ALL-INTEGER INTEGER PROGRAMMING ALGORITHM
by

Ralph E. Gomory

International Business Machines Corporation
Research Center
Yorktown Heights, New York

ABSTRACT: An all-integer integer programming algorithm is
described and a numerical example is given.

Research Report
RC-189
January 29, 1960

A1}






The purpose of this paper is to describe a new method of integer pro-

gramming which differs from its predecessors in two main points:

{1) It is an all-integer method, that is, if the coefficients in the origi-
nal matrix are integers all coefficients remain integer during the whole cal-

culation,

(2) It is a uniform procedure closely resembiing the ordinary dual sim-
plex method with the difference that the pivot element is always a -1. The
cycle of maximizing, adding an inequality, etc. characteristic of [2] has heen

eliminated, *

We will use the notation of [2} so that we regard the linear program-

ming problem as the problem of maximizing in non-negative variables

J=n
) Z =a + a_ . - L.
W 0,0 2 0,5 7Y
i=1
subject fo the restrictions
j=n
1 T %4, 7 4,1 ('"t])
i=1
(2) 5
i=n
X, = am,o + z am’] (mtJ)
i=1

* I would like to acknowledge the stimulus of some ideas advanced by

M. D. Mcllroy of the Bell Telephone Laboratories,



t.1 = -1 { - tl}
n - -1 (ﬂ tn)
or in matrix form to maximize z subject to
0,0 0
X = AT AT = (ao,al,,,,an)
z 1
Xy - t1
X -1
X = | 2 ° = 2
(3)
4
t -t
n n

We will assume throughout that the columns a j? i # 0 are lexico-
graphically positive, i.e. that the problem is dual feasible. If they are not

. this can easily be arranged, see for example [3] .

In the ordinary dual simplex method we would perform a series of
Gaussian e}iminations on the matrix A° appearing in (3) in order to introduce
new sets of non-basic variables. By doing this we continually form new

expressions such as

(4) -



wihere the vector T is the vector of {he new non-basic variables and A is the
resull of transforming A by Gaussian eliminations, The pivot element in
these steps is chosen by the dual simplex rule with the result that the columns
of the matrices always remain lexicographically positive. When a s the col-
umn of constants, has only non-negative entries (except possibly in the first
position}, the solution to the ordinary linear programming probiem has been

obtained,

The procedure we will describe is very close to this. However, instead
of constantly introducing new non-basic variables from among the original
variables of the problem, new ones are created as we go along. These new
variables will be added by introducing them first as basic variables in a new
equation adjoined to the bottom of the matrix A appearing in (4) and then doing

Gaussian elimination to make the new variable non-basic.

We will now turn to the derivation of these new relations. We give g
derivation which includes the relations used in ,ri_j and Lﬂ as well as those

used here.

Let us consider a typical equation

i=n
(5) X o= a, Z aJ (—t})
p=l
or .
j=n
0 = a o« Zl 2 (~tj) + 1 (-x)
j:

which is one of the equations appearing in (4). We will represent every

coefficient a,]. appearing in (5), as well as the 1, in the form b]. Ao+ r]. where



bj is an integer, rj is a remainder, and X is a positive number to be deter~

mined later. That is

a, = bj A *ryo= [aj/k} )N r, i = 0, ..., n

where square brackets indicate integer part of. Substituting the expressions
in (6) into (5} and assembling all the remainder terms except r on the left

gives

j=n j=n
SRETRT TR (VS B A PR I
m 7! =1 J

Any non-negative integer valaes for x and the 1;}. which satisfy (5) will also
satisfy (7) and will make the left haund side of (7) a non-negative number
since the rj are non-negative. Let us now look at the right hand side and

especially at the contents of the curly bracket which we can write separately

j=n
s = f“o/x} DY [aj/x} (-t) [l/ﬂ (- ).
(8) j=1

Clearly the value obtained by substituting the same x and f;j into (8) will be an
integer since all the coefficients appearing are integers (though of any sign}.

However, s is not only integer but in fact non-negative, for suppose s were



a negative integer such as -1, -2, etc. Since r, < X, a negative integer s
would make the entire right hand side negative, However we know that the
left side is non-negative, so this is a contradiction. Thus the s introduced

by equation {8) is a new non-negative integer variable,

Let us examine this first for the case A = 1, Here [1/}\} = 1

so on substituting (5) into (8) we have

j=n j=n
s = [ao] + .Zl [aj] (-*tj) ~ A 'ZI a]. (—tj)
1= i

or

1
f. -t
] ( Z})
1

]
©) s= -f, -

j=
where {. denotes the fractional part of aj\, This equation was the starting
point for the algorithm described in [1:' and EZ] Its relation to the new

method is described at the end of this paper.

We will now consider the case A > 1. Here we have [l/ﬂ = 0

and {8) becomes

ji=n
R VD Y VO
j=1
or j=n
(10) s = b+ j:zl bj (~t3)

(10) represents a new equation which must be salisfied (with non-

negative s) by any integer solution to the original linear programming problen,



Thus we can adjoin (10) to the bottom of (4) and consider it ag a possible row
in which to pivot. Before proceeding any further we must assemble certain

facts needed for using {10).

In the dual simplex method the only equations, or rows, in which one
may pivot are those in which the constant term is negative (this means an
unsatisfied inequality). Furthermore, in our notation, only negative elements
are eligible pivot elements. Thus a row is eligible for pivoting only if it
starts with a negative constant and contains other negative elements. Ciearly
we have A < 0 = bj = [aj/A:{ < 0 so that if the row appearing i (5)

is eligible s0 is the row in (10) which is derived from it,

Thus we are assured that if there are any eligible rows left in (4) we
can create from any one of them a new eligible row (10). If there are no

eligible rows the problem has been completed or has no solution.

We will now try to adjust the new row so that the pivot element will
become a -1, That this is possible can be seen from the fact that for X
sufficiently large, all negative bj' s become -1's while all others vanish. So

for sufficiently large XA the pivot element can only be a -1.

However, as we shall see, we can do better than this. We need one

observation,

Let J be the set of indices j, j#0, for which aj < 0. Then if the

dual simplex rule applied to (10) gives a pivot element bj’ = -1, we must
have
a., = min a
jed :
{(11) .



That is to say that if the pivot does turn out to be a -1 the pivot column can
only be the (lexicographically) smallest column having a negative entry in the
row (5}, To see this we simply apply the usual pivot selection rule which’

says that the pivot column is that column aj, for which <5”~17m—> alj =

1 (—1/bj> aja Hence

jed
-1 < .
" aj! < —«1/10j aj all j ¢ d
(12) ’
if bj.r = ~1, and b, is a negative integer
a ., =< -1/, a < a
! J ] ]

50

a2 ‘= min a.
jed

Since the bj do not enter into the choice of pivot column the same column
will be chosen as pivolt column for all those M which have the property that
they produce from (5) a row (10} with pivot element -1, Let us consider

two such XA 's, A 1 and A g+ The result of pivoting on the rows of type (10)
will be to add [bo/)\ 1] a J.f or [bo/)\z]a j{ to the coiumn of constants
{the zero column). Clearly the zero column, and hence the objective function,
will be decreased more if the smaller A is used since the pivot column is

the same in both cases and only the coefficient is changed.



We can summarize this by saying that the requirement for choosing A is

(a) It should produce a pivot of - 1
and

(b} the A used should be as small as possible, *

Using these two requirements we will now select A, If a i is the
smallest column a i with j ¢ J and a i is another column of the same set
then if g 1 is to have a -1 in the new row and be chosen by the simplex

rule as pivot column we must have, for all j e J, (ml/b) a . >a Here

j Ty
b]. is a negative integer, Let 7 i be the largest integer for which

(1/”) Ct} > a i (That there are some integers fulfilling this last
J
inequality is clear since it is satisfied by 1).** In order for g }.a to

be our pivot column, then, we must have

* This choice of A is the one which, subject to condition (a), produces the
biggest change in the zero-column. It does not necessarily result in re-
placing the original row (5) by a derived row (10) that is as strong an in-
equality as is possible or is necessarily either stronger or weaker than the
original. For example from, x = -4 - 3(~t1) - 5(«-t2), we derive for A = 2

§ = -2 -2(-t1) ~ 3(-t for X =3, 5 = -2 —I(~t1) - 2(—t2), for A =4,

2)’
-1 "1("t1) - 2(-t2)° Since the variables on the left are required to be

I

b

non-negative these represent the inequalities 3t1 + 5t2 2 4, ZtI + 3t2 z 2,

t1 + Ztl z 2, tl + Ztl 2 1. The second of these is weaker than the first,

the third stronger, the last weaker again,

** If the relation is satisfied for all integers, the aj will never be chosen in

preference to a i and the )\3. of (14) may be taken as zero.



(13) I %] < #

and the smallest A fulfilling (13) is

A = maj/(uj,

(14)

We note that A i is not necessarily an integer.

In order to fulfill condifions such as the above for all columns a i ie d,

we must have A at least as great as

= max AL

A Imin e T i
(15) !
This choice of A leads to the selection of a joas pivot and for @ e have
-a,, a,
- : o > - - ! = = -
Py 1, hence A min 2 //.Lj, 2 -2y S0 [ i /A minJ b}., 1.

We can summarize the procedure for obtaining the minimal X in these

four steps

a) select the smallest a i with j ¢ J, this will be the pivot column a jo°

h} for each o i

1
(/,u}-) ajzajo"

j ed, find the largest integer p i such that

¢y set A, = maj/,u..
] ]
d) find A . =  max A,
min )
je d






Step b) can usually be accomplished for each column by a single division.*
We are now in a position to describe the algorithm.

Assume an all-integer starting matrix A9 which is dual feasible. We
choose a row having a negative constant term (if there are none the problem
has been solved), for this row we choose )\ rin and the pivot column by the
four steps given above, We create a new row of type (10} using this A min
and adjoin this to the bottom of the matrix A, We now perform Gaussian
elimination on the new row, i.e., we inlroduce s a‘s a new non-basic variable,
we drop the new row and then repeat this process. Because this pivot element

is -1, the matrix remains in integers. A numerical example is attached as

an appendix,

We will next show that for certain rules of choice of row this process

is a finite one.

We will assume that the problem has some integer solution X' which

gives the objective function a value 2

* I o . and a, both begin with non-zero terms a_ . and a_ . , then if
j jo 0, ] 0, jo

a_ . does not divide a_ ., u . = [ao,j/a . } . I a_, does divide
O,]O G’} ] OJ-]() O’]{)
a_ . : a_ .
b2 . l S . = b s ( . & . . e
3 then J O,J/lO’JO if a j 2 0,3/10’}0 @ and
pyo= ‘1o,j/ao,jo} -1 otherwise. If the two columns begin with unequal

numbers of zeros (ajo must have more) oy is arbitrarily large and A " 0.

I both columns have p zeros, the procedure is as above with ap . and
3

a . . substituted for a . and a_ ., Also it is worth noting that n . is
2,]0 0] 0,10 10

always 1.

10






At any stage of the calculation we have the variables x represented as
a constant column plus a sum of non-negative columns times non-negative

variables (preceded by minus signs)

j=n
X = a + z a . {-t)
(16) ° j=1 !

Since any solution must give the tj non-negative values we see that any solu-
tion X is lexicographically equal or less than a, - Furthermore a, is de-
creased lexicographically after each step since a negative muliiple of one of

T
the columns is added to it. Thus we have a descending sequence of a, s

(an

bounded below by the assumed soiution X', Let us suppose that we had an
infinite sequence of this sort. Since we are dealing with all-integer vectors
1 2

a ... the components of the vectors change by integer amounts,

ao) a O? O,

Let us consider the first component (the objective function), If this decreased
indefinitely it would eventually get below Z, the first component of X', This
is a contradiction. Consequently the first component can only decrease
strictly for a [linite number of steps and then must remain stationary there-
after at some fixed value z’ 2 Z e From this point oo the second component

must be non-increasing., There are now two possibilities:

{a) The second component may reach some f{inal value and remain fixed

thereafter, or

(b) it might decrease indefinitely,

11






If {a} vceurs we can move on to the third component which presents the
sume two alternalives,  If alternative (2) occurs for each componeat we will
have a lixed a after a finite number of steps. Since o o will decrease
strictly as long as there are hegative elements in the constant column this
means that there are no more such elements and that the problem has been
solved. A rule that will guarantee finiteness, then, is one that can exclude

possibility (b).

Let us consider the first component for which alternative (b) occurs.
After a certain point the component becomes negative and remains hegative,
Thus its row is eligible for selection as a row (5). However it is never
selected, for if it were selected, and a row of type (10) generated from it,
the pivot column a i would have a strictly negative coefficient aj, in the
row in question and, upon pivoting, the constant term of the row would be
strictly increased. This would contradict the assumed non-increasing charac-
ter.  Thus any rule which, if the constant term of a row goes negative and
remains negative, will sooner or later select that row, will exclude possibility

(b), and give a {inite algorithm,
Examples of such rules are
(1) Always select the first row (from the top) having a negative element,

(2) Select the rows by a cyciic process, i.e., on the first step look at
the first row and then if it does not have a negative constant look at its suc-
cessors, on the second step look ab the second row and then its successors,

ete,

12






(3} If the rows are chosen at random a finite process will result with

probability 1.

As an example of a rule not covered by this finitencss prool we cite the
ordinary simplex selection rule, that is choose the row with the largest nega-

tive constant term.

The rules of choice we are currently using in computations have evolved
partly through a trial and error process, Our first attempt was to use the
old tried and true simplex rule of choice describec; above even though we
lacked a finiteness proof for it. We chose at each step the row with largest
negative constant and formed the new row from it. The idea, of course, was
that a large negative constant in the original row would, most-iikeiy, lead to
a reasonably large constant in the new row. This approach was an almost
complete failure. This rule did not seem to solve any but the very smallest
problems. As an extreme example we can cite one T variable 7 inequality

problem which we later solved in 10 steps but which with this rule ran for

1200 pivots before being taken off the machine.

An approach which does seem to be effective, however, is to focus
attention not on the rows but rather on the celumns and to construct a new
row to make the pivot column as large as possible. There scem o be two
reasons why a column criterion makes more sense here than a rule such as
seeking for a large negative constant. One reason is that in this all-integer
method an integer multiple of the pivot columm is subtracted {rom the zero
column, Thus the amount of progress is at least as greal as the size of the

pivot column. This is in contrast with the ordinary simplex method where

13



it is possible for a large new column to he brought in at a very small level,
Secondly, when dealing with degeneracies, a common feature of integer pro-
gramming problems, it is the degree of degeneracy of the columns that makes
the essential difference. That is, considering any two columns such as
o [ o
0

v
Q o -

3
2 .
1

L L T

any multiple of a 9 is to be preferred to any multiple of @y 80 that here
everything is determined by the column and the size of the constant term is

secondary,

Consequently the following approaches seem plausible for this form of

integer programming.

First rank the columns of the matrix as 1, 2, 3, 4, etc, in order of
descending size, denote the rank of jth column by C {jj. Then assign to
each eligible row the rank R{i) = max C{j). This rank, R(i), is the rank of

jed

the column that would be chosen as pivol column if the ith row were used to

generate a new row., We then choose a row iO by R(io) = min R(i),
eligible i

A still stronger approach is the foilowing which we are currently pro-
gramming. First obtain R{i) values not only for the eligible rows but for all
rows, ‘Then choose a row io either as above or by some other rule such as

the largest negative criterion and form the appropriate new row (10)., Next

14



carry out the pivot operation only on the column of constants, i,e., more

exactly compute {in a separate place) the numbers ai o " bO ai . . Consider
H 2 O

the rows 1 for which this expression is negative, These are the rows whose

constants would be negative affer the pivot step. If among these rows there

are some with rank strictly lower than R(io) select one, say ila I a;

1’30
times the row of the bj’s is added to the i1 row a new row is formed with
constant term a o F ’oo a, i which is negative, This new row has a rank

1’ 170

strictly smaller than R(io) since its entry in the jO column is zero and its
entries in colwmns having rank > R(i.o) are n(xm-negativeﬂ This last follows
from the definition of rank which shows that both rows involved have this
property and from the fact that aipjo is > 0 because R(il) < R(io)e This
process can now be iterated, with the newly created combined row playing the
role of the original row io’ and being used to create new bj's, etec.* The
basic idea here is to use the fact that in attempting to satisfy the inequality
represented by the row io we violate the inequality represented by the row i1

to revise the new row and improve the rank of the pivot column.

Although one's first reaction to this sort of scheme is that the computation
involved in these selection methods is excessive a more detailed examination
shows that the amount of work reguired can be expected to be much less than
that required for a full pivot step. Thus if the number of pivot steps is re-

duced substantially these methods will be worthwhile.

* In this process only the last row generated is actually used in pivoting,
Thus it is unnecessary to choose an optimal X except when dealing with
this last row. For all others X = «bj will suffice to provide a - 1

0
in the smallest column.



The method we have used n our code so far has been only a very crude
approximation of the above.  The rule divides into two parts (a) if all the
relative cost coeflicients, i.e., the ao,j’ i # 0 are non-zero, that is to say
that we are in a completely non-degenerate situation, we have used the old
simplex rale choosing the row with the largest negative constant, 1 (b) some
of the &o,j are zero we form the function N(j) which is a count of the pumber
of zeros at the head of each column before a positive number is encountered.
We then use N(j) which is an approximation to the ranking of the columns as

L

the C(j) of the [irst method described above.

Using this code we have had irregular but interesting results. For
example, we have a series of four 15 variable 15 inequality problems arising
from coding theory. The inequalities in the four problems are identical ox-
cept that the constant terms in the inequalities are increased by adding 2 to
get from one problem to the next. All coefficients of the variables remain
the same. Three of the problems are solved in 17, 21, 23, pivet steps
respectively,  Of the fourth we know only that it requires, with this code,
over 400, A similar serics of three 32 x 32 problems involved 23 and 156
iterations (this last took 3 minutes on the 704) with a third problem unsolved
atter 200.  Although in other sparser problems the results have heen less
irregular there are still plenty of failures, There are indications thal the

precedurcs described above are worth investigating.

We will now consider the relation of this all-integer method o the

method of [1] and [2}

16



The derivation of the inequalities given earlier in this paper shows that
both the algorithm described here and the algorithm of [1] and [2] are ex-
treme cases, In [1] and [:Z] onlty inequalities of the X = 1 fype were used,
while here only inequalities of the X > 1 type were involved.* Inequalities
of the X = 1 type will give non-trivial eligible rows whenever there are
non~integers present in the zero column whether there are any negative ele-
ments there or not. However, these inequalities are not available if we have
an all-integer matrix, On the other hand the inequalities of A > 1 type are
available whenever there are negative elements in the zero column but fail if

the zero column is all non-negative but possibly containing non-integers.

The various states of the zero-column with the corresponding available

types of inequality are summarized in this table.

Negative Constants No Negative Constants
Some Non-Integers A= 1, A >1 A= 1
All Integers X >1 Solution

It is clearly possibie to combine both classes of inequalities into algo-
rithms having many interesting properties. For example, one could start by
doing the regular simplex method to get somewhere near a solution or possibly
to obtain a non-integer solufion. Then from some point on one could pivot only

on additional rows generated either for x = 1 or x >1, One type or the

* Note that the derivation of the inegualities does not depend on the aj

being integers,

17



other is always available. Since the pivot element is either - ! or a proper
fraction - f, the D -- number described in [2] will now be monoctone decreas-
ing. Another approach would be to set in advance a bound for D and to switch
to additional rows whenever a pivot element of the ordinary simplex method

would violate the bound on D. Operating with a fixed D means that round off
problems can be eliminated. There are obviously many combined algorithms

that are possible and we have no idea which are betler than others.,

por-blTE
F 3 61 2o s
Rz >g&,;,g,.lj 2 { o« bk
gmbi ¢, % 2 h

18



APPENDIX

Example

Integer Programming

. o _ )
min 2 = 1O><:1 2 léxz + 21x3
or
max  z = —(IOxl + 14X2 + 21x3)
. ) ) >
Sukject o 8x1 + 11.x2 + 9;&3 2 12
le + 2}{2 + 7x3 > 14
>
9X1 + 8){2 + 3X3 > 10
The row marked with an arrow is used at each siep
i, = 1
py o= 0] =1y, = [Mad -0k, = [P
X = 2 N - M T _
1 /1-2 }‘2"/2“2 >\3m/3—
_ o 7 . T
Ny T max 2, 2, '/2) /2
(1)
1 Xy X, ~Xgq
z o= 0 10 14 21
8, = ~12 -8 -1 -9
Sy = -14 - 2 -2 = T
3 = - w O w -
Sq 10 9 6 3
X, 0 0 -1 0 0
Xy = 0 0 -1 0
Xq = 0 0 ] -1
§1 = -4 - 1* -1 -2
o= 172

- Al -

7/2

2



(3

2

(

10

-40

(4 )

t
o3
ol T e T s H
o
=3 <
1S TR el
for B X SN " =
12 B
- t
[
o3
2
o
* =
D N O ] e B ;
= S —
i =
(&)
A Iy
o o= o OO —
o

- A9 -



SAME EXAMPLE REDONE USING ROW COMBINATION

{1} The first step is the same since no higher ranking inegualities are made

negative by the pivot step.

(2)

Column Rank 1 2 3 Selecting tne only negative row we

1 ~§1 Xy g Row obtain as before the row (-2, -1, 0,
” = 40 10 4 I Rank ~1). However its use would drive
s, = 50 -8 -3 7 9 the ipwer ranking Sy TOW negative,
s, = - 6§ .9 o -3 3 cen Combining 15 (-2, -1, 0, -1) +
5, = 26 -9 3 15 1 (26, -9, 3, 15) = (-4, -24, 3, 0)
X.B - 4 -1 1 9 { a row of rank 1. Applying = 24
Xl - 0 0 -1 0 9 gives {-1, -1, 0, 0). No iteration
XZ _ 0 0 0 i 3 of the process is possibie so tois
3 - .
. I o1 is used,
Sg 1 1 0 0

(3) (4)

i -8, Ky -Eg 1 = "Xy -5y
z = -50 10 4 1 z = -B2 9 4 i
s, = 28 -8 -3 7 s, = 14 -15 -~ 3 7
By = - 4 -2 0 - 3= 5, = 2 i 0o -3
S, = 33 -9 3 15 S = 5 -24 3 15
S 5 -1 i 2 X, = 1 -3 1 2
Xy = 0 0 -1 Ky = 0 0 -~ 1 0
Xq = Q Q 0o -1 Xq = 2 1 0 -1
53 = -2 -1 0 - 1%
A= 3

- A3



REFERENCES

RALPH E. GOMORY, "Outline of an Algorithm for Integer Solutions
to Linear Programs,’ Bulletin of the American Mathematical Society,
vol. 64, no. 5,(1958).

RALPH E. GOMORY, "An Algorithm for Integer Solutions to Linear
Programs, ' Princeton-IBM Mathematics Research Project Technical
Report No, 1, November 17, 1958.

G. B. DANTZIG, L. R. FORD, JR., and D. R. FULKERSON, "A
Primal-Dual Algorithm for Linear Programs,™ in Annals Study 38

"Linear Inequalities and Related Systems,' Kuhn and Tucker, Eds.,
Princeton University Press, 1956,



