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LARGE AND NONCONVEX PROBLEMS IM LINEAR
PROGRAMMING?

BY
R. E. GOMORY

Infroduction. Recent work, based on the ideas of Dantzig and Wolfe [i],
Ford and Fulkerson [Z], and Wolfe [3], has greatly extended the range of probtems
that can be approached by lincar programming.  Systems of fincar inequalities so
large that the coeflicient matrices cannot cven be cffectively written down caa, in
some cases, be dealt with by implicit methoeds and optimal solutions can be attained,
Examples of these are Dantzig [4], Gilmore and Gomory [5), Gomory and Hu [6],
and Drzielinsky and Gomory [7]. Recently, a connection with mixed integer
programming problems has been cstablished by Benders [8]. It is the purpose of
this paper to review these developments in a unified way showing that they are all
special cases of an extremely simple cxfensien to the basic calculations that must
be gone through in performing G. B. Dantzig’s simplex method.

If we take as our basic problem the problem of maximizing (or minimizing)

Iz =X,

subject to the restrictions on the vector x

{n

we can transform 1o equations in non-negative variables in two ways. Introducing
a non-negative vector for the differences (slacks) of the two sides in (1), we can
wrile either

0 e O 5 0
2 (O I A l)) xf (G),
- |
or alternatively
z 0 N/
3 si=1}b —A ( x)'
X 0 Ij

In both cases, all variables except z are required to be non-negative.
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Whichever form is used, call the matrix of coeflicients A, Then, in using any
form of the simplex method, we perform vepeatedly the following basic sleps,

{A) Select a column of the current cocflicient matrix,

(B) Select a row of the current coeflicient matrix.

{C) Do a pivoi step (Gaussian climination) using as pivol element the element
at the intersection of the chosen row and column.  Go back to Steps (A) and (B).

As is well known, the Gaussian climination Step (C) need not be performed on
the entire matrix A4 or its transform. 1f we consider (2}, the effect on A of the
Gaussian climinations (column climinations) is eguivalent to multiplying on the
lelt by a nonsingular square watrix 2. It is, thercfore, encugh at cach repetition
of the Steps {A), (B) and (C) to perform (C) on the current P, The effect of the
climinations on any particular clement &; of A can then be found by multiplying
by the updated P, Using this precedure (the revised simplex method) on an
m % nmalrix cnables one, at least in Step (C), o perform the arithmetical operations
onfy on an m x m matrix. Generally, there is no arithmetical saving in this as
the information required in Steps {A) and (B) requires doing the arithmetic that
can be saved in (C).

Similarly, if {3) is used, the pivot steps are row climinations which arc equivalent
to multiplication on the right by a nonsingular P. In this case, itisann x a P
that needs to be processed.  Again, because of {A) and {B), there is no arithmetical
saving, so et us look at (A) and (B).

In the primal simplex methed, the order of operation is (A), (B), (C). The
column selection operation (A) is very simple.  One selects the celumn for which
the first entry in the transformed A is minimal. Note that it is this row which
contains the objective function.  To find this first entry directly if 2 is on the left,
ane forms the scatar product of the first row P’ of P with the column of A, thus
doing an amount of arithmetic roughly equivalent 1o the saved Gaussian
climination.

The row selection is very nearly the same, but a ratio is involved. 1f we cali
the elements of the transformed A the g, 5, give the chosen column index jy and
the column corresponding to the original constants A, the index 0, then the row
selection s to find the 7 for which ¢, ; is posilive and for which g:.0lq;.;, 1S minimat.

There is one further difference belween the minimizations involved in (A) and
(B) in the primat simplex method. The minimization in (A), which did not
invelve a ratio, was not necessary, only desirable. [t would have been sufficient
to take any column in PA whose first entry was negalive,  The minimization in
(B) is nceessary (o preserve feasibility.  This distinction is especially important
when we come Lo integer programming,

When doing the dual simplex methad (which may also involve a £ either on the
left or right as desired), it is Step (A) which involves the ratio and in which mini-
mization is necessary; Step (B) involves no ratie and minimization is desirable but
nol necessary. Row sclection, Step {B). requires finding the minimal g, o.and column
selection requires finding among ¢, , = 0, the one for which o 54, ; 15 minimal.
The /, used is obtained from (B}, and the order of operations is (B, {A), (O).
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Note that in both (A) and (B) we are porforming & minimiza{ion or maximization
operation of the simplest sort. We simply look at all the numbers involved one
after another and find the fargest or smallest one. What is done in essence when
dealing with large problems is 1o replace this simple maximization by a maximiza-
tion algorithm.  This may be a recursive computation, a network flow caleulation,
or even another lincar programming problem.  The obicctive Tunction may be
linear or involve a ratio of lincar terms depending on whether the step is of the
simple or ratio type.

If the problem has a moderate number m of rows but an enormous number #
of columns, (A) is replaced by the maximization algorithm, and lelt multiphication
is used. I the columns are modcerate in number but the row count is too great,
then (B} is replaced by an algerithm and right muitiplication is used.  Whether
a primal or dual method is used determines whether the objective function in the
algorithm is to be lincar or rational,  The peintis that by doing the maximizalion
operation other than by simply fooking at all the numbers, one avoids the necessity
for cver calculating most of the numbers involved.

Of course, this is only possible when the rows or columns are given in some
systematic way, as is the case in the following cxamples.

Cutting stock example.  In this example. we will use the primal simplex method,
left multiplication, and a minimization algorithm with a lincar objective form.
The problem (see Eisemann [93, and Gilmore and Gomory [5]) s as follows,

We assume that an unlimited stock of standard lengths of one material s
available from which onc is to cut lengths to fill a list of orders.  An order consists
of a request for a number N, of picces of length [, /= 1,- - u, [, = L, the
standard length.  The problem is to fill the orders by cutting up the stocked Jengths
so that the waste, i.c., unused but cut up pieces, is minimized.

If we assume that it is possible (o list cvery single way (o cut up the standard
length L into some collection of desired lengths /7, then the problem can be writien
down as a lincar programming problem. Specifically,

minimize ¥ x;,

]
(4) Ty s N Pe==1,0 0,
x; 20, all .

7

The interpretation of (4) is as follows.  x; is the number of standard rolls to be
cut up in the jth way, a;; is the number of pieces of fenpth /; obtained each time
a standard length is cut up in the jth way, and the incqualities indicate that the
total number of cach length /; produced is at lcast as greal as the demand.  Mini-
mizing the sum of the X7s, i.e., minimizing the number of standard roils to be used,
is equivalent to minimizing waste.

This formulation has two drawbacks, One is that the x’s of the solution, in
order Lo be interpretabic as numbers of standard rolls, must be integers.  Although
this is a real difficulty ins problems invelving small &, and hence small x7s, it is not
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the difficulty that is the subject of this paper. In problems with large &, rounding
to the nearest integer scems fo be an adequate procedure.  The other difficulty,
and this is the subject here, is the cnormous number of columns in the resulling
mairix A. There is onc such columa for every way to cut up a standard length,
and even for a moderate number # of different /;, say twenty or thirty, the number
of different ways of cutting can be so large as to even defy writing down. (The
exact number depends on the relative sizes of the /; and L.}

Nevertheless, one can go through Steps (A), (B) and (C) and solve the problem
without cver writing down these cutting patterns.  Let us assume that we have
done the preliminary problem of getting a feasible basis; ie., the matrix is in a
form where it has a unit submatrix of order (n - 1) and a non-negative 5. This
can be done without any appreciable arithmetic effort and is described in detail in
[5]. We emerge from this preliminary stage with a transforming matrix P, which
would, if the multiplication were carried out, transform the 4 corresponding to (4)
into feasible form.  After this, we are ready to carry out Step{A).  We are to select
the column A; of A for which g, 4; is maximal. p, is the top row of P, and we arc
maximizing rather than minimizing becausc the problem itself is a minimization.
Now the columns of 4 contain a —1 as the first entry, but after that the entries
@, ; are restricted only by the condition

(5} za;,j =L

which says that the lengths produced by cutting up one standard length should not
exceed the standard fength.  Any sct of n non-negative integers a, ; satisfying (3)
will be a cutting patiern and will appear somewhere in 4. Conscquently, the
coiumn selection problem is the following maximization problem: find non-
negative integers xq, © - -, x, such that

(6) in[a‘ (‘ I” I = ]5 23 P/ N
and such that py - (—1, Xy, + -, x,)is maximal.  Writing py = (Fl, 11, - - - T1 3,
we can disregard the eflfect of I, so this is equivalent to maximizing

(N v T, P=1,2, - n

Now to maximize (7) subicct to (6) is the problem known as the knapsack
problem [£0], the name coming from the following interpretation.  The restriction
{6) is taken as being the weight restriction on the contents of a knapsack. items
of weight /; can be put into the knapsack until the weight limit is reached. Each
ith object is worth an amount 1]; and the problem is to get the greatest total value
into the knapsack without exceeding the weight limitation.

To find the fargest possible value of 1, one computes recursively the function
v{y} (dynamic programming). The interpretation of v,(y), in knapsack terms,
is that it is the greatest value that can be put in a knapsack of capacity v if one is
aliowed to put in nonzere amounts of the first / items only. Clearly,

(1) = Th1y/4),
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and »,(L) is the largest possible value of ¢, the one we are looking for. The
recursion for 5,(y) is
e (p) = max {IT.x;, + o, {y — 1304

0= x, = [yl

If the functions v(y) are kept after being computed, it is an easy malter to work
back, after finding (L), and get the values of x,, i = |, » -, n, that gave that
value. These values of x then form the column which, together with a —1 in the
first position, has been selected in Step (A}

Now that the column has been selected, we multiply it by P to obtain the cosre-
sponding column of PA, and we need only this transformed column and the trans-
form of the column containing b to carry out (B) in the usual way. We thea do
(C) transforming P only. With the new £ we again go through the Steps (A), (B),
(C) with the selection process of (A) being done by a new knapsack problem.
This is iterated untit finally the scalar product of the current py with the chosen
column is negative (positive). At this point, the usual simplex process has
terminated and we have the solution.  This caleulation, though with an improved
method for solving the knapsack problem, has been programmed for the IBM
7090 and problems as large as n = 350, L = 200, 10 = 7, = 80, solved in a few
minutes running time.

for

A metwork design problem. In this next example, we will deal with a matrix
representing a great many incqualities, but only a comparatively small number of
variables, i.e., many rows but only a few columms.

Multiplication will be from the right and the method described here will be
primal. The aigorithm used will invoive a ratio minimization. A more detailed
deseription is available in Gomory and Hu [6] where a dual method with its
simpler linear minimization probiem is also given. The problem is as follows.

A network of # nodes is to be designed to accommodate certain flows.  The
network consists of nodes N, i =1, - n, and arcs A,; connecting the nodes.
With each arc is associated a non-negative number y,; called the capacity. Tn
such a nctwork a pg-flow is a sct of x,; such that

05 x5 ) all 7./,
2 Xy %Im =0, g pg.
Intuitively, one thinks of a liquid flow, with the x;; the amounts flowing through
pipes having limited capacities.  The equations (%) then state that liquid is con-

served at the nodes with the exception of the two special ones p, the source, and
g, the sink.  The amount of flow is by definition,

f;”;f = 2 ‘Yi>i = Z-‘\:I;m
3 -

the inflow at the source or outflow at the sink.  For a given network, the largest
possible amount of pg flow is denoted by /.

(&)
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The design problem involves constructing a network whose maximal Aows /
a]i‘ exceed a set of requirements ,, for all node pairs p and g, This prol‘)]‘e;z
ariscs when one considers a completely time shared communication net.  The
flows then are communication flows and the net is used al different times to refay
messages between different node pairs.  Of course, this can always be done
simply by constructing a nctwork with enormous capacities y, ;. Our problem
then is to construct such a network with least cost. Suppos;: that cach are has
a unit cost ¢ Then the total cost of the network, the quantity to be minimized,
is

€= Yeary  allif.
ff

To convert this into a linear programming problem is quite casy. One simply
appeals to the max flow min cut theorem of Ford and Fulkerson which states that

S = min (Z}'u }a e A jg A,
A NEg :

where the A ranges over all node subscts that contain p but not ¢.  In words, this
says that the max flow equals the total (directed) flow carrying ability of the smzlliest
cut where a cut is a collection of arcs whose removal splits the network into two
components, one including a sct of nodes A including the source, and the other
containing the remaining nodes, among them the sink.

Using this fact, we can write down the condition that our network provide the
flows f,, = 7,,. The conditions are for all pairs pg

2
fj

The only difficulty is that there are a(n — 13272 such inequalities for an # node
n.ctwork. Once again, we have a large linear programming problem, but this
time s, the number of rows, is enormous compared to the number of columns.

The situation here is a little more complicated than in the preceding example,
and the description must be something of an outline. For a full explanatéon;
see [6].  Essentially, Step (A} is done in the usual explicit manner,  The problem
is to do (B) irplicitly and without being forced 1o write out all the equations.
We will give a heuristic exposition here.  Step (A) has found a column which,
when added to the present solutien, improves it.  The problem being solved bj/
Step (B) s to find out what muitiple or weight of this new column can be added.
The new column can be added to the old solution until the soluiics is so changed
that some incquality is about to be viclated. The ratio G049, INvoIved T
Step (B} is what determines the amount of the column that can be added before
the particular inequality represented by row 7 is violated. To do this implicitly
in our case, we take the current values of the y;; and add to them an indeterminate
amount 8. These y;; values then give us a network whose capacities depend on
a single parameter §. Using a variant of the labeling process of Ford and Fulker-
son, we can obfain £, (0) for this network, Le.,, we can pet the piccewise linear
function that gives the max flow [rom p to ¢ in this network as a function of 4,

g iedjéA all 4aped g A
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When we have this, we can find the largest value #_, of 0 for which fi, = r,,. By
the max flow min cut theorem. there must be for this value of  a cut whose
capacity is r,, and decreases with increasing 0. This then is the first inequality to
be violated of all those obtained from this particular pair pg of nodes. It aiso
turns out that we obtain the inequality cxplicitly as a by-praduct of the labeling
process, The process must be repeated for each pair pg. and the smallest of all
the 0, is the sought for minimal ratio: the cut associated with it is the sought for
row. Equipped with this rew, onc is then ready for Step (C).

As usual, Step (C) is carried out only on a square matnx. This time the matnix
is square with a size determined by the number of columns.

We should add that in this network design problem, the labor can be cut down
stitl more by further theoretical considerations.  If all ¢,; are 1, then the problem
is solvable by a simple direct construction. If the problem is symmetrical, i.c.,
alf ares have the same capacity in both directions {y,; = y;,), as is often the case,
it is possible to show, see (11), that from the a(n — D)2 essentially different
requirements that remain after symmetry is taken into account, there is a subset
of only # — 1 that dominate in the sense that if these 2 ~ 1 requirements are met,
all the others will automatically be met too.  This subset of dominating require-
ments can be obtained easily. This means ihat in the course of Stage (B) of the
calcufation, the parametric network flow calculation need be made foronly n — 1
rather than a(n — 1) pairs of nodes.

Dantzig-Wolfe decomposition. In this example. we revert to left multiplication,
a primal method, and a simple maximization, This time, the algorithm used is
itself a simplex computation. The reference here is Dantzig-Wolfe [1],

Consider a linear programming problem

minimize cx,
subject to Ax = B,

in which we divide the cquations into two groups, an upper one and a lower one
so that we replace Ax = b by

&) A =5y,
(10} Agx = by,

where A, has mi, rows and A, has m,.  We now transform the probiem into one
with m; + 1 rows and a great many columns by the following reasoning.  The
only x's we need to consider as solutions to (9) arc those that also selve (16}
Let us suppose that the convex of solutions to (10) is bounded. Then we can,
in principle, give a complete list of vertex solutions x;, Xy, -, Xy to (10}, and

i
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any solution te (10) whatsoever is o weighted combination of these x, with non-
negalive weights w, totalling 1. Thercfore, it is only necessary to consider x7s
of this form. So, upon substituting, the problem becomes:

minimize ¥ (ex w,,
subject to 3 (Axw, = by,
and ¥ w, = 1,
i

or, using & for ex; and «, for Ax,, we have the linear programming problem:

minimize 2 68,

L

}: Fy bl:
7
Z w, =1,
:

which is a problem with fewer rows but an enormous number of columns.
We now use an algorithm for Step (A}, in Step (A), we maximize the scalar
product of the top row

1= (_no, T ”m‘sq} - (:“mﬁa“ml-e-l)

of the transforming matrix with the column vector (¢,2,1), the maximization
extending over all i, But

max py - (&0l = max pylex,Ayx,, 1) = max (e + 1T4,) - x, + I, s

and since maximizing a linear function over all vertices is equivalent to maximizing
over the convex body, this last is equivalent o

max ([Tye -+ A - x 11 —
subject to Ayx == by,

which is an ordinary linear programming problem. Thus, by means of this
technique, a problem of m, plus m, rows is converted into an my row problem
with an m, row problem being solved as the column selection routinc.

There are many applications of this form of decomposition. It lends itself
particularly well to solving the inequality systems that arise from models of large,
but only slightly interacting systems. Examples of these are Jarge firms with
semi-autonomous divisions. Many of the activities of these divisions do not
affect the others. Production in the various divisions may depend on different
labor suppiies and may ‘go to different markets. However, there are certain
inputs for which the divisions may compete; they gencrally draw on the same
fund of capital for expansion; they compete for a share of a total company
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budg.et which has a limitation on the total, Because of these Interactions, the
matrices which result from these company models ofien have this form

Agy Agg Ao\

Ay 0 0
0 Ay 0O
0 0 A

n.on

All the A;; arc blocks of coeflicients, The Ag.; are the coefficients of activities
which afect the entire firm; the 4, , i = 0, contain the cocflicients of activities
whose cffect is felt only within the ith division. If the firm has many divisions
the number of rows in A, , will be small in comparison with the total in A, A?‘,:
ete.  Consequently, if the problem is split into an upper part 4y = (A, ,, - - Ay m)
and an A, consisting of the rest of the matrix, the Ay part will be Easiiy solvénd
because it is small and the A4, part because it consists of a number of parts, the 4,,,
which {now that 4, is removed) do not interact at all and can be dealt with ;;s
small separate problems.

INonconvex problems. Convex optimization problems form the usval subject
matter of fincar programming. This is inevitable since the simplex method, the
heart of the subject, is a gradient method, although a very clegant and economical
one, and is therefore only capable of discovering local optima. [t is, however,
possible to bring nonconvex problems iato this framework by convexifying them.
A prototype of this approach is the method used for integer programming prbblcms
in {12; 13].

The integer programming problem is

maximize¢ cx,
(10 subject to Ax =
and all components of x integers.

b, x

7

Here, we are maximizing over a very nonconvex set, the lattice peints within
the convex Ax b, x % 0. The convexification process involves adjoining to
the system {11} additional incqualities satisfied by integer solutions to the inequali-
ties of (11) but not necessarily by all non-integer solutions. In principle, if enough
of these were added, the convex hull of the latiice points satisfying (11) could be
obtained, and the problem would become an ordinary one of linear programming,
Actually, not all of the inequalities giving the convex hull are available at the start
and the methods used attempt to add mequalities on a more selective basis.  The

source of the additional inequalitics is as follows.  Consider one of the inequalities
of (11}

(12) 20035 5 by
From any one of these inequalities, one obtains
(13) 2la 21 5 1b,12],
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where the square bracket means integer part of, and A is an arbitrary num-
ber = 1.

This new inequality, as the reasoning of [13] shows, will be satisfied by any non-
negative integer solution to (12) and, thus, can be added to the problem.  Weighted
sums of inequalities can also be treated in this way, and one can show that by
combining new and old inequalities, a set giving the convex hull of the lattice
points is eventually obtained.

The actual algorithms do not do this, but rather produce new inequalities one
at a time in such a way that the pivot element is always | and the integer character
of the matrix is always maintained.

Essentially then, an integer problem such as (11} is equivalent to a lincar problem
with an enormous number of rows,  Most of the rows are not given (they would
define the convex hull of the lattice points) but have to be developed in the course
of the calculation.

This has the following consequences.

(1) Because of the large number of rows. these problems arc done by row
transformations.

{2) Because the minimization over all rows js necessary for a primal simplex
caleulation, and all rows are not available, it has been difficult to develop a primal
simplex algorithm.  (Although onc has very recently come into cxislence, it is
complicaied.)

(33 The dual simplex method can be used because it does not require complete
row minimization. However, this inability to minimize provides a weaker
algorithm even in the dual simplex case, and may be responsible for the erratic
computational behavior found in computer yuns using integer programming.

Decomposition of Benders. In this example, we will have right multiplication
and a linear minimization problem. Actually, the method of Benders, in its
simplest form, turns out to be the exact dual {in the linear programming scnse) of the
Danizig-Wolfe decomposition. However, because we end up doing the dual
simplex method, which is advantageous Tor integer programming, we arc able to
use Benders” method for preblems involving integers and, hence, for other non-
convex problems.  The reference here 1s Benders (8],

Let us now consider a problem in which the variables are split into two groups
xand v, ic.,

max z = ;X -+ ¢,
(14) subject to Ayx -+ Ay v = b,
0,y =0

Grouping z and 3 on the right, the problem can be restated as: find the vector

{13) QX =2 Gy
Ax = b — Ay,

have a non-negative solution x.
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Denoting the columns of the matrix

c,
(%)
by ¢;. - - -, ¢y, and the vector on the right in (15) by », we know by Farkas’
theorem that the equations (15) are solvable for non-negative x if and only if every
vector If making a non-negative scalar product with the ¢, also has a non-negative
scalar product with v. Let us assume that a normalizing condition such as
of values of 1. Then there is a finite list {14, [f%, - - - ITV of extreme vectors IT°
such that all If satisfying ITe; = 0 and DTI, == 1 are convex combinations of the
extremne 11, Then
-0 =0, all i,

already is necessary and suflicient for the solvability of (15). Thus, (14) becomes

max z,
(16 subject to y = 0, and
(2= — g s
e (3 Agy) =0, all i

Now we have a problem only involving the variables z and p but, just as in our
second example, with an enormously long list of inequalities.

Now we need do our Gaussian eliminations only on a square mafrix whose side
is one more than the dimension of y. Column seiection invelves no difficulty.
Row selection, if one uses the duat simplex method, consists of soiving the linear
programming problem:

min IT - ¢,
(" subject to I - (il) =0,
1

and ¢ is the right-hand side of (15) that results from the current vatues of z and .
This process is exactly dual to the Dantzig-Wolfe decomposition.  If the primal
simplex method is employed, then Step (B) involves a ratio minimization. In this
case, the selection algorithm is again of the linear programming type, but this
time the ebjective function is rational, Although this is not as familiar a problem,
it is one that presents no essential differences and is solved by very slight variations
from the usual stmplex procedure.

One valuable feature of this form of decomposition is that it is capable of
handiing problems that are partly integer ones. For example, we may restrict
the variables z and y to be integers.  This converts (14) into a problem involving
some integer and some continuous variables.  Ordinarily to solve this, one would
have to add inequalities to (14) which would be regarded as a probiem having a
great many unwritten rows defining its convex hull.  Multiplication on the right
would be a matrix of size dim (x) - dim (), and in the course of caiculation 4, and
Aj enter together and whatever special structure A4, has alone gets hopelessly lost.
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The system (16), however, invelves only integer variables, and the special
structure of A, is preserved as A; appears alone in {17) when doing Step (B).  Feor
cxample, ptant location problems involving balancing the economics of scaks
inherent in a few large plants against the costs of transportation to a large pumber
of ultimate destinations for the finished goods. The decision as to whether or
not to build and incur certain fised costs at a given location can be represented
by an integer variable, the variable costs of production and transpartation involve
continuous variables, This results in a system (14) in which A, is large (n-m
variables if there are # plants and m destinations) and of the special transportation
matrix forms. A, contains only # + 1 variables.  The system (16) then coniains
only n + | integer variables, multiplication s by an (v 1) x (# -+ 1) matrix,
and the large A; part is treated separately by special transportation problem
methods.  This approach lo large nonconvex problems through this form of
decomposition scems very promising.

Application to 3 model of A, 5. Manne.  As a final example of the use of these
techniques, we will consider a production planning model due to A. S, Manne {14].
We consider a plant making a rather large varicty of different products py, - * -, pys-
The demand 4, , for each product in cach time period is known for the next T
periods.  The plant can make many products simultancousiy and would like, for
reasons of cconomy, to arrange production so that the load on the labor force
in the various periods is somewhat smoothed out.

A feasible production plan for an individual product is one that, if used, will
produce the neeessary amounts of the producton or before the times they areneeded.
Let the amount produced by the jth plan of production for the /th product in
period £ be «, ;, and let the labor required to produce that amount be b, ; .

Then we can wrile down the equations,

(18a} 2obss =1+ s, t=1, T,
i
{18%) >oxg o=, = NN
J
(18¢) X = 0

The x,; requires some interpretation.  There is one for cach feasible plan for
cach product. If the x,; are integers (18b) and (18c¢), assure that they can only
take on values G or 1, and, in fact, exactly one of the x;; for fixed ¢ will have value
1, the others will be zero.  Thus, if the x; arc integers and satisfy (18b} and (18c}),
they can be interpreted as picking out from the list of feasible plans for cach
product exactly one that is to be followed.  With « s interpretation of the xj,
the (18a) are the equations of labor balance in cach period, ie., on the left, we
bave the labor required (in man hours, say) and on the right, the labor available
split into the amount /, available from the regular labor force plus the amount s,
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of overtime or extra fabor reguired.  TFhe problem will be to find integer x,; that
satisfy the equations and minimize

[y

¥ s
Iy

In words, sclect a production plan for cach produci that involves the smallest
total of overtime labor.

Quite aside from the problem of getting integer x,;, we already have a formidable
lincar programming problem on owr hands. There are T+ 5 rows, and while

= 10 is rcasonabie for many situations, .5, the number of products may be a
few hundred. The number of columns, however, is really overwhelming; there
is one for each feasible plan for each product,

Leaving aside the problem of integer x; for the moment, let vs tackle the
probiem using the methods for large linear programs (Dziclinsky and Gomory
[7TD. We first apply a Dantzig-Wolfe decomposition splitting Lhe matrix iato an
upper part 4, consisting of (18a).and a lower part A, consisting of (18b). We
can now deal with a problem that has only 7'+ .S rows and, hence, we will do our
Gaussian eliminations on a (T + 5) x (T + 5) matrix., However, when we
come to the column sclection, we find that the lincar programming problem to be
solved is, in the notation of our previous scetion,

19 max foAd, - x,
a9 subject to A,y = b,

Atthough this is apparently almost as large as the original problem, it can be
solved much more casily.  If we denole by 4, ; the column of 4, corresponding
to the variable x;,;, we see that (19) splits up inte a series of separate sub-problems

each of the form
max {(FyAd. frdpm L B ) (s X s

N,
subject fo 2 x; = L
i

’

The solution is simply to sct x,; = | for the j value fer which gy A4, is maximal,
and to set all other x,; = 0. Thus, the problem reduces to that of finding. from
among all possible feasible schedules Tor the ith product, the one for which p4,;
is maximal. This can be done by a recursive (dynamic programming) calculation
of the Wagner-Whitin type [I5].  To sec this, let g, be the production lunction
for the ith product. , gives labor required as a function of output so

1"{')1((":.).!) = '[)f.i.!‘
Define recursively

eod) = min d =11,305) + ¢, (0 + de = X))
(20) z
eals) = =1L(dy, o+ 1)

138 R, E GOMORY

e () can be interpreted as the minimum cost of meeting demand for the ith
product through period ¢+ and having an excess production of amount y at ihe
end of the rth period.  The 1, components of p,. arc all nonpesitive and —11,
can be interpreted as unit labor costs in cach period under the prescat production
plan. x, is the amount produced cach period. By use of the recursion {20), we
find the new schedule with smallest labor cost. Il 7, is concave, or especiatly if
i is linear except for a juimp at the origin (set up cos(), the computational laber
in (20} can be sharply reduced.

Thus, by a Dantzig-Wollc decomposition fotlowed by an application of ihe
column gencrating technique of our first example, a problem originally calling
for Gaussian climinations on a (T -+ 8 x (T -+ Sy or 210 % 210 matrix, and the
invesligation of scalar products with columms as numerous as schedules, is reduced
to Gaussian eliminations on a (T 1) x (T 4+ 1) or 11 X 11 matrix, and a
string of S associated dynamic programming calculations.

We turn now 1o the question of integers.  Fortunately, this lends 1o take care
of itself, For in the system (18b) and {I18¢), there arc T + 5 cquations and,
thercfore, at most, 7+ § positive variables in the optimal solution,  There must
be at least one positive variable appearing with nonzero cocelfficient in cach of the
equations {18b).  This accounts for § of the T -+ 5 positive variables, so there
are at most 7 values of 7 for which more than one x,; is positive. I § is much
larger than 7. this means that almost always only one x; is positive for fixed /.
Therefore, it must be integer with value 1. Thus, there arc al worst 7" noninteger
variables to be treated by some arhitrary rounding process,
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