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A SOLVABLE CASE OF THE TRAVELING SALESMAN PROBLEM*
BY P. C. GILMORE AND R. E. GOMORY

THOMAS J. WATSON RESEARCH CENTER, YORKTOWN HEIGHTS, NEW YORK

Communicated by William Feller, December 16, 1963

Given an nxn matrix D of nonnegative numbers di,, the traveling salesman prob-
lem for D is the problem of finding a cyclic permutation r of 1,..., n, called a tour,

n

for which C(r), defined to be E diTn, is a minimum. The bottleneck traveling
i = 1

salesman problem for D is the problem of finding a tour r for which MC(T), defined
to be Max {dij, is a minimum.1

1 <i <n
The purpose of this note is to announce a solution to the traveling salesman

problem and the bottleneck traveling salesman problem for a special class of
matrices. The solution of the bottleneck traveling salesman problem provides also
a solution to the problem of characterizing those directed graphs, of a certain well-
defined class, which possess Hamiltonian circuits. Proofs will be given in outline
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only, the details and the motivation being left for a later paper.
The class of matrices D for which a solution has been provided is characterized as

follows: each nxn matrix D of the class is obtained from n pairs of nonnegative
numbers Rf and Si by defining dry to be max {O, S, - Ri}. Given any such D, let
a and : be permutations of 1,. . ., n such that Ra.< Ra2.< <Rf and Sp, <
S, < ... < Ssn. For any i and j, 1 < i < j < n, define c(ij) = max {0, c'(i. j)}
where c'(i, j) = min {ItRai -Rai* Ray- Sji; Sg - Spl Sjg -Rai}.

Essential to the solution of the traveling salesman problem for any given D of the
given class is a nondirected graph G, with costs attached to its edges, defined as
follows: G has 2n nodes, n of which are called R-nodes and n of which are called
S-nodes. The edges of G are of one of the following kinds with their costs as
stated:

(I) For each i, 1 < i < n, an edge [ii] of zero cost, called an identity edge,
joins the R-node i and the S-node i.

(II) For each i, 1 < i < n, an edge [a,, eih] of zero cost, called a level edge,
joins the R-node aj and the S-node fl

(III) For each i, 1 < i < n - 1, an edge [aj, aj+,] of cost c(i,i + 1), called an
a-edge, joins the R-nodes a, and ai+1 if and only if c'(i,i + 1) = Rai,, - Rai or
c'(ii + 1) = Rai+ - Sp

(IV) For each i, 1 < i < n - 1, an edge [Bih, i,+i] of cost c(i,i + 1), called a
3-edge, joins the S-notes Oi and All+÷ if and only if c'(i,i + 1) = Sai+, - Spi or

c'(iji + 1) = S,-i+1-Ras
By a spanning tree of G we will mean a spanning tree in the usual sense2 except

that a spanning tree, of the subgraph of G with only identity and level edges, is
assumed to be a subgraph of every spanning tree of G. The cost C(T) of a spanning
tree of G is the sum of the costs of the edges of T.

n

For any permutation A and v of 1, ..., n, C(Qu,v) is defined to be dipi so that

C(1,T) = C(r), where 1 is the identity permutation.
THEOREM 1. For any spanning tree T of G there exists a tour T such that C(r) <

Q(af) + C(T).
The tour r is obtained as follows: let Ia be the set of interchanges (i,i + 1) for

which [af, at+i] is an a-edge of T, ordered in increasing size of i, and let I, be the
set of interchanges (ii + 1) for which [$,8,,B+'] is a S-edge of T, similarly ordered.
Let a' be a, and for each r,a > r > 0 where a = |IaI, define at+lto be ar- (ii + 1),
where (i,i + 1) is the r + 1st interchange of .Ia. Let 8' be similarly defined for
each sb > s > 0, where b = 46,!. Then T is the permutation [(aa)-.-:bI

Thus, if To is a spanning tree of G for which C(To) is minimum, it is possible to
find a tour To such that C(ro) < Q(aS3) + C(To). Two theorems are proved to
show that for every tour T,C(T) > C(ro).
Given any permutation p of 1, ..., n and any i, 1 < i < n, define j(i) to be

j(i) - 1
a(1 a p). and define A(p) E E c(r,r + 1).

i <j(i) r =t
THEOREM 2. For any permutation p, C(p) 2 C(a,fl) + A(p).
There remains then only to prove:
THEOREM 3. For any tour r, there exists a spanning tree T of G such that A(r) >

C(T).
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Since if r is any tour, by Theorems 2 and 3 there exists a spanning tree T such
that C(r) > C(a,,f) + C(T), and since C(T) 2 C(To), it follows by Theorem 1 that
C(r) 2 0(To).
For the solution of the bottleneck traveling salesman problem, it is possible to

assume without loss that R,, 2 S;,6. For it can be shown that (a-'1-) is a permu-
tation p minimizing MC(?), and therefore that for any T, Max {dii = Max
{Max{O,S, - [Ri + MC(a-1-,8)]}} + MC(a-,8). 1 <i <fn 1 <i < n

A graph H, very similar to G, has an essential role in the solution of the bottleneck
traveling salesman problem. H differs only in the following details: there are no
a-edges and for every i, 1 < i < n, there is a a-edge [f3iS+1 ] joining the S-nodes 13i
and ft+1 with cost mc(i,i + 1) defined to be max {O,Si+ - Rail A spanning
tree T of H now has a cost MC(T), which is the largest cost assigned to edges of T.
For permutations andv of ..., n, define MC(u,v) = Max {d,,J. Under

the assumption that Ras . S, i = 1, .. ., n, note that MC(a,,3) = 0. Corre-
sponding then to Theorem 1 is the following theorem for the bottleneck traveling
salesman problem:
THEOREM 4. For any spanning tree T ofH there exists a tour r such that MC(T) <

MC(T).
For the graph H only a set I, of interchanges is defined, so that 'r is the tour

(aof-*b). Again if Tois a tour such that MC(To) < MC (To) for the spanning tree To of
least cost MC(To), there remain two theorems to be proved to show that To is a tour
for which MC(ro) is minimum.

In place of A(p) in Theorems 2 and 3, MA(p) appears in Theorems 5 and 6, where
it is defined to be Max Max [mc(r,r + 1)]}.

i < A~i) I <_ Ai) - I
THEOREM 5. For any permutation p, MC(p) 2 MA(p).
THEOREM 6. For any tour r, there exists a spanning tree T ofH such that MA(r) 2

MC(T).
The problem of characterizing those directed graphs which have a Hamiltonian

circuit (and finding the circuit when it exists) has been solved for the following
class of graphs: K is a directed graph of n nodes which is a member of the class if
and only if rF c r2 C ... c rn, where rF is the set of nodes j for which K has an
edge directed from i to j. A Hamiltonian circuit for K is a tour r such that for each
i, i = 1, . . ., n, there is an edge of K directed from i to r,. Clearly no K can have
a Hamiltonian circuit if r, is empty so that without loss the class can be restricted
to those graphs for which r, is nonempty.

Let K be any graph of the given class and let #3 be a permutation of 1, ..., n such
that for each i there is a -j for which ri = {8, . ..., 3,}. Let K* be an undirected
graph of n nodes with an edge (ifh) if and only if oicri, for i = 1,..., n, and an
edge (i,i3i+,) if and only if (i,0i+1)Eri+F, for i = 1, . . ., n - 1.
THEOREM 7. A necessary and sufficient condition that K have a Hamiltonian cir-

cuit is that K* be connected.
The proof can be completed by determining R1 and S,, for i = 1, .. ., n, such that

the problem of finding a tour r minimizing MC(r) is equivalent to the problem of
finding a Hamiltonian circuit for K.

* This research was supported in part by the Office of Naval Research under contract Nonr
3775(00), NR 047040.
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1 Although the bottleneck traveling salesman problem has not apparently been discussed before,
the closely related bottleneck assignment problem has been discussed and solved by 0. Gross,
"The bottleneck assignment problem," the RAND Corporation P-1630, March 6, 1959.

2 See Kruskal, J. B., "On the shortest spanning subtree of a graph and the travelling salesman
problem," Proc. Amer. Math. Soc., 7, 48-50 (1956).

SENSITIZATION OF PURINE-STARVED BACTERIA TO X RAYS*
BY HENRY S. KAPLAN AND F. L. HOWSDEN

DEPARTMENT OF RADIOLOGY, STANFORD UNIVERSITY SCHOOL OF MEDICINE, PALO ALTO, CALIFORNIA

Communicated by Arthur Kornberg, December 4, 1963

The susceptibility of bacteria to the lethal effect of ionizing radiation is modified
by a number of nutritional and physiologic factors. 1' 2 We have observed an ap-
parently new phenomenon: a striking increase in sensitivity to ionizing radiation
in purine-deficient cultures of E. coli, which is reversible by subsequent purine sup-
plementation.

Materials and Methods.-The bacterial strain employed in most of these experiments was E.
ccli K12, HfrH, substrain X-662 (pur, thiamine-), which was kindly provided by Dr. Herbert
Marcovich, Service de Radiobiologie et de Cancerologie, Institut Pasteur, Paris, France. This
strain has an absolute requirement for a natural purine base; it grows equally well on a mixture
of hypoxanthine and xanthine or on adenine.
The organisms were inoculated from agar slants or stationary phase cultures into minimal salts-

glucose medium' supplemented with thiamine hydrochloride, 10-20 ,ug/ml, and adenine, except
where otherwise indicated, at a concentration of 1 jg/ml ("starved") or 100 sg/ml ("supple-
mented"). They were incubated on a waterbath shaker at 370 overnight, or for shorter intervals
as stated. In other experiments, the shift to purine starvation was made during exponential
growth; after about 4 hr at 370, cultures were rapidly filtered and washed on Millipore HA mem-
brane filters, then resuspended and reincubated in prewarmed purine-free medium. Growth was
often followed by serial turbidity determinations at 650 my on a Coleman spectrophotometer,
but cell population data in all instances are based upon viable colony counts after plating on yeast-
extract agar.
For irradiation, aliquots of the cultures were appropriately diluted to yield 1-3 X 107 cells per

ml. An aliquot of this dilution was saved as a zero-dose sample, and the remainder of the dilution
distributed in 1.9 ml aliquots to the required number of 35-mm-diameter sterile plastic Petri
dishes. The dishes were kept chilled on ice until the time of irradiation. Each dish was in-
dividually irradiated in a plastic holder suspended in an irradiation chamber midway between two
opposed beryllium window X-ray tubes operating at 50 KVP and 48-50 ma, with 0.3 mm Al
added filtration. Under these conditions, the average dose rate in the culture fluid within the
dish was 9.9 Krads per minute.4 Ultraviolet (UV) irradiation was performed with similarly diluted
cultures in plastic Petri dishes on a rotary platform under a low-pressure mercury lamp calibrated
to deliver 2,537 A irradiation at an output of 800 ergs/mm2/min at the level of the Petri dish.
After irradiation, the samples were appropriately diluted in mineral medium, plated on yeast-
extract agar, and incubated overnight at 37° . Colony counts represent the average of 4 plates
per dilution per radiation dose. Survival percentages are referred to the average colony count of
the unirradiated (zero-dose) sample. In some experiments, the survival of various experimental
groups was compared at a fixed radiation dose level of 20 Krads.

Results.-(1) Enhancement of X-ray sensitivity: Cultures which had been grown
overnight on low purine levels (1.25 ,g/ml) were strikingly more sensitive to X
rays than controls grown with a normal supplement of 100 ug/ml (Fig. 1). The
response to X ray was exponential over four decades of killing, reflecting homo-


