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SYNTHESIS OF A COMMUNICATION NETWORK*

R. E. GOMORY AND T. C. HU
Abstract. A communication network is a set of nodes connected by arcs.

Every arc has associated with it a nonnegative number called the branch
capacity which indicates the maximum amount of flow that can pass
through the arc. A communication network must have large enough branch
capacities such that all message requirements (which can be regarded as
flows of different commodities) can reach their destinations simultaneously.
In general, these requirements vary with time. The present paper gives
algorithms for rain-cost synthesis of a communication network which is
able to handle simultaneous flows of all time periods.

1. Introduction--Problems of alysis and synthesis the design o
communication networks. By a communication network we will mean a set
of n nodes N and directed arcs linking nodes N and N. Associated with
the arc going from N to N is branch capacity y, and a cost coefficient
c,. By a p-q flow, F.q, we will mean the usual flow (see, for example,
Ford and Fulkerson [7] with source p and sink q; that is, a set of n(n 1
nonnegative numbers x,’q such that

(1) ’ O, ip,q.Xi, X
p’q

(1) of course has the intuitive meaning of requiring that fluid is conserved
at all intermediate nodes. The flow value f,q of such a flow is taken to be
the amount of fluid issuing from the source p, so

Xp,s Xr,q

A set of p-q flows will be said to be feasible in a given communication net
with capacity numbers y, if and only if

’q < all i, j.
P,q

The two central problems associated with these networks are the prob-
lems of analysis and synthesis, both of which involve the notion of require-
ment, and which we state first for the case of fixed requirements R,.
The problem of analysis" Given a set of n(n 1) nonnegative numbers

R, and a network with capacity numbers y,i, do there exist feasible
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flows such that

(2) f,q => R,q ?

The problem of synthesis. Given a set of requirements R,q find a net-
work having feasible flows satisfying (2) and such that the linear cost
function , ci, yi,. is minimal.

Actually, in a communication net problem there is no one set of require-
ments R,q but rather a set R,q(t) varying with a third index, time, that
allows for a changing load on the network. In this article, we will assume
that takes only a finite set of values tl, t2, ts. The degree of difficulty
of the problems of analysis and synthesis varies enormously with the
assumptions that are made about the R,q(t). The present status of the
various problems is as follows"

Case 1. R,q independent of t, or all requirements to be met simul-
taneously.

Analysis. The basic paper here is Ford and Fulkerson [6]. In this paper
a linear programming formulation of the problem which resulted in a
linear programming problem having an enormous number of columns was
reduced to a reasonable problem by means of a column generating tech-
nique which is of the shortest path type. The final problem has m equations
if there are m arcs in the network, and the linear programming is done
with a square m X m matrix. Although the problem treated in [6] is one of
maximizing total flow rather than meeting a set of requirements, the method
of Ford and Fulkerson requires only minor changes to solve the problem
of analysis. A special case where there are only two kinds of flows permits
easy treatment instead of linear programming. See Hu [12].

Synthesis. This problem has an easy solution. Starting with a zero
capacity network, it is only necessary to find the shortest (cheapest) path
between the nodes p and q and then give each arc on this path an additional
capacity R,q. This is repeated for each pair of nodes, the capacities being
added, to give the minimum cost network. A more economical way of
carrying out this calculation will be given later in this paper as part of
another synthesis calculation.

Case 2. Completely time-shared requirements.
Here, time is broken up into distinct periods; and during any one period

there is flow between one pair of nodes only. More precisely, there are
times t,q and R.q(t,q) [.q, and R,q(t,i,) 0 for (i, j) (p, q).

Analysis. This can always be carried out by doing n(n 1) maximum
flow calculations of the type of Ford and Fulkerson [5]. However, if the
given network is symmetric, i.e., y,. y,,, Gomory and Hu [10] showed
that the analysis calculation required only n 1 maximum flow calcula-
tions.
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Synthesis. A subcase here is especially tractable. If we consider only
symmetric networks and, in addition, impose a cost function in which all
arcs are of equal cost (ci, 1, all i, j), then special rapid methods of
synthesis become possible; see, for example, Chien [3] and Gomory and
Hu [10]. However, if the condition ci, 1 is removed, we are again forced
back upon linear programming. The synthesis problem, which can, easily
be posed as a giant linear programming problem involving an enormous
number of inequalities (rows), was reduced in Gomory and Hu [11] to a
more tractable size by means of a row generating technique. Again, it
became possible to carry out the calculation for an m arc problem using an
m m square matrix and auxiliary calculations, that time of the maximal
flow type, to produce additional rows when needed.

Case 3. Time varying requirements.
Cases 1 and 2 are extreme subcases of this more general problem.
Analysis. If we have requirements R,q(t) where is allowed s distinct

values, the problem is merely s distinct repetitions of the analysis problem
of Case 1. If the given network can meet the demands R,(t) for each
time period, then it satisfies the requirements; if it fails at one or more
periods, it does not meet the requirements.

Synthesis. A special case where the synthesizing network is assumed to be
a tree is discussed by Tang [13]. The general case has never been treated
although it is, among the problems being reviewed here, the problem of
greatest practical importance. In this paper we will show that the general
time varying synthesis problem for an m-arc network can also be reduced
to a linear programming calculation involving only one m m square
matrix, plus auxiliary m m linear programming calculations of the Ford
and Fulkerson [6] type.

2. Methods of calculation. We will first pose the m-arc synthesis problem
with time varying demands as a completely unwieldy linear programming
problem. Then we will show how it can be transformed into a problem
having only m columns, but an enormous number of rows. Finally, we will
show how this enormous number of rows can be dealt with.
A) Formulation as a large linear program. Let Y be an m-vector with

each component representing the capacity of an arc in an m-arc network
so that Y represents an entire m-arc network. Let 9Z be an m-vector
representing a network capable of carrying simultaneous flows with flow
values f,q >- R,q(t). It is easy to show that the networks 9Z form a con-
vex (unbounded) po].yhedron in m-space. Consequently, there is a finite list
of networks 9z.t such that if 9z can carry the required flows, then

t E i

(3)
1 <= hit.
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If Y is to meet the requirements for each period, it is necessary and suf-
ficient for it to contain a network of the form (3) for each t. So one way of
posing the general synthesis problem is to ask for Y and ki that minimize
C. Y, subject to

X OZi tl t

This formulation involves m(]c -t- 1) rows and an enormous number of
columns including one for each 9Zt. To reduce the problem we first use an
idea due to Benders [1].
B) First reduction. In (4), consider the set of m + 1 inequalities cor-

responding to a particular value t1. Inserting the slack variables to ob-
tain equations, we see by Farkas’ theorem that there will exist k satisfying
the inequalities of (4) for a given Y if and only if

(5) II.(Y, 1) => 0

for all the m -t- 1 vectors II (II, II0) satisfying

(6) n(9k, 1) >_- 0, all i.

Here II1 is a nonnegative m-vector and II0 a nonpositive scalar.
The vectors II satisfying (6) also form a convex (unbounded) polyhedron

so that there exists a finite subset IIik, IIq of the II such that all II
satisfying (5) are positive combinations of these. Consequently, the solva-
bility condition (5) which involved all II satisfying (6) can be replaced by

(7) II,.(Y, 1) >_-0, i 1, ..., q(k).

Repeating this for all time periods, we find that a problem formulation
equivalent to (4) is

(8) minimize C. Y,

subiect to IIit.(Y, 1) >__ O, i 1, ..., q(t); tl, ..., t,.

This formulation involves only m variables, but generally an enormous
number of rows, one for each of the IIk.

However, we have not yet specified a computation that will actually
produce a finite but adequate list of rows and the actual row coefficients.
We turn next to this.

Calculation. We will next consider what is needed to do a calculation
using the formulation (8). We will stress only those parts that are special
to the present problem and will give only a short treatment of the more
routine simplex steps. A full description is available in [8].
We first discuss the dual simplex calculation. This method requires as a
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preliminary a starting basis that is dual feasible (with its accompanying
nonfeasible Y values) and then the ability to iterate the following steps"

(i) Row selection" Find among the inequalities of (8) one that is
not satisfied by the current Y values.

(9) (ii) Column selection" Use the dual simplex rule.
(iii) Gaussian elimination on an inverse matrix only, with the pivot

element the one resulting from the row and column choice in
(i) and (ii).

]?’or the primal simplex method we use a starting basis and a Y that
are primal feasible, and the ability to iterate the following steps"

(i) Column selection" Choose for entry in the basis a column that
will give an improvement.(10) (ii) Row selection" By the primal simplex rule.

(iii) Gaussian elimination on an inverse matrix as in 9(iii).
In the dual method, steps (ii) and (iii) are routine steps of the revised

simplex method. (i) requires special consideration. In the primal method,
(i) and (iii) are routine with (ii) requiring special treatment. We will con-
sider the dual simplex situation first.
Dual simplex. Given a fixed dual feasible Y we will solve, for a fixed

tk, the linear programming problem"

Maximize 0 Xk,
(11)

subicct to Y __>

If we can solve (11), we will automatically obtain from the simplex
calculation either (i) a 0 >= 1, or (ii) a nonnegative m-vector II1 such that

IIY 0 < 1,
(12)

II >= 1, all i.

If in solving 11 we obtain (i) for all t (It 1, s) we have shown
that Y contains a network satisfying the flow requirements for each t.
Therefore Y, since it is dual feasible and primal feasible, is the optimal
network. If we obtain (ii) for some t; then using the II of 11 to form the
vector II (II, -1) we see that

and

II.(Y, 1) < O,

kII. (9, 1) >__ O, all i,

so that we have found in II an unsatisfied inequality of the set (8). The
list of inequalities II that can be obtained in this way from (11) is finite as
there is one for each basis, yet this list contains an unsatisfied inequality
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whenever Y is an infeasible network. Thus the procedure is finite and we
deal with a finite but adequate list of inequalities.
Once the inequality has been obtained, the next steps are those of the

ordinary revised dual simplex method. One transforms the inequality by
means of an inverse, makes the dual simplex column choice by the usual
ratio test (this is step 9(ii) ), and carries out the Gaussian elimination only
on the m X m (or with the obiective function (m 1) X (m -[- 1))
inverse matrix (step 9 (iii)). One is then ready to iterate by looking for a
new unsatisfied inequality.
What remains to finish the description of the dual method is to explain

the calculation for solving (11). We do this in a manner closely related to
the method of Ford and Fulkerson [6]. However, instead ot dealing with a
linear programming formulation involving a path for each column as in
[6], we have a column representing an entire feasible network. This results
in an economy both in the size of inverse required and in the column generat-
ing procedure. To start, we can obtain a feasible solution to (11 using any
feasible network 9k and kk 0 and then maximize 0. We then obtain for
this problem a set of linear programming prices with an m-vector whose
components give a price for each arc. Since we have worked only with
9 so far the next question is whether or not there are other feasible net-
works 9 which will lead to an increase in 0.
Here again, we are facing a very large linear programming problem,

this one having a great many columns, one for each. To select a column,
we want to choose the one for which .9 is minimal.

This column can easily be constructed since what we now want is the
feasible network which would most cheaply meet the requirements of
period tk if the arc costs were given by II. This is merely the time independent
requirement synthesis problem, and as we remarked in Case 1 of the
Introduction, the synthesis of the cheapest network, which will give us
the new column for the calculation, requires finding the shortest path
between each pair of nodes p and q, then using an amount R, of all the
arcs of this path, this procedure being repeated for all p, q.
However, the path by path construction of the feasible network involves

unnecessary computation since it is overwhelmingly likely that portions
of the same path will be used to connect several different pairs of nodes,
and this leads to duplication in the backtracking (or path finding) part of
the usual shortest path methods. We will next describe a method that
avoids this.
As a preliminary, we follow many authors (see, for example, [2]) in

defining as a special matrix product of two m X m matrices A
and B {b,j} the matrix C {c,,j} with

(13) c,. min {a,8 -t- b,,-}.
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For the cheapest feasible network calculation, we first form the m X m
matrix D {d.-} where di.. is the component of giving the price of arc
i, j. We then form the D2" powers of D by squaring (in the sense of (13))
the current power of D and discarding the previous. At the same time, we
form and keep successive matrices B, when b.- is an s value for which the
minimum in (13) was obtained. After L =< [log2 (n 1)] steps, where [x]
indicates the least integer greater than or equal to x, a D2L and accompany-
ing BL will be obtained for which 2L ->_ n 1. Of course, the entries in
D2L are the shortest path distances from node to node in the network using
di,. as distance. What we want, however, is a feasible network and for
this we need the B,.
Define/L+I {Rp,q(tk)} and define successive/_1 as the matrix that

results from starting with the zero matrix and running through the entries
of/, adding 6,. to the i, /c and lc, j positions of the new matrix. /c is de-
termined by b.
Then/1 represents the desired cheapest feasible network.
To see this, consider the meaning of the various operations involved.

/+ contains the numbers Rp.q(tk) which give the amount of flow the
shortest s-step path $ between p and q must carry to satisfy the require-
ment./ is derived by adding the amount Rp.q(t) to those two positions
in/ that in the matrix D/2 gave the lengths of the two s/2 step paths
which combined to form S. Clearly, if S is to carry Rp,q(t), each half of it
must too. This process is then carried back to the halves of the half-paths,
etc., until finally the correct weight is assigned to the 1-step paths or arcs.
For an example of this calculation, see Tables A1-A5 which treat

5-node example.
This is the calculation that is used to generate the improving columns
9 for problem 11 ).
Primal method. Let us consider the steps outlined under (10) above.

Step (i), column selection, can be done in the usual revised simplex manner
if the Gaussian eliminations on the equations of (8) are recorded as right-
multiplications of an (m -t- 1) X (m + 1) matrix. Step (iii) also involves
only a Gaussian elimination over this matrix. Step (ii), however, involves
finding out which of the enormous list of inequalities of (7) will be violated
first when some currently non-basic variable is increased from its present
level of zero.
To see how (ii) can be carried out, we first find the effect on the current

values of Y of raising one of the current non-basic variables from its cur-
rent value of zero. If we start from (8) and perform Gaussian eliminations
recorded by right-multiplication of an (m -5 1) X (m -5 1) matrix R,
the relation between the (z, Y) and the current non-basic variables T is
given by (z, Y) R(z, T). If the ith of the non-basic variables is raised to
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TABLE A1. Values of [d,’].

@
@
@
@

@ @

0 1
4 0

2 5

TABLE A2. D and B1

@
@
@
@

[di,i] D

(R)

3
2
0

7

(R)

6
4
2
0
8

2
0
0

@
@
@
@

(R)

0
1
1
5
1

0 3
2 0
5 3
1 2

(R)

4
3
4
0
1

TABLE A3. D and B2

[di,i] D

(R)

0 2
5 0
3 5
3 5

(R)

5
4
2
0
7

@
@
@
@
@

(R)

0
1
4
1
1

B2

(R)

2
0
5
1
2

(R)

2
4
4
0
2

a value O, the current Y values Y0 are increased by OY1, where Y1 is the
(i A- 1)th column of R. Row selection involves finding the value 0m of
0 and the inequality II of (8) which do the following"

(a) Y0 -4- 0m Y1 satisfies all the inequalities of (8) for 0 =< 0 -< 0ma.
(b) II.(Y0 zr- OY, 1) < 0 for all0 > 0m.
TO find 0 and II we consider for each period the linear programming

problem"

Maximize 0

subject to Yo A- OY >= ii,
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TABLE A4

(R)
(R)
(R)
(R)

(R)

0
1
0
1
0

2

(R)

5
0
0
0
1

(R)

4
0
0
0
0

(R)

0
0
4
0
0

@
(R)
(R)
(R)

TABLE A5

(R)

0
6
0
0
0

(R)

0
0
6
0
0

which can be rewritten as the problem"

Maximize ’(14) subject to Yo >= OY -!- X’,

1 =< ki.
On solving this problem, we will always get a finite maximum for 0 be-

cause an unbounded 0 would give feasible solutions with negative total
cost.
On obtaining this finite maximum kOmx by the simplex method, we

automatically get a nonnegative m-vector IIk, and a nonpositive scalar
IIok such that

(15) (IIk, IIok) Yo, 1) maxk,
and since the scalar product of (-1, II, IIo*) with all the columns on the
right of (14) will be nonnegative, we have from the first column

(16) (IIk, II0). Y, O) 1 >__ O.

Multiplying (1.6) by -0 and adding to (15) gives

(17) (II, IIo).[(Yo, 1) + O(Y1,0)] __< Omax .
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Yl 4

(a) (b)
FIG. 1

FIG. 2

Since, as we remarked above, the scalar product of (IIk, II0k) .9 => 0
for all 9, (IIk, II0). (Y, 1) >= 0 is a valid inequality for (8).

All the inequalities of (8) that come from the condition that the network
must satisfy the requirements of period t are satisfied by Y0 + 0Y1 for
0 =< 0 =< 0max, because then Yo + OYI satisfies (14) and so provides a
feasible network for time period t. This is a step toward condition (a)
above since a portion of the inequalities of (7) are satisfied. Turning now
to the other condition, we see from (17) that

(II,II0).(Y0+0Y, 1) < 0

for 0 > Omx. So condition (b) is fulfilled with II (IIk, II0).
If we repeat the calculation (14) for each period tk, and finally choose
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Omax min k0max max

then by the reasoning above, condition (a) will be satisfied by Yo - OY1,
0 -< 0 __< 0mx, and (IIk, II) is the looked for inequality.

Taking (IIk, II0) as our selected row, we can now proceed with step
(iii) of the primal procedure. This completes the description of the primal
process except for the details of solving (14). However, this is so close to
the procedure for solving (11) as not to require a separate description.

3. Example of the dual method. Consider the network shown in Fig. 1 (a)
where the costs c of building unit capacities are as shown in Fig. l(b).
There are two time periods with the flow requirements shown in Fig. 2(a)
and Fig. 2(b).

In giving the calculation, we will also include a few simple shortcuts in
the calculation. For example, we note in passing that in Fig. l(b), the cost
of y6 is 12 where the cost of yl and y4 are 4 and 6 respectively. Therefore,
the arc y6 will never be used in an optimum solution and we eliminate it
from the start. This can be done for any arc whose cost equals or exceeds
a sum of costs of arcs which form a path connecting the two end nodes of
the arc.
To start the algorithm, we should first test the feasibility of the vector

Y [0, 0, ..., 0] and use the inequality generated by solving (11) to
start the calculation on (8). However, since any inequality, which is
necessary for the network to satisfy, can be used, we can, at the very start
of the calculation, get inequalities by utterly simple considerations, thus
postponing the solving of (11) until more refined results are needed. The
inequalities we shall use are that the sum of the branch capacities of arcs
which connect one node to the others must be equal to or greater than the
sum of the flow requirements between that node and the others. (This could
also be done with sets of nodes and sums of requirements.)
We start then with Table B1 which represents a portion of (8) and,

except for its top row, will be one inverse. The top row is the cost function
to be minimized, the next five rows are identities, and the last row asserts
that

yly+y-- 8-- v_-> O,

i.e., that node 1 must have arcs totalling at least 8, its requirement sum,
connected to it. Note that the positive signs in the top row assure us of
dual feasibility. The notation here is that of [8] and [11].

Using the dual simplex rule, we pivot on the starred element obtaining
Table B2 (except for the bottom row). The vl row can now be dropped and
replaced by a new inequality.
We next consider node 3, which gives the inequality
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TABLE B1

z
yl

y.
ya
y4

y5

yl

0
0
0
0
0
0

-8

4
-1
0
0
0
0
1"

--y2

5
0

-1
0
0
0
0

7
0
0

-1
0
0
0

6
0
0
0

-1
0

-1

4
0
0
0
0

--I
--I

TABLE B2

z

Yl
y2

Y
Y4
Y5

--32
8
0
0
0
0

--8

4
--1
0
0
0
0

5
0

--i
0
0
0

-1

7
0
0

-1
0
0

-1

2
1
0
0

-1
0

-y5

0
1
0
0
0

-1

-1"

TABLE B3

z

Y
Y2
Y
Y
Y
v

--81
7
0
7
0
1

--8 --1

-y2

0
1

-1
1

-1
0

-2* 1 0 0

(18) --8 -- y: -k Y3 -- Y5 => O.

To express this inequality in terms of the current non-basic variables we
turn Table B2 into the inverse by replacing the top row by 1, 0, 0, 0, 0, 0)
and then multiply the row vector (- 8, 0, 1, 1, 0, 1 ). This gives (18) in the
form needed. It is placed in the position where the vl row was (see Table
B2) and another pivot step is then made on the starred element.
We proceed in this way, considering nodes 4 and 2, with the obvious asso-

ciated inequalities y q- y 7 3 _-> 0 and y q- y 7 v _-> 0 and
obtuin Table B3 (except for the bottom row).
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TABLE B4

z
Yl
y2

Y3
Y4
Y5
v6

--81
3
4
3
4
1

--3

0

0
1

TABLE B5

z

Yl
y2

Y3
Y
y5

--85.5

3
4

At this point, these simple inequalities are satisfied and we must go
through the full auxiliary calculation solving (11) to obtain a new in-
equality.
At the beginning the prices (which appear in the top row of Table C1) are

all zero so any feasible network provides an improving column such as
the one headed 91. After pivoting, we have a nonzero price, and the
cheapest network calculation described earlier gives a feasible network,
(4, 0, 3, 4, 5), which, expressed in terms of the current variables, gives the
left column in Table C2. We proceed through another pivot step and two
more improving networks as shown in Tables C3 and C4 before reaching
Table C5. Then the feasible network calculation shows that for a
II (0, , 0, , ) there is no feasible network with II. < 1, although
IIY < 1. This gives us our new inequality IIY => 1 or equivalently

--9-t-y2-y4y5 v5 >= 0,

which is transformed to become the bottom row of Table B3. After pivot-
ing, we obtain Table B4.
The auxiliary calculation (11) now shows that the requirements for

period 1 are now met and we must now do the auxiliary calculation for the
requirements of period 2. Of course, the Y values in Table B4 which give
the cheapest network satisfying the first period requirements could have
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been obtained much more cheaply and easily by a single feasible network
calculation. However, it is necessary to obtain the inequalities represented
by the rest of the matrix if one is to proceed further.

TABLE C1

-i
3
4*
3
4
1

S Sz

0 0
0 0
1 0
0 1
0 0
0 0

0
0
0
0
1
0

TABLE C2

2

-1
4
0
3
4*
5

S

TABLE C3

-I
4
1"
7

--I
9

0
0
0
1
0
0

TABLE C4

4

-I
7
0
7
0
9*

S S

0
1 -1/4
0

0 0

S Y

0 0
0 7
0 0
0 7
0 0
1 1
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TABLE C5

7 $3

F. 3

An auxiliary calculation like that of Tables C1-C5 yields prices
II (-r6, 0, o, 0, 1%) and a 0 of only . Hence, the inequality

which is used in Table B4 to obtain Table B5. The auxiliary calculations
for both periods 1 and 2 give values of 0 >= 1 so this is a feasible, and there-
fore optimal, network. Thus, the cheapest network for our requirements
is shown in Fig. 3 and given by

Y= (, , 3, 4, )

with cost 85.5.
Primal calculation. We will redo the example using the primal method.

This approach has the advantage of giving a feasible network at all times,
so that calculation can be stopped if progress is too slow.
The first step is to get a starting feasible solution. This is easily done by

giving the arc connecting nodes i and j a capacity equal to maxt Ri.j(t).
Applying this to our example gives a starting solution Y (3, 4, 3, 4, 2, 3 ).
However, iust as before, there is no gain in considering an arc such as y6

whose cost is greater than that of an alternate path connecting its end
points. So we will rule out y6 and fulfill its requirement by adding 3 units
to the alternate path yly4 to give the starting feasible five-arc network
Y (5, 4, 3, 4, 2).
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TABLE D1

Z

yl

y3

y4

y5

-93
5
4
3
4
2

--4
1
0
0
0
0

--5
0
1
0
0
0

-7
0
0
1
0
0

--6
0
0
0
1
0

--4
0
0
0
0
1

TABLE E1

X1

1
0
0
0
0
0
0

0
0
0
0
1
0
0

0
0
0
0
0
1
0

0
0
0
0
0
0

-1

-1
0
0
1
0
0
0

TABLE E2

X1

1 0
0 1
0 0
0 0
0 0
0 0
0 0

0
0
0
0
1
0
0

0
3
4
3
4
1

-1

-1
0
0
1"
0
0
0

To obtain a starting basis, we introduce the variables u, i 1,
which are unrestricted in size and are defined by

,5,

yl 5 Ul, y2 4 u., y3 3 u3,

y4 4- m, and y5 2- us.

This gives the starting array of Table D1. Clearly, a better solution can be
obtained by increasing u3 from its current value of 0 to some value 0.
We will find the largest possible value of 0 and the limiting inequality by
solving the system (14) with Yo (5, 4, 3, 4, 2) and Y1 (0, 0, 1, 0, 0).
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TABLE E3

X2

--3
0
0

--3
3*
3
1

1
0
0
0
0
0
0

Sz $4

1 0
0 0
0 0

0
0 1
0 0
0 0

3
3
4
3
4
1

--1

TABLE E4

X2

0
0
0
0
1"
0
0

Sz $4

1 1
0 0
0 0
1

0 --1
0

0 7
0 3
0 4
0 7
0 ---3
0 --TABLE D2

Z

Yl
y2

Y
Y4
Y
Yl

-93
5
4
3
4
2
0

--4

0
0
0
0
0

-5
0
1
0
0
0
0

-7
0
0

0
0
1"

--6
0
0
0
1
0

--4
0
0
0
0

0

TABLE D3

Z

yl

Y
Y.
Y
Y
/)2

-93
5
4
3
4
2

--4
1
0
0
0
0
0

--5
0
1
0
0
0
1"

7
0
0

-1
0
0

-1

1
0
0

-1

0
-1

-4
0
0
0
0
1
1
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TABLE D4

z

Yl
Y2
Ya
Y4
y5

--88
5
3
3
4
2
0

--4
1
0
0
0
0
0

--t2

5
0

-1
0
0
0

-1

2
0
1

--1
0
0
1

--4
0
1

--1
1
0
2*

1
0

--1
0
0
1
0

TABLE D5

z

Yl
Y2
Y
Y4
Y

--88
5
3
3
4
2

--4
1
0
0
0
0

4
0

0

2
0

0

1
0

-1
0
0
1

TABLE D6

z

Yl
y2

Y
Y
y5

V5

--88
5
3
3
4
2
1

4
--i
0
0
0
0

--i

1

0
0

--h

2

0
1

4

0
--1

--5
+1
+1
0
0

-1
2

For the solution of (14), which is of course again a linear programming
problem, we need a starting basis, i.e., for a starting value of 0 (which will
be zero) we need to express Yo nt OY1 as a sum of feasible networks and
slacks. This yields the starting Table El.

Pivoting on the starred element now yields an increase in 0 and Table E2.
The 0 column now is an improving one so we pivot on that column giving,

except for the left-most column, Table E3. Next, using the linear program-
ming prices from the top row, we do the special matrix calculation to get
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TABLE D7

z

Y
Y
Ya
Y
Y
v5

85.5

3
4

0

1

0
0

5

FG. 4

5

FIG. 5

5

a cheapest feasible network which turns out to be (3, 4, 0, 7, 4). This, after
being enlarged to (0, 3, 4, 0, 7, 4, 1 by adding its coefficients in the top and
bottom rows, is updated to become the left-most column in Table E3.
Pivoting on the starred element gives Table E4.

cannot be increased any more as our column generating procedure
shows. Thus, the inequality

(19) -7 +y3+y4 vl_>- 0
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TABLE F1. First period requirements

(9 x
(R)
(R)
(R)
(R)
(9
(R)

(R)
@

1
2
X

6
3
9
X

3
9
6
3
X

4
5
2
6
4
X

7
0
9

11
0
2
X

7
4
3
2
6
6
3
X

3
4
7
5
2
1
3

12
X

9
5
5
8
9
1
4
4
17
X

TABLE F2. Second period requirements

(R)

(R)

(R)

@

(R)

X
7
2
3
1
8
7
0
14
3

X
14

15

o
17

X
6
7
2
9
4
17
14

X
6
12
2
3
12
4

X
3
1
7
8
19

1
11
1
2

X
4
19
7

X
4
3

X
8

obtained from the prices appearing in Table E4 is the binding inequality
among those that insure the continued first period feasibility of our net-
work. Ordinarily we would repeat this calculation using second period
feasible networks to find the binding inequality among those that insure
second period feasibility and then choose the one with the smaller 0. How-
ever, in this case with Om already 0, this second step is unnecessary.

(19) is adjoined to Table D2 and a primal pivot step is made.
The result (except for the bottom row) appears in Table D3. Now a

further improving column is (0, 1, 0, 0, 0). To find O and the binding con-
straint, the calculation of (14) is repeated with Y0 (5, 4, 3, 4, 2) and
Y1 (0, 1, 0, 0, 0). This time, both periods are considered and the bind-
ing inequality, which comes from the first period requirement, is

(20) -8 +y2 +y3 +y5 v2->_ 0,
with Omax 1. Updating this inequality gives the bottom row in Table
D3, and a primal pivot step produces the new network of Table D4 and
Fig. 4.
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FI. 6. Unit costs between stations

FIG. 7, Final network, total cost 2375

This process is then repeated with the auxiliary calculation yielding
first the inequality

--9 --y2+ Y4 -- Y5 va >_- O,

which becomes the bottom row of Table D4. After pivoting, Table D4
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becomes Table D5. The auxiliary calculation then yields

-10 - y+ y-t- y- 4_>- 0,

which updated appears in the bottom of Table D5. The next pivot yields
Table D6. The next inequality is a recurrence of

-7 y -t- y. > 0.

Pivoting yields Table D7. In Table DT, there is no longer any improving
column so the optimal network has been found and is the same as the
one given by the dual calculation.

4. A larger example. A ten-node twenty-arc network was considered.
Unit costs are given in Fig. 6; the requirements for the two periods involved
appear in Tables F1 and F2. The problem was run on the IBM 7094 using
the dual method. After a run of ten minutes, the minimum synthesis
shown in Fig. 7 was obtained.
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