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INTRODUCTION

The purpose of this paper is to analyze the finiteness of a procedure for integer pro-
gramning ag deseribed by G. B, Dantzig! in a paper which left the finiteness guestion open.
The result given here shows that the process will not be finite or even converge to the optimal
integer answer x0 unless certain necessary conditions are satisfied. In particular, the pro-
cedure will not be finite unless x0 already lies on at least n-1 of the faces of the polyhedron
cul out by the inequalities of the linear programming problem.

REVIEW OF THE PROCEDURE QF REF. []!
Consider a system of inequalities

I=n
(1) > aij 33 = b i=1,...,m
i '

=1
® =0 i=1,...,n,

where the bj and ajj are integers. The integer programming problem is to find the integer
vector x0 that satisfies (1), and minimizes

=

J=

(2} cyxEy
=

4

[

We will call any integer vector satisfying (1} 2 solution. A sclution x0 minimizing (2) will be
called optimal.
The procedure described in Ref. {1]is subsumed in the following: Choose a set of n

independent inequalities from (1) and set the corresponding siacl variables, N
1 ol

equal to zero. (These are the non-basic variables of a simplex-type procedure.) This gives n
independent equations to be solved to obiain a point x'. If x' is not a solution {either bhecause
of being non-integer or because it does not satisfy all of (1)), then there is no sclution for

which 8y * 0i=1,...,n, as these conditions determine x° uniquely. Since any solution gives
] )
the s, integral non-negative values, we know, following Ref. [1], that every solution satisfies

i
the new inequality.

“This research was supported in part by the Office of Naval Research under Contract No,

Nonr-3775(00), NR-0470G40.
Dantzig, G, B., "Note on Solving Linear Programs in Integers,” Naval Research Logistics

Quarterly, 6:75-76 (1959).

121



122 R, B, GOMORY AND A. J. HOFFMAN

(3) s s t...ts =1

Inaguality (3}, stated in terms of the variables ¥, can now be adjoined to (1) to form a
larger set (1)..L which hes the same {(infeger) solutions as J} This process of ineguality forma-
tion can nest be applied o any n independent 1118(1113.11"(1(56 drawn fxrom (1)1. and s0 on. By re-
peating this process, we obtaln larger and larger sets of ineguzlilies \Z)l giving smaller and
amaller feasible polyhedra, always however contalning the same integer points. An optimal
salution can be obtained only when a polyhedron P is finally obiained bhaving the properties
(1) the optimal inteper point is a vertes, and (P2} this vertex minimizes (2) over P,

The actual procedure described in Ref. [1]is much more sireamlined than this in that
inequalities ave dropped as well ags adioined, and the selected ba%e's succeed each other in a
way that preserves dual feasibility. Nevertbeless, a P satisying (P1) and {P2) must be produced
to obtain the solution.

NECESSARY CONDITIONS

Let x, not necessarily integral, satisfy (1) and ] Si (=}, i=1,...,m +n be the cor-
gnate the n-1 smallest of these by GJ ), 1=1,...,n-1, (x}

stacks of the first, second, third, and so on 111!*(113.;1}.1»

he th

EJ

ties added in some pa ﬁ'ucu,a mphmuo of the method of Ref. {11 Then we have the following:

LEMMA: If then

for all n.

PROGOF: Consider the first added inequality {(3). iy (;x) he slack of this inequality, is given by

tpin) =8, {xjr...es, ()~ 1,

b 'n
Let s, (%} be the largest of the 8 “s g T 0. 8o, by using the hypothesis of the
iy, 4
LEMBA,
iy (=) = & {x} o

Hinee i £y (%) is now known o be = én i {x), the n - 1 smallest slacks in ( }T).i can be taken io be
the same get as in (1) Since all the conditions for the LEMMA now hold for the get (1), the

E)

reagoning can be repeated o get ‘L?(x}

o1 (%}, and s0 on.

We can now state the following:
THEOREM 1. U XG ig an optimal integer solution to (1), then the process of Ref. [1] can con-
verge onty if the n - 1 smallest slacks in (1}, él (XG), veny 3;11_1(}:0) are all zero,
PROOY: For the process to converge % must eventually become a verfex (condition ¥1), so
thers must be at least n zero slacks in some inequality set ('i.)k. But if at the outset
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i=p-~1
N " 0y . . .
g, (7 } = 1, and hence 8,120,

0. = 0 . .
then tp{x ) =81 (X ) >0 for all p, and n zero slacks can never be obtained. Therefore,
for convergence, we must have at the start

i=n-1
N1

which, since the slacks of an integer x are integers, implies §i (XG): G,i=1,...,n- L

Thus, geometrically spesking, the process can converge only if x° les on the 1 -
skeleton of the original polyhedron.

This condition is, however, always met in the important class of problems in which the
variazbles x, are either 0 or 1, Here any solution XO ig actually a vertex of the cube 0= Xj
#=1i=1...,0 Nevertheless, the process does ot always converge for these problems as
there is an additional necessary condition expressed in
THEOREM 2: Let z be the objective function minimized by XO‘,
(1) with =z (x) < = {XU . then a necessary condition for convergence is

Let » be apy point satisfying

5 (0<1.

+{
i

,_f
I
ot 4,

PROQ¥: For the convergence of the process, condition P2 must be met; i.e., xo must ming-
mize 7 over some polyhedron. For this to happen, ¥ must have been removed from the poly-
hedron, so there must have been some inequality added o (1) which x does not galisly. Iow-

ever, a negative slack tp (2} is not possible with

i=n-1
vt

L AGOERE

j=1

hence the THEOREM.
To illustrate THREOREM 2, consider the following example:

minimize Bow -hxy - 3xg - 3 xg
subject to 3 ¥y 4 Xg 4x3 =G
and 0= % =1

0=x,=1

0= Xg = 1.

The optimal integer answer clearly gives z = -4, but the point {1/2, 1/2, 1/2) = x gives
a z of ~b, x satisfies all the inequalities with slacks of 1/¢ so that, although the condition for
THEOREM 1 is satisfied, the condition for THEOREM 2 is not, and the process cannot con-
verge on this 0 - 1 problem.






