
tree T becomes the sum of

{a} (B)

Do O U ¢, WS- R—

(O R ) S S S—",) S
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Fach of the above is synthesized by » loop,

and these are superposed to give a minimal salisfactory network

e 2
s/2] \&/2 \

N

Note that in synthesizing o unilorm requirement {ree woe mav nse any
loop passing through the nodes in any order. For example, (a) could have
been synthesized by

s 1o 2 e
212\
2
with
el e

22 /2
e . . . . i ¢
similarly any convex combination of foops can be used, Loy af by h‘j ,
B, - are the eapacitios of n link in varions lIoops, then }w graph with
! i .
Mboy o Nabiy b N, ) BN s 1 e also a minimal syat thesis and ean

be used,
What we have shown is that this methbod of synthesis will produce
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fi
find that the sceond meets all requirements in the dominaling tree exactly,
while the first gives some exeess Hows-but of cowrse al no cosk in capacity.

row O aetually checking the two networks synthesized above, we

Weoe will take up first the problem of getting as much cxcess as possible
and then the problem of exactly mecting requirements in the dominating
recuiremnent. tree.
Note thal the numbers w; defined above are the ones that determine
(o oot the vegquirement s, Consequently, once the w: are determined all
an be revised upward to £ o= min (ue, wg) without affeeting ¢, (and
cleariy no fuvther inerease is possible on any are without affecting ¢1,). if
the new requirements 7,; are now synthesized they will be met exactly,
i.e., the resudting flows [, satisfying o = 7o for Joy > 7 would necessitate,
at cither Ny or Ny o darger w and hence o larger ¢4 . Also, the hY]}”l(“\l/(‘d
nebwork has Tor the same reason the following property: let f1; be the
flows provided by any other minimal eapacity network satisfactory with
respeel to the oviginal 7,5, then

Jis B f (all 2,7,

Le., the network obtained by revising the requirements to #; and then
synthesizing provides, at no cost in total capacity, more (or the same)
flow hetween coery pair of points as does any other satisfactory minimal
nebwork. More flow between any pair of points ean be bought only by
imercasing tofal capacity.

We can summarize this property of nuilorm dmmn*im:e i the following
theorem which involves w, == max; r; and (), = 1 L,/J(

Trworus. Given requirements v [}'m(' is a saftsfactory nelwork N having
capacilty Cr and giving flows

Fo=min Cus ) (all £ #£ 73,

while if [ are the flows frome any other satisfariory networl: N then cither
N's Afotal capacity C sadisfies

(>0,
or

Fis

We now turn to the problem of exactly meeting the requirerients in
the general case and, of course, al minimal capacity. We alres ady know
how to seeure flows f; 2 the requirements ri; . To secure the apposite
megnality itis only necessary, after decomposing the original requirements
ito a sum of uniform requirement trees, to synthesize each uniform tree
50 that the links of the treo r(%pz‘o.scnl- not only requirements, hut also
minimal cuts of the synthesized network, Tor instance in our example the

"/\

< T (all i 5 j).
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eud free of the loop used mosynthesizing the unfform reguirement of 5

g, 05 does et have o ent of capaeity 3 sepaoating 1,2 and 3 from 1 and
2, s o woukd 3 were aoent Gree, Tlowever the syuthesis I the

2 12 e
@ ®
2i/2 2 12

® 2 1/2 @

loop 1,3, 2,4, 5, 1 does have the required eut free. In superposing require-
raent trees that are also cut irees, minimal ents in the synthesized networks
are superposed on minimal cuts 1o Torm minimal cuts. (Cleardy if (A1)
is the minimal eut between N and N, inoane nelwork and also in a seeond
then it is also o minimal cal in the superposed network.) Thus the ortsinal
roquirement tree i synthesized with o cut corresponding to cach Hnk.
Henee the flow f;; between two NV and N satishies

k
A

Jor & min Dra v, o, g,

{(whoere the vy, ete, are in 7)) Tor each represents o cut separating &, from
N, e, i one can synthesize a uniforn tree with desived eud free thoen
the original requirement tree can be synthesized as a ent sot {ree, which
resulls in exacet synthesis.

To synthesize a given uniform tree as o eut Dee is, however, gnite easy.
We give the following rule:

I T 35 a uniform requiremoent tree 16 Is syuthesized as Tollows,

Preliminaries: Label all ares in 77 with & zero, and c¢hoose any node as
starting poini. Label this node with ]

Inn what follows when we \])ml\ of Iabeling a node we mean to assign
thie first node labeled the namber 1, the seeond node Inbeled the number
2, ele.

(1) Find H](‘ are with smallest label i neident to the starting node {any
one will do if there are several ).

(la) i e # 0 you must label the node.

(1) 1f ¢ == 0 vou may or may not Jabel the node.

(2) Proeced over the are mentioned in (1) 1o the next node, ineveasing
the are label by 1

(3) Continue this process until you relum o your siarting node and
find all incident ares Iabeled 2. (This will happen.) Then stop.
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We nssert that at this point vou will have H'u\'('i‘a'r\(] lares of 17 exuetl
twice (all will be labeled 23, adl nodes will be Inbeled swnd that the lon)
cori=ting of ares of enpacity 32 with the nr;(i('\ taken me ovder of thel
labeling Cand then retirning to the starting node) is a synthesis of th
desired cut tree,

Applying this process (o the uniform 3 free i our example gives (amon:
athers) the Ioop used in Fig. 9 which resulted in exact synthesis,

Proving that 1his geneval procedinre works is rather tedions =0 we give
the following procedure whiely i=n ‘-\})(‘(‘i dization of the one above gid whos
properties are more casily verified

Suppose T s a uniferm requireinent (ree whose edges all have valu
g We may construet a loop A, through all the nodes of 77, such that
has 77 as o cul tree, as follows. Label any node of 77 with the number |
Thew repeat the following <tep until 77 is completely Jabeled: If the Tasi
label was i, then Jabel with 2 -+ 1 any unlabeled node which is then ad:
Jacent to node n, if sueh an unlabeled node exists; i none exists, lahol
with n -+ T anwnlabeled node adjaeent (o a labeled node with the lirgest
label possible. When 77 35 complotely Iaheled, we define M 10 go from node
I to nade 2 to node 3, ete., and finally (o rebum Lo node 1. We let overy
edge of A have ¢ p‘u' ity @, "

Proof. To see that T i3 indeed o ont tree of A, consider any edge ¢ of
T hnppos(‘ the 1wo nodes of ¢ ave labeled ¢ and j, with & < 7. Let & he
the laorgest label which oeeurs in the component of 77— ¢ \\]mh condain:
J- Then the minimal cul whose edges avey — 1, jand &, 5T corresponds
toe (I 7 = 1, thenj — 1 means the kwgest label, and i# 1 = {he largest
fabel, then & -+ 1 mecans 1.)

APPENDEN

The following algovithm is to construer a maximum spanning {ree and
to check whether aogiven symmetrieal mateiz is vealizable during the eon-
strstetion of the trees [f one wants only the maximum ~[)unmw Lree, then
the algovithmy in [3] or [6] is more eflicient. Geometriealiy, the algorithm
ix to choose the Tongest are (the kugest numberd, and }1( n ib(’ et fonges
are and so forth (ares can be chosen anly if {hey form a sublree}. This
will result i many digseonneeted subirees, Tor each of the subirees, we
cheek that condition (2) i satisfied. Beenuse the length of the aves is
monotonically decreasing, any are § which conneets nodes |1 wlonging to n
single subtree but did not do se antil the are v was seleefed should have
the same fengil as vo A the end, the maximum spansing tree ix Tovmed
when afl the subirees are connected.

"Weare grateful tothe referee for providing thissecond procedure together wilha
simple prool of its propertics.
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Al this boils down to the following simple arithmetical steps i the re-
cquirement madrix,

The requirement, matrix has o border row on the top and a horder row
in the leftmost column to indieate the 7th vow or jth column, as shown in
Table Al.

T what follows »:; means & matrix element o g row with horder clemont
¢ and column border element 7. The algorithm ix then the repetition of the
foliowing two steps:

Step 1. Beleet the lrgest number in ithe matrix proper (hal has wot
been seleeted or erossed out. {In the beginning, no mumber has been se-

(=3
lected or erossed on(.) Let this number be 7, . Make o cheek mark in ils
box, Il p o= min {4, ) and ¢ = max (4, 7}, change all ¢’s in both borders
T LY JI T E 1 bl I'

to p's. For example, if ras 8 chosen, then change &) in the border row and
column into ().

Step 2. Consider all entries (not yet crossed ont or selected} whose
border eniries are both p. I they are cqual to the last entry sclected, cross
them out and return to step I If even one of them is nol equal to the Jast
entry selected, the malrix is not realizable.

Blep 1 and Step 2 are repeated until no— 1 numbers are chosen. 1 this
can be done the matrix is realizable,

Take the following table for example.

Fannie Al

®
OlO|e|@|@|G

omitied d
due to
symmetry

&
5

d | 3 | 94 4
a
d

®

OIS IGHONIONS,

Step B Helect 7y == O and change ) into ().

Step 20 The ondy number ry i3 9 itself, =0 no erossing onl s required.

Step L Seleel vy = 8 and change & into &, The result is show in the
following table.
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Fanrs A2

olielislicliollo
O a7 1513 ]6] 4
@ ¢ | e | 7T |5 |3
©) a | s | e, 4
©) da | 8,0 4
@) d | 5
(6) d

Step 2, Check 3 3 = 82, As 3 5 §, we know that the matrix is not
realizable, but to illustrate the algorithm, we shall contimue checking.
Cross out 3.

Biep 1. Seleel 7 = 7{r = 7 can equally well be chosen). Change (2
to @

Step 2. Cheele ryp o=

77,
Step 1. Heleet rm = 7 and change all &'s into &) as shown below.

Tanre A3

OIOIOIOIO|®

d | 7,0 51 3 | 6

d 8
d

@0

Step 20 Cheelc i 5 = 726 = 77 3 = 7?2, and eross out 5, 6, 3, cle., as
shown in Table Ad
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Tanrn Ad

O[O[O[O[O]®
Ol a7, 8|5 8| 4
O d | 8 | 7| =
D da | x| 9, &
(N d | 8y 2
) d | s
® d

Sep I Seleet 3 i the sixth eolumn and change @) into (10

Slep 20 Cheek i all clements ju the sixth column equal 5.

It may be nofed that if one rearranges rows and colimns sueh that rows
and columns with same Inbeling arve next Lo each other, then the matrix is
i Mayveda’s partitioned form,
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