REPRINTED FROM

NAVAL RESEARCH LOGISTICS QUARTERLY

OFFICE OF NAVAL RESEARCH

MORE GETWINGS

HORRISCH DAVIN UMBRAND ZONGE

HORATETA LAVAM TO BOSTEO

Eagr Britis

T DH ALLOY

R. E. Gomory and A. J. Hoffman

International Business Machines Corporation Thomas J. Watson Research Center Yorktown Heights, New York

INTRODUCTION

The purpose of this paper is to analyze the finiteness of a procedure for integer programming as described by G. B. Dantzig¹ in a paper which left the finiteness question open. The result given here shows that the process will not be finite or even converge to the optimal integer answer x^0 unless certain necessary conditions are satisfied. In particular, the procedure will not be finite unless x^0 already lies on at least n-1 of the faces of the polyhedron cut out by the inequalities of the linear programming problem.

REVIEW OF THE PROCEDURE OF REF. [1]

Consider a system of inequalities

(1)
$$\sum_{j=1}^{j=n} a_{ij} x_j \ge b_i \qquad i = 1, \dots, m$$

$$x_j \ge 0 \qquad j = 1, \dots, n,$$

where the b_i and a_{ij} are integers. The integer programming problem is to find the integer vector \mathbf{x}^0 that satisfies (1), and minimizes

(2)
$$\sum_{j=1}^{j=n} c_j x_j.$$

We will call any integer vector satisfying (1) a solution. A solution \mathbf{x}^0 minimizing (2) will be called optimal.

The procedure described in Ref. [1] is subsumed in the following: Choose a set of n independent inequalities from (1) and set the corresponding slack variables, s_{i_1}, \ldots, s_{i_n} , equal to zero. (These are the non-basic variables of a simplex-type procedure.) This gives n independent equations to be solved to obtain a point x'. If x' is not a solution (either because of being non-integer or because it does not satisfy all of (1)), then there is no solution for which $s_{i_j} = 0$ $j = 1, \ldots, n$, as these conditions determine x' uniquely. Since any solution gives the s_{i_j} integral non-negative values, we know, following Ref. [1], that every solution satisfies the new inequality.

^{*}This research was supported in part by the Office of Naval Research under Contract No. Nonr-3775(00), NR-047040.

Dantzig, G. B., "Note on Solving Linear Programs in Integers," Naval Research Logistics Quarterly, 6:75-76 (1959).

(3)
$$s_{i_1} + s_{i_2} + \ldots + s_{i_n} \ge 1$$
.

Inequality (3), stated in terms of the variables x_j , can now be adjoined to (1) to form a larger set (1)₁ which has the same (integer) solutions as (1). This process of inequality formation can next be applied to any n independent inequalities drawn from (1)₁, and so on. By repeating this process, we obtain larger and larger sets of inequalities (1)_k giving smaller and smaller feasible polyhedra, always however containing the same integer points. An optimal solution can be obtained only when a polyhedron P is finally obtained having the properties (P1) the optimal integer point is a vertex, and (P2) this vertex minimizes (2) over P.

The actual procedure described in Ref. [1] is much more streamlined than this in that inequalities are dropped as well as adjoined, and the selected bases succeed each other in a way that preserves dual feasibility. Nevertheless, a P satisfying (P1) and (P2) must be produced to obtain the solution.

NECESSARY CONDITIONS

Let x, not necessarily integral, satisfy (1) and let s_i (x), $i=1,\ldots,m+n$ be the corresponding slacks. Designate the n-1 smallest of these by \tilde{s}_j (x), $j=1,\ldots,n-1$, $0\leq \tilde{s}_j$ (x) $\leq \tilde{s}_{j+1}$ (x). Let t_p (x), $p=1,2,\ldots$ be the slacks of the first, second, third, and so on inequalities added in some particular application of the method of Ref. [1]. Then we have the following:

LEMMA: If
$$\sum_{j=1}^{j=n-1}\tilde{s}_{j}\left(x\right)\geq1\;,\qquad\text{then}$$

$$t_{p}\left(x\right)\geq\tilde{s}_{n-1}\left(x\right)\qquad\text{for all p.}$$

PROOF: Consider the first added inequality (3). t_1 (x), the slack of this inequality, is given by

$$t_{1}(x) = s_{i_{1}}(x) + ... + s_{i_{n}}(x) - 1$$
.

Let $s_{i_r}(x)$ be the largest of the s_{i_j} , then $s_{i_r} \ge s_{n-1} \ge 0$. So, by using the hypothesis of the LEMMA,

$$t_{1}(x) = s_{i_{r}}(x) + \left(\sum_{\substack{q \neq r \\ q=1}}^{q=n} s_{i_{q}}(x) - 1\right) \ge s_{i_{r}}(x) \ge \tilde{s}_{n-1}(x).$$

Since $t_1(x)$ is now known to be $\geq \bar{s}_{n-1}(x)$, the n-1 smallest slacks in $(1)_1$ can be taken to be the same set as in (1). Since all the conditions for the LEMMA now hold for the set $(1)_1$, the reasoning can be repeated to get $t_2(x) \geq \bar{s}_{n-1}(x)$, and so on.

We can now state the following: THEOREM 1: If \mathbf{x}^0 is an optimal integer solution to (1), then the process of Ref. [1] can converge only if the n-1 smallest slacks in (1), $\tilde{\mathbf{s}}_1(\mathbf{x}^0),\ldots,\tilde{\mathbf{s}}_{n-1}(\mathbf{x}^0)$ are all zero. PROOF: For the process to converge \mathbf{x}^0 must eventually become a vertex (condition P1), so there must be at least n zero slacks in some inequality set (1)_k. But if at the outset

$$\sum_{i=1}^{i=n-1} \quad \tilde{s}_i \left(\mathbf{x}^0 \right) \geq 1, \text{ and hence } \tilde{s}_{n-1} > 0 \text{ ,}$$

then $t_p(x^0) \ge \tilde{s}_{n-1}(x^0) > 0$ for all p, and n zero slacks can never be obtained. Therefore, for convergence, we must have at the start

$$\sum_{i=1}^{i=n-1} \tilde{s}_i(x^0) < 1$$

which, since the slacks of an integer x are integers, implies $\tilde{s}_i(x^0) = 0$, i = 1, ..., n-1. Thus, geometrically speaking, the process can converge only if x^0 lies on the 1-

skeleton of the original polyhedron.

This condition is, however, always met in the important class of problems in which the variables x_j are either 0 or 1. Here any solution x^0 is actually a vertex of the cube $0 \le x_i$ ≤ 1 j = 1,..., n. Nevertheless, the process does not always converge for these problems as there is an additional necessary condition expressed in

THEOREM 2: Let z be the objective function minimized by x^0 . Let x be any point satisfying (1) with $z(x) < z(x^0)$, then a necessary condition for convergence is

$$\sum_{i=1}^{i=n-1} \bar{s}_{i}(x) \le 1.$$

PROOF: For the convergence of the process, condition P2 must be met; i.e., x must minimize z over some polyhedron. For this to happen, x must have been removed from the polyhedron, so there must have been some inequality added to (1) which x does not satisfy. However, a negative slack $t_n(x)$ is not possible with

$$\sum_{i=1}^{i=n-1} \vec{s}_i(x) \ge 1,$$

hence the THEOREM.

To illustrate THEOREM 2, consider the following example:

minimize
$$z = -4 x_1 - 3 x_2 - 3 x_3$$
 subject to
$$3 x_1 + 4 x_2 + 4 x_3 \le 6$$
 and
$$0 \le x_1 \le 1$$

$$0 \le x_2 \le 1$$

$$0 \le x_3 \le 1.$$

The optimal integer answer clearly gives z = -4, but the point (1/2, 1/2, 1/2) = x gives a z of -5. x satisfies all the inequalities with slacks of 1/2 so that, although the condition for THEOREM 1 is satisfied, the condition for THEOREM 2 is not, and the process cannot converge on this 0 - 1 problem.