


1o Soe, Iseusre, Apern. davi,
Vol 10, Noo 2, June, 1082
Privfed in (7054,

AN APPLICATION OF GENERALIZED LINEAR
PROGRAMMING TO NETWORK FLOWS?®

R.E GOMORY T axo 1. G, HUY

1. Introduction. As in [1] we consider a conununication net or & network
of nodes or terminals connceted by links, Associated with the Hnk from
nede 2 to node 7 s a branceh eapacity g0 Using the usual delinition of the
maxitoal fow from node £ 1o node 7 (see {2, 3]0 in such a network we denote
the value of this maximad llow by [ .

Phere are several probloms assoetated with the connection between the
i and the [ of an wenode network. One problem, which we eall analysis
is this: given the v, find the £ 0 Anceonomieal way of doing this is given
in [11 The reverse problem swhich we eall synthesis and which is explained
Bedosy, 8 treated by speeind methods applicable only to a special case i [3]
andd more generally here by techuiques from Enear programming, similar
to those of [4, 5, 6}

The problem we consider 10 given nonnegatlive numbers vy and ¢y,
g 1, g o L - ong ealled the flow reguirements and the costs,
respectively, constraet a network sueh that the maximun fow values [y

sabisty

{all 4

and siteh that the cost 37
TR S

is minimized.

Wo will assume throughout that v = yu, 75 = ru, 0y = ¢ . The
numboers ¢, e, 7o play no role and need not he given.

We start with the notion of cut.

Lot & Do the set of 5 nodes in o given network. Following 121, we shali
define acut in a nebwork separating nodes £ and 7 as a sct of links connect-
ing the sets A4 and A, where A i the complement of A with respect to NV,
and such that ¢ £ 4 and 7 ¢ 4. The eapacity of a eut, is equal to the sum
onneel sels

of the branch copacitios of those inks. A link 15 considered to ¢
A and A 3F 31 conneets fwo nodes, one in A and the other in A

It 1s shown by Ford and Iulkerson [2] that the value fi; in a networl is
cqual to the minuoum among the eapacity of all cuts which separate nodes
7 and 7. A lommudation of the probiem of synilicsis using Bnear programming

* Jeecived by the edilors Februnry 2, 1661 and in revised fornm September 5, 1961,
T IBAT Researeh Centor, Yorklown Hoeights, N. Y.
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is to minimizoe 7 e subjected to the constraints that the capacity of all
cuts separating nodes 7 and § must not e less {han 7i;, and that this must
be true for all pairs of nodes. See for example [7]. This results br an enormous
lincar programming probiem (2777 — 1 constiaints) which we now proceed
to simplifly.

Two algorithms are developed which avoid treating all nequalities
gimultancously. One algorithm is essentially the dual simplex method but
lreats only » - | inequalities at a time, plus the usual requirements thai
the vartables be nonn(\q'ui\fc- The other aigorithm is related (o the primal
simplex method. These methods are deseribed in §3 and $4.

A first step Ltoward a feasible computational procedure is to show that
there are n — | dominating flow reguirements, the fulfillment of which
woudd imply the fulfillment of all other fow requirements. This s shown in
the next section and in [11

2. Dominating reguirement tree. Lel a sel of » points connceted by
links be given together with a positive real number assigned Lo every link.
Two points without o link connccting them divectly ean be considered as
having a link \\'ith the value zero, A S].)Ellliliﬂ“‘ tree of the n points is defined
as o tree of n - [ links conveeting all % points. A maximum spanning tree
i such a tree \\1(]1 the sum of the values on Hm hinlks in the tree maximam,
Let ;e the valee asdgned to the link conneeting points 2 and 7. And et
a sequence of dinks in g maximum spanning tree connecting hv points
a, by oo dye, have values vy, e, U, 4. - Then 1t follows Irom the definition
of 4 maximum spanning tree that

{2.1) Ve 50D {Zan , Upe y Ver y Bde),

i.e., the value of a link conneeting pointsg ¢ and 7 nol in a waxinnom spanning
tree is less than or equad to the smadest value of the finks in the maxinmm
spanning {ree on a path connecting ¢ and j. For suppose (2.1} is nol true
and 2 > e say s then we ean omit the link conneeting points & and ¢ and
put the link connecting points o and ¢ into the maximum spanning tree
and the result will be a spanning free with a sum greator than before. This
contradicts the assumption that the originad free is a4 maximum spanning
tree. Isflicient algorithms for constructing the maximum spanming tree are
given by 10uskal [8] and Prim [, Fasentially these algorithms Grst seleet
the link with the largest value, then of those remaining, the links with the
largest value, ele. At each stage the links eligible for selection are those
{a) not already chosen and (b)) not forming a loop when added 10 those
that have been chosen. After n — 1 cholees the maximal tree is obiained.
Now, nodes {or terminals) of a communieation networl can be considered
as pomts and the flow requirement r;; of two nodes can be considered as the
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Fro. 1. Flow requirements.

value assigned to the link convecting the two pointsin the above disenssion.
For example the maximum spanning tree for the set of terminals shown in
1g. 1(a) is drawn in Fig. 1(h) in unbroken lines.

A maximum spanning tree for terminals, with the vy as Enk values 1y
called a dominating requiremend tree. 14 is shown in {1} that it is necossary
and sufficient for the synthesis problem to consider only the n — 1 flow
recpirements in the dominating requirement tree. We recapitulate bricfly
the reasons.

Agwe show in [ the maximum flow numbers of a network always satisly
the mequality
(3-3) ,!rm: Z min (faz, s _ft,{: s ,f.f;d )j‘(f{i:)
where the subseripts a, b, -+, ¢, ¢ Involved on the vight in (2.2} are any
seuence starting with ¢ and ending with e.

Beeause of this we have the following, Suppose a network has flows fy;
satisfying the requirements for ali cases where the requirement belongs to
the dominant requirement tree 7, 1.,

_,fgj = iy (él.” T & 7‘)

Then consider any 1.,
We have from (2.1)

Tand o path a, b, ¢, -+, ¢ within 7' from a (o ¢

(2.3) Fae = I (P4n ) Toe, * 7, o)
and {rom (2.2}

oo 2 min (S, foey o Jao);
so if the requirements within 7" are satisfied, i.c.,

T 2 1w, Joe = 1, ~Loete.,

it follows that

=

J“({G = Tas

g0 the requurements not m the tree are satisfied as well,
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sinee 1t s of course necessary (o satisfy the » — 1 requirements in the
dominant tree, we have now shown it to he hoth necessary and sufficient,
and iz the remainder of this paper we will, in synthesizing our networks, pay
atiention only to the » — § dominating requirenents

Sz oy, {re €17,

It is worth noting that whenever in (2.3} we have striet inequality

Pug < min (T?.rsz y The s * 70 :'“(i(’) N VI

the process of satisfying the dominant requirements will produce a fow
Joe & Fue . Consequently sueh r,. can be repiaced by the larger requirementis
oo throughout with no inerease in cost. Onee this replacement is made,
there are, duce {o fle values among the new requirements (and the vadues
among the old requirements), several dificrent dominant trees which could
be used. This fact is oceasionally useful.

Figure T(h) shows the new requirements 7., in parentheses. An alternate
dominating tree consists of the links 1-2, 2-8, and 3-4.

For example i Fig. 1 (h) we will only consider the requiremenis given
Ly the wnbroken Hnes.

Fhere is one further reduction which can be made, sometimes, before
slavting the algorvithm. We define a term “unreasonable cost” which may
help to reduce the number of variables involved in the compuiation. A
cost ¢;; s called unreasonable if there s & path in the network from ¢ (o f
such that

(ZI) Cij ,2 Cig —E_ Cab '"I'" T h!" Cdj -

I the corresponding g, is nonzero in the optimal solution, it can he re.
placed by a series of variables g, -+« , yay corresponding o the righi-hand
side in (2.4} with no increase in cost. Conseguently the variable 4, ean be
climinated from the problem.

In Fig. Z(a} for example, ¢ is an unreasonable cost s cu > o 1 ca

OJORONC)
d

0 4 5 9

4 d 4 @

5 4 d 3

9 6 3 d
{a) (b)

Tra. 2. Undi cost matriz.
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3. Algorithm L. The method used here is basieally identical with Wolle’s
notion of gencralized linear programming.

Since the notation of the simplex method differs in various texts, the
particular netation used here will be explained hriefly; see [10] for more
detail. We shall illustrate this fivst by a numerieal example, and then
follow it with the general statemoent. Suppose we want to minimize

(3.1} Fine ot Dy A b

sithjeet Lo

o
'[ -
—

and y:; 2 0,

R’ ¥ GOMORY

e+
T T
it b U

Then in our nolation

(‘))‘3) z = “—I!jp — 5]/;:3 - -’:?.j/g:;

will be the objective function that is (o be maximized. We also intraduee

slack variables

(3.4)

r

The relations (3.3, (3-8 and (3.5) are tabulated in Table Al.

S == G -4 1

AND I

¢,y

+ Bipes - 317:;-:

i

[HER

VN HY

i

1 N
i

{'3!/:5.; -3 s

S o= =0 by b s b Y

sig = =4 b g b

Yei= —{ =l

Tanrs Al

iz

212 —0 ‘ — 1%
8z -5 o1

S ~4 50

= ¥in

w1
1

I'hese slek variables, just as the gy, ave required to be nonnoegative, In
addition to (3.3) and (3-1), we shall introduee tiivial relations
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In Table A1, y,, in the top row are independent (or nonbasgic) variables,
and all varia .)103 appearing in the first columo are expressed in tevms of these
ind('pm}d(‘m variables,

This tabulation is, in matrix form,

(3.0) X o= A

where ¥ is the column veetor with z as first compenent and g, s the
other camponents. A" is the rectangular matrix with ail the constants in
Table Al as clements and YV is a column vector with the negatives of inde-
pendent variables as components.

The fundamental operation used in the simplex method is pivoting or
Ciaussian olimination on rows. Here this means that a constant a.; in the
#th row and jth eolumn is selected as “pivot” clement. Then the ith com-
ponent of the veetor X will now be used as a new independent variable,
instead of the jth component of ¥ This change of variable is accomplished
by a Caussian climination on the pivet element. The simplex method con-
sists of a servies of pivot steps (or cquivalently, choosing dilferent sefs of
nonbasic variablest. This will produce a geries of new equations like (3.6)

(3.7) X o= ATV

. . ok . . . .
in which ¥° represent the n(‘sg tive of variables thal are independent after
the fth pivet step, and A" s the new matrix of constants, The optimum
. . » . . .
solution, as is well known, is obtained when A" has the fellowing properiies

(3.8) P (all ;=
the solution being X == (aw, G, o, 000 ).

During the series of pivol steps, a trial solution exists for cach 4 o This
trial selution is obtained by seiting the current independent variables cqual
to zere, and letting the components of X oqual the constants in the st
column of A", l‘ho matrix and the trial solution are sald to be “dual feasible™
if (3.8) is (rue. They are feasible (or primal feasible) if (3.9) is frue. I a
sohution s hoth dual feasille and primal feasible, then 1t 15 an optimal
solution. The standard rule of pivoting for the chmi .-l111]}l€’:‘{ method is 1o
choose a negative (()nshmi in the first columm of A" {usually the most
negative one) say aq . Then find nonzere constants in 1}1(' th row of A* for
which ag;/a;; is negative and select from these that eclumn for which the
atio is least negative. Then :1]}1)1'091&:11(' muliipliers of eolumn 7 are added
to other columns to make all elements in the ith row sero except the jth
clement whiel should be — 1. In Table Al, the pivot clement is indicated
by a “* and the result of pivoting in [dbl(’ A2, After another pivol step
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Tapre A2
Pieoting step 1

i et R VE Xz - ¥25 ; —Xu
z 24 i L 4 8 3
s 6 -1 1 | 0 ] 5
His 0 S i 0 )
W 4 o 0 —1 0 0
Yoy 0 0 0 0 —1 0
0 0 ( o ]
$1a 0 —1 g | 0 0
$2 1 -1 (R R i
s1 et o 0 | 0 -1
Tanne Al
Pivoling slep 2
j X A3 ’ — g -y —8)
2 ; i | 4 7 "2
0 0 6 .
0 o 0 O
-1 0 0 PN
0 -1 0 Y
9 1 -1 2
o ™~
0 0 9 @’5""‘
P - 0
0 0 !

in Table A2 the result s shown i Table A3 Sinee in Table A3, the solution
is both dual feasible and primal feasible, the optimum solution is obtained.

of the independent variables are used so that the eriteria for the choice of
pivot clement agree with the usnal notation,

TFor the problem of synthesis of a conmumunication net, we consider the
Iinear programming formulation as

(3.10) max z = Z;,_r,; ci{ —1ai)
with
())II) 85 = (Y:x] — T

where CF; represent the sum of v, which form any eut o separating nodes
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7 aud g, #:; 35 the How requirement, and =;; are skek variables reqguived to be
nonnegative,

Crar algorithm can be deseribed by the following steps.

G. Setiang wp the Alaleie. This is the matrix which expresses the objeetive
funetion z and all ., in terms of independent variables. This ean be done,
lor example, asin ” ,..th(* Al Ifone has movariables g, | then the mairix will
bea (o - 13 X (- 1) matrix, At the start, we have relations ke (3.5)
lor all ze, - In subsequent steps, independent vavinbles will be changed ns
the resuit of row elimination. We shall eall the values of y:; obtained by
publing all independent varables equal to sero, the corrent values of yy, .
T one solves this problem by using the ordinary simplex method, this would
reuite all the 277 = 1 inequalitios in (3,71 to be added 1o the matrix for
row eliminations. The purpese of this algorithm is (o aveid carying all the
inequalitios at ali Limes but to choose nmong all Inequalities; those that are
not sabishod by the carrent ;. This iz done 1y Step 1.

Vo Refecting  Tuequalities. Using the eurrent vadues of g as network
apacities; we don — 1 flow problems in the network {o find the maximal
flows corresponding to the » — | dominating requirements.

The flow problems can be done by the labeling process of 2] Doing eneh
of these problems automatically loentes oo minimal eut &) one whose capacity
{measured n torms of the current values of the y:5) 158 equal (o the current
maximal fow. We ean then impose the lincar inequality

-
Zsl,:,‘:ﬂ e i o= i

I all o — | of these inequalities are satisfied by the current, vy, all How
r(‘.quiromf‘ni s have been met and the optimal solution is oblained. If not,
the 2 - 1 inequalities are updated and added to the bottom of the matrix.
The npd.iimg, which is merely expressing the incgualitios in terms of the
current independent set, s explained later. Binee there e i — 1 dominating
requirements one always adds n - 1 inequalities,

2. Satisfying the Tnequalities. We do o dual oear programming problem
for these inequalities, This will result in another set of currend g5 which
will be used for the flow problem in Step 1 Btep 1 and Step 2 are repeated
unli) the matrix i both pidmal and dual feasible. The iterations of Step 1
and Step 2 arve vu\(n tially o simli cut for doing the ordinary duad simplex

mnlh(:d with 277 — 1 constramts, Step \(*E(‘((H certain incoualities among
the 2"« I inequalifies which are not satisfied by the current g, . Step 2

improves the current ye; by lnear programming subjected Lo these in-
equalitios. In evder %'r) arry on the linear programming, i is only neeessary
to keep the (o 4 1) X (m 4 1) matrix. OId incqualdities are disregarded
18 B001L A% 8 NeW sed of 3.5 has heen obtained in Step 2, g0 there is no secumu-
tagton of incqualitics,
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For a network of m ares, a reasonable estimate of the number 17 of pivot
steps s Zin and e number of Oow problems to be solved certainly does not
exceed P(n — 1), Lach pivot step is carried outona (n + n) X (m -+ 1)
malrix.

We shall illustrate the procedure by an example. Consider the flow re-
quirements shown in Fig. 1{a) {or cquivalently in Iig. 1(c)) with the costs
of constrclion shown in g, 2(a) {or equivaiently in Pig, 2(1)). The
dominating requirerment free is shown in FFig. 1{b) by unbroken lines. In
the cost matrix ¢, we note that ¢ s unreasonable, therelore 70 wili be
gero and will nol enter into the ealeulation, Applying Step 0, we seb up the
matrix as shown in Table AT above the double lne. Step 1, now the current
values of o ; are all zero and any cut will be a minimum cut. The three cuis
used as incgualities are drawn beside Table Al for flustrative purposes.
These are added to the bottom of the deuble line in Tabie AL Step 2, the
row chiminations i Table Al have already been done in explaining the
particular notation ol the sioplex method used here. The result of Siep 2
15 then shown in Table A3 Now the curent values of yo are yp, = 6,
Mo = b g = oy == g o= 0, as indicated by the constants in the first
column of the matrix. Tor Step 1, hased on these eurrent values, we shall
do three fow problems to find fio, fa and fuo 16 ds found that fiy = 7y,
Jo = 0, fyg = ropand we also get the minimum euds which are drawn beside
Table A3, These mininmmm cuts are used as inequalities which are adjoined
to the matrix forming Table Ad Sinee all minimum euts found from the
fow problenws are in terms of gy, , they must be expressed in terms of euvrent,

mdependent variables in adjoining them o the matrix, This process is
called updating and can be casily done as follows. The top row of the cur-
rent matrix is replaced by (1,0, 0,0, 0, 0) and all other clements by their

Tanie AL

Three flow problem

1 £12 ~ ‘ ¥R -

u 536 4 1 4 3
G —~1 1 0 "]

0 0 -1 0 0

0 0 0 ~1 @

0 0 0 0 -1

i G 0 0 1

S12 0 -1 G i 0 ]
S13 -5 0 . -1 -1
Sta 0 0 0 & 0
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Tanre A5

Piroting step 3

t
¢ “*'1':' 12323
il
0
i 0
4
S1e I
s’: 0
s-;"; 0

negatives. The nequalitios generated by minimum cuts multipiied by this
modified matriy then express all inequalities in terms of new mdepondent
variables. For example

The result of successive pivot stops is shown in Table A5, Tables AG-AQ
are two move eyeles of Step 1 and Step 2. The figure beside Table A9 is {he
optimun solution, This can be verified by doing three Mow probicms for
Fioy oy and S As none of the maximal flows are less than corresponding
flow requivements, this means the solution is primal feasible, Bt the meatrix
has been dual feasible at all times, therefore, the solution s optimum. Here
we have done five pivot sieps and 12 flow problems. The finitoness of the
Herations of Step T and Step 2 ean be seen just as in the simplex method,
Among fnite mumbers of variables, no set of independent variables will he
chosen twice, and the pivot step makes the objective Tunction mono-
tonteadly inereasing,

Sinece this is a dual simplex method, at cach stage of the caleulation,
the solution is dual feasible but not primal feasible. At the end of the eal-
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Tasre AL

Three flow probloms

1 —8&i2
4 —41 4
¥ i =1
i3 5 {
Ve i 0] ]

Tanny AT

Pivating step 4

2 3

Wi il 1.0

Tin ) —1{1.5

ifes 0

et 5 0.5

Ui 5 1 - 0.5

Sin 0 0 0 0
a1 i1 0 0 G
Sty 0 0 0 0

culation, an eptimum solution is characterized by bemg both primal and
dual feasible,
There may be cases where one would rather settle Tor primal feasible
solutions which cost less than a cortain amount, rather than go fo the end
the eomputation. This is disenssed in the next seetion where g moethod
tloser to the primal simplex method is shown,

4. Algorithm 11, This algorithm is essentially a primal simplex method

W h](} avolds {reating all constraints simultancously. This method has the

advantage of having primal feasible solutions (hllillL cadenlation. Henee

caleulafion ean be sic)ppod il ome desires and g feasible, though not optimal,

solution is obtained. The method is explained in ,Im}(_‘, steps below and the
example used in §3 will be sobved again by this method,

0. Seiting wp the Hairiz, We want o primal feasible matric which ex-
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TanLe A8
Phree flow preblem

1 51 Fiu - 513 sV, ~514
— 403 3
3.3 ~{1.d
2.8 —0.5 e}
i 4]
2.5 0.5 — .
i —0.5
0 i
-1 L
<t 0 0

Tansre AD

]’un!inrf s!rp 5, and ('}H(‘P How

LT Ut
S U G

<t
it

prosses all g in terms of slack variables and the g, themselves, 3 one sets
branch capacitics i equal to the flow reguirements i the dominating re-
auirement tiee, and g = 0 when Hs corresponding flow requiveinent s
not in the tree, then one has a primal feasible solation. These values of 34
are used ax eurrent values st the heghiming. New the inital independent
variables are introduced by the following rule. Lot g = vy = w3 s 38
in the dominating requirement tree, and y;; = — (=) if otherwise. Then
the e and gy, on the r%ghl—hz‘md sides are used as independent varnables.
To solve the v\,xmpio in §3, we would fet yp = - Ui |

3 - 'U:r) N

ables. Since we erm g 0N i)(\ Mmmmlm] fl om i]w : (111 W ~lml } WNEe
the domivaling requirement free. From the discussion In §2, any domi-
nating requirement tree based on the flow requirements in Fig. 1(b) can he
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wsed, Wo shall lol gy = 4 roplace vy = 4, fo, lot gy = 4 — agy . Now e,
My, Ugs, Y, Yo Arcindependent \'él?‘iﬂ}.)l(‘h. g lm ()l)‘](‘.(.l.l\ o function then be-
comesz = —4(6 — up) — By — G = wm) - Gy 3~ g = — 506

4 Awye — Dy A by — Bysa -l Buge . This matrix is listed as in Table P
above the deuble line, Now, we want to replace wy; by slack variables.
This ean be done by introdueing slack varigbles which represent cuts con-
taining i, gos , and ¥y . These slack variables arve listed m Table 1P under
the double Hne. Then the usual pivot steps are appled. The pivot clement,
is indicated by a Fs". Suceessive steps are shown in Ta )]vs 12, 3, and 13,
inTable Bi, all independent variables ave g, or s:; 0 We e ready to apply
Step 1.

1. Sefceting the Inequalities. Since we start with a primad feasible solution,
we would like to change this selution fnto another primal feasible solution

Tapre ]’1

Taprw P2

Preltminary

i S R = HMag HeH)
z — a6 4 1 -4 G —3
Wiz G —1 H 0 (} Q
iy 0 0 ~ 1 0 0 0
if2s 5 0 0 —1 0 ¢!
e 0 0 0 0 —1 0
913 4 0 0 9 8 1
LIS ! O -1 0 0 it { 0
823 0 0 —~1 1* —1 0

i {0 0 0 -1 1
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Tasre 173

Prelivinary

— s i R ‘ - Yy ¢ R
-3 { 2 -3
E 0 0 0
- 1 0 0 {
1 -1 1 0
0 it —1 0
0 0 0 1
it 0 0
G -1 &
0 0 —1

1 -=812 g —5n - Yoy — %5
2 -5 A 3
0 0 -1
5 0 i
0 o 0
4 ] 0
Sya { -k 0
B2z 0 0 0
Sz 0 0 0

and reduce the total cost. If a veduetion in cost is pessible, then the matrix
will have sone negative constanis in the top row,

Raising the value of the corresponding variable from its cirrent value of
zero will give a decrease in eost. If we give the vaviable the vajue ¢ we obtain
new yi; vahies (e} We want to find the largest value of ¢, eall i eax , T07
which the following are troe

yle) 2 0 {all 4 9

(4.1)
Fiiley = Flysa(e)) = rey (for the n — | dominant ry;).

(In Table BI, both columns ( —js) and ( —pe) have negative constants
in the top row of the matrix. The “[” ahove (—yyy) indicatos that we
have chosen gy . Lot column { —yyy) be multiplied by — ¢ and added to the
first. column. This gives the y:,(e). For example, in Table B1, if we multiply
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the column under 37 by ¢ and '-l(ld i{ to the first cohma.n, we have
= 4, as shown

2= =50 43¢, e =6 ~ ¢ Y3 =
i the figure beside Table 131,
Ag yCed are ali linear funcltions of ¢ the capaciiy of a ent, which is a
sum of yi;{e}, s also a linear function of e Since fi;(¢) between any pair
of nodes is equal to the capacity of a minimal end separating nodes ¢ and 7,
it foliows eastly that fi;{e) is o piecewise linear and convex function of e
The procedure for inding e, is as follows,
{n}). To satisfy the comdition 'i/;,'(() = {0, we find, by the usual simple

ratio test, the fivst value of ¢ call it ¢ for which some y(e) = 0 and
Aoy < ( or ¢ > ¢ . This value is then an upper bound for e, .
(b}. Take one of the n — 1 dominani flow requirements and compuie

the correspond ing How fre) a8 a Tunetion of ¢ by the process deseribed
below until:
(). A vadue of ¢ 15 reached sueh that ¢ < e, and

T €) = vy
Jrf.f( e} < i (c— > e')

Lo this case take o new eu = ¢ and repeat (b)Y with the next flow ye-
guircment. O,

(b}, No such value is reached Tor ¢ <0 e . Then keep the cuvient
coax il repeat (b) with the next fHow requiremoent.,

After repeating (I} # — 1 fimes we emerge with the final value oo
salisfying (4.1},

Having explamaed the computation of e we turn to ils use.

H € 12 obtained from a condition 5, 2 0, then the row of gy represonts
that restriction ameong the cguations (4.1) which fivst prevents inereasc
moe, 50 an ovdinary simplex step can be made using this row (lc., the
intevsection ol this row and the column under the arrew is the pivot
cloment).

I enax 18 obtained from a flow roquirement fo(e) = vy and fi(e) < g5
for € > emas , then, in the course of the fi:0e) computation deseribed helow,
we will have obiained a cut whose eapacity equals the maximal Aow for
seme range of ¢ neluding e . Using this cul, updating it as i the first
algorithm we have the vestriction which first prevents the increase in ¢, and
we pivol on this row.

These pivol steps ave iterated just as in the frst method until the opti-
mum solulion 18 reached.

We will now deseribe and illustrate the computation of [ (e). This could
be done by a repetition of ordinary network flow computations, but there
is a considerable cconomy to be obtained by using a variant of the “out of
atter™ method of 1. R, IMudlkerson [11] as we do here,
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We start with a networls which consists of links whose capacitios @,y = bije
arc hnear functions of the parameter e (Mg, 3a).

Here and in what {ollows, we will often have expressions of the form
o -+ bE with & a certain parameter. In comparing two such expressions,
we will say o 4 be = a’ - Feif and only i ¢ = o and b = &, we will
say o - beds greater than ¢’ 4 0'é if and only if cither (13 o > o or (2)
a = a and b > b

The “out of kilter” algorithm actually obiaing a minimal cost feasible
circulation 1w a directed network having upper and lower hounds to the
flow through the ares. These words have the following meanings. A cirou-
lation tg simply a set of ave Bows 2, (flow from node £ to node j in the ave 59)
such that 2 ip (2 — 2 = Oforally ie, Quid is conserved at the nodes,
A feagible cireulation is & cireulation when the oy satisfy L 2 2o = 0
with preseribed upper and lower bounds y:; and {;; . The cost of o cirew-
Tation is, lor given G, 2or, Gt .

To recast our problem as a minimal cost cireulation problem, we assign
arbitrary directions to cach are and use the capacity and its negative for
upper and lower bounds, 1o, — (o - b)) = v 2 (o 4 Diye) . Wo
joir an are from ¢ to s and give it inGinite capacity and set all cost &;; = 0
exeept &, which s taken ag — 1.

The minimum cost. cirewdation in this network (Fig. 3b) s the one that
puts the most flow through the are fs Trom ¢ to s, This amonnt is cleariy also

the maximum fAow {rom s {o L

To start the “oud of kilter™ algorithm, we need only soine {uot neces-
sarily feasible) civeulation (o = 0 for all €, 7 will do), and a starting =ct of
“node prices” w7 = p, -, 1 These o are arbiteary, som; = 0 lor alt 4,
15 satisfaciory,

FFreha
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m=0

~3+ 265X, 5326

i, 8b

Weapply the “out of kilter” methed as deseribed in [11]. Since we are
dealing with capacities and {ater flows that are of theform a -+ be, infollow-
ing the instructions of [T, we must apply the definitions of > and = as
given carlier. The finitencss proof of [11] can be modified to cover hlh Cise.

The modified out-of-kilter method then gives us a maximal flow with
How value fofe) = rnle) = aun -+ bue Thore 1s alse a corresponding cut,
discovered during the course of the computation, whose o }');'L(fity is
e - be. The existence of this eut assures us that fye) £ an + by Tor
all ¢, and hence our current flow is maximal for avy range of e for which 1o
restricltions are violaled. Fig. <o shows the maximal flow In our example.
Sach are is accompanied by three expressions; the first 1s the capacity, the
second the flow, the third the fivst € value, call it ¢, after which capacity
hecomes negative or is exeeeded by the are flow. Th(*n our flow ig valid and
maximal for —0 £ ¢ S ¢ . In our example ¢ = & as the flow in the are 2-5
exeeeds the capacity for e > & For e £ 4, [ (c) = G 4 e

We have now oblained ﬁ,(c—) fora range 0 5 e 5 ¢ . To get fy for t u‘
next interval, we simply rewrite all expressions ¢ - be in the form ¢ -+ be
with € = ¢ — ¢ (sce g, 4b),

We now apply the out-ol-kilter method of this now network to obfain
the minimal cost cireulation, The dilference is that onr comparisons are
novw based on the coeflicients @, b of the expressions @ -+ bé. We ean use the
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\ A-¢,5-2¢, '3?;

3+2¢3+2e,0 -

3,0,

w,%re,®
e et

Fra. da

Fie. 4b



278 R, . GOMORY AND T, .00

present flow as a starting cireulation even though it is not (in terms of &, &)
a feasible cireudation, (In owr example in Fig, 41, the are flow 5% - 3¢ is
greater than the upper bound 55 — 32) The node prices from the previous
caleulation can also be used. Thus repeating the out-of-kilter algorithm on
this network, we obtain a new maximal flow [ valid for a now range of
¢ > ¢ . This procedure is iterated until the graph of f.,{e) dips below the
required amount . or until e exceeds the cwrrent e, as defined in (a), ()
and (hy) above. That this will oceur after a finite number of repetitions
is shown  the Appendix.

Various stages of the calenlation for our example arc shown in Tig. 5a
and Bb. 11ig. Ha shows the result of applying the cut-of-kilter algorithm to
the network of g, 4h. A new maximal flow is obtained by a slight adjnst-
ment of the previous one. (The advaniage of the ont-of kilter method is Lhat

ke, foranewrange d £ e £ § Ate = 2 theare3-5is becoming over-
saturated s0 € = & — s introduced and all guantitics put into the form
a4 @ - e. Thevesult of caleulating on that netwerk is shown in g, 5D,
Where a maximal fow is shown validfor 0 2 6 € Li e, ford 2 ¢ 2 1,
and giving fole) = 9% — 3¢ = 12 — 3¢ for that range. Tor e > I, fu <
P 50 3618 nob neeessary Lo pursue the example further. Fhe funetion
I

(e}, 05 ¢ 1, s given in Fig. 6,

A+2%, 4428

IFi6. Sa
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45+2F,a% 25

LY

e, 5b

a?ﬁ«»:;:;:;:;;;jjt>ﬁ

fsi(e)

e
e ——
&

m

Fra. 6

Turning now to the original network example already done by Algorithm
I, wo have (from Table 131),

Yiz = 6 — e

Yy = €
-
Yo = 0 = g

hence the first value for e, == 5. Turning to the flow requirement »py = 6,
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we have

Jiz =1 (¢ = 2.0)
Jiz = 11— 2¢ for a range of ¢ > ¢ = 2.3;

henee e = 2.0, Congider now vy = 5; fay = S for ¢ £ 3. 80 ey = 2.5
Asfy , 4. The ent (2] 1, 3, 4) obtained from computing
S 15 used. Fere the minimum eut consists of gy, jes, and ey, and is up-
dated and added to the hottom of the matrix in table B2, Now we can
apply Step 2.

2. Primal Somplee Method, The usual pivot step can be done {or Table
B2, Bince this is a primal simplex method, we want a positive eonstant in
the first. row below the double Tine, and choose a positive clement in its
column, The pivot element in Table B2 1 indicated by a <" and the result
of the pivot step, is shown in Table B3, Now the inequality below the double
line in Table B33 can be neglectad and Step §ean again be applied.

1. Now we want {o replace gy as it is the only eolumn with negative
constant in the top row. The 4 {e) ean be scen from the fivst eolummn and
the cohnmn i question, e, g o= 3.5, gy = 20, goy = 25 — ¢, o = ¢,

Tapre 32

| ¥ =823 R i 834
—356 d -3 4 -1 ]
G I 1 0 0
v ! -1 0 0
5 0 1 -1 1
{1 0 n Y -1
! 0 0 0 1
5 1 -1 ¢
1 i 852 —sl, ] —s E 7“,,.1 —3a1
z —48.5 2.5 1.5 2.5 1 ~1 3
3.51 0.5, —0.5 0.5 0 0
25 0.5, 051050 0 0
250 051 0.5 0.5, 1 0
| —1 0
] 1
] 0
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ya = 4 — e Based on these values of y:(e) we have
AL B
Hag == & {e = 2.5)
aa = L — g
henee e = 2.5, For the flow requirements, we have
T = 0 Ju =6
Ty = D S =4 {for ¢=2)
Jag o= 4 — 2¢ {for a range e > 2)
Cmax

But

emax St cquals 2.
Hence e = 2, and a new inequadity is added below the deuble line in
Table 134,

Tanrn 134

z —48.5 2.1
12 3.5 —0.
113 2.5 —().
Has 2 . 5 U . - o |
a4 0 0 ; n —1 0
31 4 0 [ 0 i ]

L
D e
e O
fa i )
Tr L

|
fn
fam o)

T Gl
H
=T
o O
:
]
= o
Tt oW
— e
<
oo

895 4 0 it ]
Tanri B35
1 T —sia ] Sl gy
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Another pivoting step is shown in Table B4, In that table 2] constants
in the top row of the matrix are positive. This Indicates that no reduction
I cost is possible, Le, the solution is also dual feasible, Therelore it s the
opiimum solution,

The finiteness of the procedure can be oblained along the same lines as

)

n §)
APPENDIX

In the proeess of the scomputation all ares are of the form ey - bie
and all are fows are of the form al, 4 bl An are ix ealloed wlentically
saturated inoan interval if ag; = af; and by e DD in that interval. 1f g set
of ares is identieally saturated for a0 < ¢ £ ¢, not identically satuwrated for
6 < e% e, and ;d(‘nhc ally saturated again for e < ¢ < &, then from the
convexity of £, (e), we ean simply by combining flows have a maximal flow
Fae(e) Tor which the set of ares is identically saturated for ¢ < ¢ 2 &

To make sure that sets of saturated ares cannoi recur, we madify the
algorithm as follows., When using the labeling process in the out-of-kilier
algorithn, we first Iabel nsing only not jdentically saturated arves. Only if
non-hreakthrough then results do we label using the identienlly saineaied
ares also, I this procedure is always used Lo modily the Tabeling part of the
process, the new maximal Aow that results for the new interval will un-
saturate an wentically saturated are only if there s o maximal fow that
does leave all the identically satwrated arves saturated. This implies that
identically safauated ares can not all be identically saturated again for
some nterval,

Lot S be the set of identically saturated ares in the ith interval. Sinee at
least one wnsatuvated ave beecomes identically saf .umlznd m going from the
2l fo the (4 & THh interval, it follows that S: ¢ S Assume that the
¢ computation is an infinite process. This means that there is an infinity of
intervals and henee, an infinity of sets ;. Then, some of the sets n disioint,
intervals must be the same. However, this is im })()H\l} le i the modified out-
ol -kilter methad is used. This proves {-hc finileness of the procedure,
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