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In carvlier papers [Opns. Res. 9, 8$10-850) (1861}, and 11, 863885 (10963)] the
one-dimensional cutling stock problem was discussed as a Bnear program-
ming problem. There it was shown how the difliculty of the encrnons num-
ber of columns oceurring in Lhe linear programming formulation could be
overconme by solving n knapsack problem af every pivolstep. Tnbis paper
higher dimensional cutting stock probloms are discussed ns Hpons pro-
gramming problems,  The corvesponding difficutly of the number of eol.
umus cannol in generzl be overcome for there is po afliciont. method for
solving the generalized Jnapsoek problem of the bigher dimensional prob.
lem.  However o wide elass of culting stock problems of indusiee have
vestrictions that permit their generalized knapsack problem to be officiently
solved,  All of the cutting stoek problems that vield to this treatment are
ones in which the cutting is done in stages. In freating these praetieal
aulling probiems, one ofton enconnters additions) conditions that affecl,
the solution. An example of this ocewrs in the cualtting of cormgaiad
boxes, which involves an auxilinry segiiencing problem. This problem s
discussed in gome detail, and o solution deseribed for the sequencing
prolidem under given simplifying assumpfions.

Ex\' FARLIER pﬁ-i)(“l‘b‘){i':!] we have discussed the one-dimensional stock

antiing or trim problem as a linear programming problem.  Tun this
paper we take up the corresponding problem in ligher dinvengions.  Tor
clarity, we will state here a version of what we call the bwo-dimensional
pirablem:

Consider a supply of stock rectangics of width 1V and fength 1, and
a demand for N vectangles of width w, and fength 1, 7==1, - -, ;. A two-
dimensional probiem is to eut thestoek rectangles inlo thesmallor domand
rectangles using as fow stock rectangles as possible.

Problems resembling the one fast deseribed furn out to bo surprisingly
conumon inapplications.  Specific examplos wore given by Karroroviron )
in his very early discussion of the trim problem, and by Remm®  The
reason why these problems are emnmon seems 1o ho quite fundamental.
Jusl as ceconomics of scale fead o some producis being produced in large
lots, they also tend Lo make ecconomical the production or provision of some
materials in large size.  These cconomical sizes must then be cut up to

T This vesearch was suppovted in pari by the Office of Nava) Research under Con-
tract No. Nonpe 3775(00), NR. 047040,
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mieet consumer damands, Among obvious examples of this are the pro-
duction ol glass, wmetal sheels, graphite, photographie film, plastic, cte.
Another, less obvious but IHHIHI’M{}HQ, example s rallway freight trans.
portation; which is provided in boxear sizes and which one can yegard as
being cut up Tor use into swaller crate sizes when evates ave packed into
the boxear.

A second aspeet of the higher dimensional problem in the very general
form just deseribed is ils bractability,  The example deseribed above,
when the small rectangles are to I)(‘ fitted ito the stock rectangles in any
way, 18 hasieadly of the jesaw puzele variety and methods ave nod now
known for large-scale problems of this sort.

However, an examination of industrial problems shows that the problem
shated above s uomecessarily general.  Inoa great many mdushm] situa,-
tiong, o picce of material being eut must be cut all the way through from
one cdge to another. The resulting smaller picees may then be treated
separately and cutl again, but agaim each s eut all the way through,  The
cutting patterns produced in this way will still be intricate and tremen-
dously numerous, but, as we will see, this replacement of the original multi-
dinensional problem with what might be ealted a multistage probiem does
Tead to methods of solution.

In the fivst seotion we will review bidefly the one-dinmensional cutting
stock problen, as desevibed in reforence 1) showing how a ol gonera-
tion feehnigue for the problem reqguires a solution {o a generalized knap-
sack problem. We will also deseribe a shghtly different method for
recwrsively solving the knapsack problem. We then show how a two-
dimensional cuiting stock problen: ean he posed as a Ineay programming
problem and how colun generating techniques now lead to more general
Iknapsack problems for which no wethods of solution are known,  Some
special kinds of two-dimensional problems are solvable, however, and one
of these 1s discussed at length i the third seetion.  Next we diseussg othoer
two-dimensional problems and a solvable three-dimensional problem.  In
the filth seclion we fake up one special two-dimensional problem, $he
corrugated box problem, and then diseuss a relatod sequencing problem, the
solution of which can affeet the origihal cutting problem, as we show in the
final secfion,

ONE-DIMENSEOXAL CUPTING STOCK PRODBLEMN
The Linear Progremming Formalaion

By way ol inlroduction to the present paper wo will review some of our
carber work (references 1 and 2).

A one-dimensional noninteger entting stock problem is the following:

a continuous sheet of stock material of breadih 2 is to be oul so as to salisly
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demands for amounts N; (lengths) of strips of breadth (=1, -+ .
The demand N, can he satisfied by sunplying any numbor oi" pleces of the
strips of breadth £ g0 long as the total lengths sum 1o at leasi N As
iustrated in Wg. 1, the demands are met b oy deeiding upon various slitling
patterns for the sheet of breadth ©; the jth slitting patfern is a way of
dividing the breadth I, inte the smalior breadths Ly 4=1, - m, and ig
applicd to an amount & of the sheet,

In a lingar programming formmlation of a one-dimensional noninteger
cutfing stock problem, the mairix A of the linear programuming problem
will have m rows and 4 large number of cohunins, one for cach of the possible
slitting patterns,  Thus cach vocior fn, oy - -, @) of nonMegative infegers
a; satisfying

Lzha+hay-t -+, (1

% X, i sz !
éfés § 4 é‘i@
£, 4,
T
5
LITTING PATTERN | SLITTING PATTERN j,

&

Figure 1

Is a colwmn of the matrix. If X is a column vector of variab les, one for
cach colun of A4, and if 1 is a row veetor of all 1% then the linear pro-
gramming pmi.ﬂ.cm 15 siated:

minimize X
subject to A - X = &,

where Vg the column veetor [V, Ny, -+, N, of demands N

Here we have stated (2) without slack variables so that the possibiliiy
of overproducing one of the demanded breadths , is not admitied. In rel-
erence 1o we showed thal the more general problem in which aslack variable
is infroduced into each cquation docs not lead to a cheaper solution.  We
have therefore omitted the slack variables here for the sake of simplicity
and refer the reader (o reference 1 for a diseussion of (he problem \ulh
slack variables,

Practical problems oceur in both integer and noninteger forms, where
by an integer problem we niean one in whicl the demands &, are in integers
and the varighles x; are restricted to being integer.  Although our lineas
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programuming methods will enly solve the noninleger problemy, practice
has shown that rounded answers to the noninteger problem can often
provide satisfactory solutiong t¢ integer problems.

The Knapsack Problem

The only computational diffienity s amhm, in the way of solving a
cutiing stock problem as a linear programming problem is generally the
very large number of coluning in the problem.  owever in reference 1
we showed how this compuatational diffieulty in the one-dimensional cutting
stock problem could be redueed to the solution of a knapsack problem at
every simplex pivot step. The knapsack problem is the foliowing: let
Iy, My - -, 1T, be the Emgmnno madtipliers or shadow prices associated
with the i equations in a basic feasibic solution to the linear programming
problem, then the problem is

f maximize a4 1Tee - - - - -1,

subject to {1} and subject to a;, €=1, -+, {3)
hemg nonnegative integers.

In references L and 2 we deseribed two methods for selving the knapsack
probiem; one of which I8 a reewrsive caleulation. We would like 1o de-
seribe hoere another recursive calewdation that has several advantages over
the previous one when no cutting knile imitation, of the type deseribed in
reference 2, ocgurs.  Both the present recursive caleulation and the one
deseribed In references 1 oand 2 can be regarded as oxtensions of the re-
cursion in Daxrzia!™ or Beuaax™ to a knapsack problem in which the
variables may be any m)nnogaﬁ-iva iniegers, and not just 0 or 1.

Il we define /#,(2) as the value of the best combination that can be
fitted inio a stock of lenglh & using only the first s variables
{i.e., ;= 0, i>2), we have the reemrsion

Polaey=max{lL4+F.{o—L),Fo(x}}, Tor s>1. {4)

This follows from the fact that the patiorn yielding the value F(z), s> 1,
either does or dees not use the sth variable at g positive level.  IF it does
use it, then (o) = 1T F (e =10, and if it does not then Fle) =F,_(x).
Since Fy (@) = {e/I] is easily obtained, and £.(0)=0 for all s, (1) enables
us o caleulate F(z) i terms of Foo(x) and 1,027, for 2’ <z, ic., in
terms of functions already known,  Then F, (1) gives us the value of the
best knapsack pattern. 1t should be noted that when F,,{7) has been
computed, so has F.(e) forall 8, [ Sssm, and all 2, OS2 < L.

Although the above ealeuiation produces the hest value, there still re-
mains the question of {inding the pattern that gave that value.  To do this,
we backtrack the recursion (43, Backtracking is simplified by the fol-
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lowing deviee.  Associate with 7(2) the index 1 i 224 and 0 obherwise
As i), s>1) 38 (’(}mpm((i or cach &, associate with Fo(z) the index g, if
Py =1L F (e, and olherwise the index associated with Foala).

Conscquent |‘\;') the mds‘.\ associated with 7,00, for any s and 2, is the largoest
mdex » for which a, is positive in the pattern yielding F.(e).  Therefore,
to find the patiorn yielkding #,.(1), we Jook first at the assoeiafod index, if
this is 7 and »2>0, then a, i in the pattem at a value of 1 or more.  Wo
Jcmi\ next at fL0L—0), i its assoeiated index is /(7 = is passible) and
P >(}, then o picee of breadéh £, was used in FolL—1.3 and henee in F,(7)
Continuing in this way, we obfain the whole patierm,

Pwo remarks ave now inorder. Kirst, in compuling {:1) one need rebain

a Iz /
CUTTING BATTERN ’ii CUTTING PATTERM }

Filgure 2

ooly &, (@) to compute F.e)) and in backi tracking, oue requires only
Foled; thus all values 1o .00 can he discarded before Imgimaing the cong
putation of F.(x). Sceond, this recwrsion involves less arithmetic than
the reeursive methad deseribed in referenees Tand 2 by a facior of approxi-

mately o where

L m( D (L/1:].
It may therefore be comparable in speed with the lexseographic method
described under “Knapsack Method” in reference 2, although, in contrast
to the lexieographieal methods it does not seem to be adaptable to probiems
whoere the numiber of eutting knives is Hinited.

GENEEAL TWO-DIAMENSTIONAL PROBLEM

Taw provuEy we are aiming at is the one deseribed in the intreduction,
the problem of producing small rectangles by entting up large ones.  How-

AN
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ever, just as the roil cm ing problem s approached by solving the related
mmmi(‘p,m prabiem of slitting a sheet, this rectangie problem is approached
by the noninteger prob I(‘ 1ol wh‘lm“ a soiid rectangular har,

In thig prablem the stoek maierial consists of a continuous har of ree-
tangular cross scelion JI7XL, which is to be cul (o supply an amount &,
measiyed along the bar, of & bar of reetangular eross seclion woXi, 7= 1,

-, an The amount ¥, for any 7, may be supplied in any wwmber of
picees. The enlling s performed as follows: a number of rectansular
culting patterns ave decided upon, each pattern heing deseribed by a way
of htling the small rectangles w;xX{, into the lavge one WXL, the jihsuch
pattern deseribes how the steek har is to be slit a distanee z; to produce
smaller bares, as illustrated in g0 20 The problem then is to supply the
arderved amounls by cutling as little stoek as possible,

b I !
{ !
n
(e
L
(4)
(3 | (3)
(8) (s) (8)

Figuee 3

The linear progeannning probleny that is equivaient to such a cuiting
stock problem has exactly the form {23, However the colmmns of A are
now defined as follows.  To cach possible reetangudar cutting patterm of
I there will eorvespond a calumin ey, @z, -« -, a0l of A, where a; s the
number of rectangles w X/ which ocewr in the pattorn. For example in
Fig. 3, a reclangular cutiing patlem is illustrated in which 1 reclangle
iy Ky ocewrs, 2 rectangios w X, 1 reetangde wi X and 3 vectangles ws X s

a4 column 1n th(‘ matrix of the corresponding lincar programming problem
s [1,0,2,1,0,0,0,3, 0, 0]

As in the one-dimensional case, the difficulty in solving this culling
stock problem as a inear programming prohlem is the immense nwmber of
cohumng that ean oceur in the mateix. If, as in the one-dimensional case,
we apply a column generation jechnique then the following generalized
knapsack problent avises: given that 11, s the Lagrange multiplior or
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shadow price corresponding to the 4th cquation, ¢=1, - +, ity i some hasie
feasible solution then

maximize { e 1aay+ - 10,

subjoct 1o the condition that {uy, a., - - - s )
"c-on'osp(md to a cutting paiiom iitting a rectangie
WXy r=1, -, inlo a rectangle W 7.

(5)

We know of no ceonomical methed for solving this gencralized lnagp-
sack problem. .

Fortunately, however, there appear to be many practical cases where
it is nob necessary to 5.70]\’(3 the completely general two-dimensional problem

7

. Z. dd

Figure 4

Clearly, since economy has led to the production of luge sizes, Inexpensive
culting methods can also be expected.  Inexpensive cutting moethods
appear frequently to have one common characteristio: a eut in a piece of
matberial must begin on one side of the waterial and traverse the material
in a straight Iine to the other side.  This is the kind of cut made by many
types of machinery and used in many industries.  One example is the
gaillotine cutter used n cutling paper sheets, and for this reason we eall
this type of cut a guillotine cut.

Restricting the permissible cuts n a two-dimensional cutiing patiorn
to guillotine cuts severely fimits the permissible pattorns.  For example,
the pattern of g, 3 cannot be produced by guillotine cuts.  But quite
general patterns are still possible as illustrated in Iig. 4. A vecursion can
be written for the gencral guillotine casel but in this paper we confine

I "The reeursion is

Gley) = Maxge . e 1900, Clro)FGr 202, Glaysd G y~ye) )
{9 em<'m’2}
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ourselves to the computationally casier special subelasses of patierns that
corregpond to the cutling methods wsed in cortain industrics.

Before discussing somo of the special sibelasses of paticrns, we wish to
dispose of an apparent complication that can arise because some maierials
are isotropic while others are not. For isolropic materials such as glass
the orientation of an ordered reclangle w:X{; with respect to the stock
rectangle WX U: is hrrelevant while with nonisotropie materials, such as
corrugated paper, the ovientation can be relevani,  Actually this leads to
no difficultics.  As far as the generalized knapsack problem is concerned
we will always assume that an ordered rectangle w. X! must be oriented in
any pattern in the same way as the stock rectangle WX 7, and if indeed the
orientation of a rectangle w; X/l is irrelevant in a cutting stock problem,
then we will alse assume that a rectangle of width I and length w; is among
the ordered reclangles and has the same price.  In the linear programming
problem we will always have exactly one cquation for cach demanded
rectangle no matler what orientations of it are permitted, and the eniry
a; i any column will be the number of rectangles w:X{; oeccurring in the
corresponding culting paltern counting both orientations.

TWO-STAGE GUILLOTINE CUTTING
Usual Formulaiion

An mmportant subclass of palierns ivolving only guillotine cuts are
those which can be thought of as taking place in two stages. Wigure 5
Hlustrales a pattorn produced in this way: first the rectangle W X7 is slit
down its length into sbrips and then each of these strips is taken individually
and chopped across ils width.  Sometimes a third trinuning stage is per-
milted as illustrated in INg, 6, where the reetangles produced by the firsh
two stages of cutting ave trimined down their length to produce a rectangle
of an ordered size.  Generally the knapsack problem arising when trim-
ming is permitted (we call this the nonexact case) is more difficult than
the one arising when frivining is not permitied (the exact case); therefore,
uniess otherwise stated, we assume thal trimming is permitied.

B order to solve the two-stage gulllotine cutling problom it is sufficient
to solve the corresponding generalized knapsack problem

maximize o Thaa 4 - - - 10, subjeet to the condition
that fm, s, - -, @] correspond to a two-stage {6)
guillotine cutting paticrn.

where G{z,y) is the maximum value that ean be obtained from an 2Xy rectangle using
we Xl rectangles ab price 1 and any succession of guillotine antls, and glzy)=

11,

max [15:7 J]
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This knapsack problem ean be solved in (wo stages:

(i} for all widths w, eafeulate 117 the oplimum vadue oblainable by
fitting reetangles w;X{;, where 1, Zw,, end (o end into a strip of
width we and length L. Tor cach £ ihis is a knapsack problem of
the type (3).

(ity The optimwn value of the objoctive Tunetion a4 411tk
i then oblained by solving one more knapsack problem:
max 11504 11,50, subjoet to 17 Zwby - - -, b,

|

I

Figure 5

The knapsack problems of () above can all be solved together by one

. . . : . PN .
recursive calealation of the kind deseribed in the seetion, “The Knapsack
Probiem,” The first section of this paper.  For lel the demanded vectangles
be reindexed so that w S« S, Then 117 '

gy
R
—

Figure 6

as we pointed out above, the 3% for all ¢ are caleulated v the comse of
alenlating #,(L). Henee the two-stage guillotine cutting knapsack prob-
lem can be solved by solving two knapsack probiems of the type (3).

Formulation as « Siaged Linear Programming FProbiem

It 15 also possible to write the two-stage guillotine problem in another
way as a linear programming problem and apply a mixture of the approach
of reference 1 and the decomposition method of Danrzie ann Wores,
In this sceond approach, the problem s freated as a two-stage lincar pro-
gramming problem with the first stage corresponding to the process of
slitting the stoek vectangles into strips with widths corresponding to the
widths of demanded rectangles, and with the sceond stage comesponding
to the process of chopping the strips into demanded lengths,
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Let A now be a malvix of Zm rows partitioned vertieally info m-}-2
matriees ol Let & be a colunw veelor partitioned horizontally, to con-
form with il mlo d, 8, -0 &, 5, where @ are slack vasiables,  Finally
let ¥ be a 2m-veelor partilioned inte a zoio eveetor and the me-veetor N
OF d('m;md‘x for rectangles, ordeved as before in inereasing size of the widths

demanded rectangles,

The colunins of Ay corvespond to the activities that slit the stock ree-
tangles into strips.  Bpeeifically, in the jih column, which eoreesponds to
the jith strip shitting pattern, the first in elements ave nonnegative integers
b - by, salislying >~1 a2, and the last seelements are all 0. There is
ome sueh eolumu of Ag for every set of integers by, cooy by satislying this
inequality, corresponding fo the activity of slitting the stock rectangle into
bestrips of width wy, for £=1, -+ .

A, for ooy ean be regarded as the sel of activilies thai take
strips of width w, and chop (hem into reetangles.  The eolumns of A, then
confain zeros in the fop m rows excent for —1 in the sth row.  There aro
nonnegalive intogers a; in the rows -4, i== -, &, and zeros helow that,
the integers salislying the inequality s ad: = 7. ¥or each sot of integers

atislving this inequalily there is a column of A, corresponding Lo the
1f'l1\' ity ‘nfc'hm)pii 1g s slvip of widih w, intoa; pieses of lenglh ay, i=1, -+ 5.

Finally A, 0is o 2m30n matvix with the first i rows all zeros and the
last i rovws -—/, 1t being a matvix of cocffieionts for slack variables for the
last m equations. The problom can then he staled:

Sore . - 0
f,‘\hnml]Z(! > i,

1311]),}(‘(:1; oA gz N

,

il ] - . . ' .
Xy, a, - are the numbers of timoes M(:h_ of the various slitiing patters
care the numbers of thmes each

for lorming strips are used and o,

of the various pat Lerns for chopping the s Hpa of width w, are used.

By defining A% (o be the first m rows of Ao, and A Tor =1,
to be the rows w1, - ks of Ay, the equations of (7) have the lol-
lowing form:
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The fivst m cquations state that exactly the strips produced hy the
first catting are used in the second stage.  The second sel of m equations
state that the demands for reetangles must be met by cutting up the strips.

One ean then either treat problem (7} diveetly in the style of reference
1 oz, alternatively, apply the method of decomposition of Dantzig and
Wolfe.!

In the direct approach, the prices of a starting solution would be ap-
plied to find the most profitable column of Ao This would be one knap-
sack caleulation. To find the most profitable column among all the
Ao mA-1Zs21, would bo a series of ezleulations, a1l of which can be sub-
sumed in one recursive knapsack calaulation of the type deseribed above:
the slack variables can he treated in the usual way. The work of finding
an improving column scems therefore to be about the same in hoth cases,
but the inverse in this second approach is (usually) 2mX2m instcad of
mXm, and, In addition, if one takes past experienee as being applicable
here, we should expect twice as many pivot steps in the sceond approach.
These differences beeome more pronounced in higher dimensions.

A smalier inverse can be obtained by a Dantzig-Wolfe deconposilion
that splits the matrix A info an upper part Ay, consisting of the fust m
equations, and a lower part A, consisting of the last . The inverse with
which one works would then become mXm.  IHowever, for cach pivot stop
on the problem with matrix A, a2 complete lincar progranuming trim prohleny
for the matrix 4, has fe be solved, since the problem must be solved of
chopping strips of certain widths, and costing certain amounts, into the
desired rectangles al minimum cost.

OTHER TWO- AND THREE-DIMENSIONAY, PROBLEAMS

In rum preceding scetion wo saw that the generalized knapsack problem
{5} is solvable when the cutting patterns are producible by two-stage
guillotine cutting.  Next we discuss several other two-dimensional eutting
patterns and then go on to discuss the problem of many stock rectangles
for two-stage guillotine cutting.  Wo will then discuss 8 three-dimensional
cutling stock problem.  Finaliy we will return o two-dimensional prob-
lems in which the stoelk may have defeets making portions of it unusable,

FFor some of these problems we will deseribe solations, while others
remain unsolved.

Some Two-Dimensional Cutting Problems

We now deseribe some special subclasses of the two-stage guillotine
cutting patterns that have been suggested to us by special applcations in
the glass and steel indusirvies. These subelasses are ones i which the
second stage cutting must be performed simultancously on some of the
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strips resulting from the frst stage enlting. So, for example, i may he
neeessary Lo divide the strips into two groups and cut together all the
strips in one of the groups.  Figure 10 illustrates a patlern that resulls
when exactly 2 groups must oceur, while Mg, 7 illustrates a pattern that
results when exactly ©group must oceur.  In general there will be exactly
p groups of strips for some determined p. The {wo-stage problem dis-
cussed previously, howoever, can be regarded as a case when p is unlimited;
for this reason we will refer to this as a free two-stage problem.

(1) The I-Group Problem

The class of completely grouped patierns, that is when p=1, is much
more restricted than the free two-stage class.  Tn spite of this, the cor-
responding knapsack problem i the nonexact case appears to be much more
difficult than the once for the free two-dimensional case. A variant of the

Trgare T

Jexicographical scheme deseribed in reference 2 looks possible but has not
heen explored.

Whether or not the cutting is exact greatly affects the diffieulty of
problems of this type. In g nonexact problem, the demand for a rectangle
w, X can be flled by any wXI rectangle whose dimensions satisly w= w;
and [z 7. For example, in the nonexact ease, the sirip shown in Tig. 8
would be consideved  as supplying three rectangles of dimensions
w, Xl w X ly, and Xy, In the exact case, it would supply only a ree-
tangle of dimensions wy X/

In contrast to the nonexact the knapsack problems Tor the exact easce
often become trivial.  For if we can assume, 40, if 4545, then only one
width (and only the corresponding length) can be used in any pattern.

In fact, 3 we enly assuime that w,s5w; implics L34, the problen remains
casy. This relaxation allows several different fengths to be demanded with
the same width and permits patterns such as the one illustrated n Fig. 9.
To soive the knapsack problem for this case, one evaluates the value »; of
a slrip of widih w; by any suitable method using only the associated s
The foia) value for the reetangle is then max, oW /w,l.  In general there
are al most m ordinary knapsack problems of the kind (3) to be sotved,
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one for cach w;; however, the total number of variables appearing in these
knapsack problems does not. exeeed .

{2) The 2-Group Problem

This problens is enconntered in the glass industry, Being a combina-
Lion of two 1-group prohicins, this seems to be even more diflieult than (1)
in the nonexacl case.  Again in the exaet case the asswmption, that Tor
any ¢ and 7 i (westw,) then {Ls4)), n'i\'m a traclable problem.  Onee the
v associated with cach strip of width w. is found for all 7, one does a knap-
sack problem on the m(llh dimension, in which only favo distinet w; are
allowed.  This results sutomatically in the patterns of Fig. 10,

4 4 4
gy A P

]

W W

3 |
}W: rwz

Y
=
oy
A
=

453

Figare 8
(3) Return fo the Same Dimension, or 3-Blage Guillotine Cuiting

Ina third stage of guillotine calling, one returns to the width dinension
onee cut to cut it again.  This was done before in the frimming process
on the nenexact problems; bul ik did not fundamentally affect the methods

4 Ly Ly £,

W, AN E Wy = Wy
Wi £, <L, L,
W' ’//

% ;

Figure 9

of solution.  With general third-slage cutting permitied the previous
methods of solution are no longer applicable.  Problems of his sort are
encountored in both the eutling of paper sheets and of glass,  An example
of a paticrn cut by 3-stage guillotine eutiing is given in 1¥ig. 1; that patiern
was ohtained by slitting the stock reatangle at the points m(ii(:a.i.n(l by the
arrows, chopping the resulting strips, 55,8, and 85, and then taking the
rectangles (rom 5y and slitling them again 1o form the final reclanglos,
Note than in a process of this Lype, the widths of (he strips that are made
by slitting the stock reetangle down its length are no longer necessarily
of some ordered width. They may be, for example, of any widlh
we= i g, with ay nonnegative integers.  This means that they may
be of virtually any width.
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The recursions available for cutting patterns of this sort involve solving
a two-stage gumibiotine problem for every rectangle wX L, where 02w s W,
i order to obtain a value 1T{w) associated with every such w. There then
remains still the pm] lenn of solving an ordinary knapsack problem in
which the number of widths w s cuite Lll"(’ in order to determine what
strips should be slit from the stock rectangle WX /L. When the third-stage
eatling is limited 0 some way, either hy {:}m number of cuts that can be
wade or to patterns involving only one width, the computation is casier.

Figure 10
Problems with Many Stock Sizes and Free Tweoe-Stage Culiing
Should several stoek rectangles TF XL, 7=1, -k, be available, the
Hnear progranuning fermulation has to he slightly (1l1;mgv(l to aceonmimodate

a new objeetive funciion.  The changes necessary are exactly those intro-
duced in reference 1 i the formulation of many slock iength problems.

Wi B
7 7 °
[ S I

Figure 11

Tror each 7 it is neceogsary 1o defermine g eost O for o unit amount of the
bar of cross scotion Wi Then in the linear programming formulation
the cost coeflicient of a eolumn correspanding Lo a eutting paltern for
WXL, is (5 for any j. The objective function of the knapsacle prob-
leny, should also be changed ,,.]1g3,|1 v for we wish now to maximize
Thet - o F 1t — O Toy =1, m. whore {or a given J, fay, -, @,
corresponds Lo a (u{tmg pattorn for WX, We will maximize the new
objective function hy maximizing the oif,l for each j subtracting (5, and
MAXINHZING over i,

The solulion of the generalized knapsael problom for a b siock rectangle
free two-stage eutling problem can be accomplished by the solulion of
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k-1 knapsack problems of type (3). The recwrsive caleulation for one
knapsack problem will yield F.(7;) for all s and 7, and then for each ja
recursive caleulation is necessary to determine the maxinuun of b#,(7;)
A b (L) subject to Wzband - b, In the case Lje 1,
for all 7, the latter & recursive ealeulations reduce to one.

In the glass industry it s sometines the case that a continunm of stoel
rectangles is available. This occurs as follows: the stock rectangles are
cut from a continuous ribbon of glass and therefore, depending upon
whether W or £ is the width of the ribbon, there will be stock rectangles
for every possible Lo or every possible 1V, usually within certain limits.
One problem of this kind {(1) below] twrns out to be very easy, while the
other [(2) below! is very difficuls,

{1} Btock Rectangles WXL with Continuwous W

H there are no minimum limits on 17 then the problom is solvable by one
ordinary knapsack ecaleulation as was done in () in the seetion on two-stage
guillotine entting.  For by that caleulation the maximum worth #.(7)
of every strip of width ., 4=21,- -« m, was determined.  1f the cost of a
strip of material of length 1 and width w, is ew, then one need only choose
7 o maximize (L) —cw,.  Consider now the ease that 17 occurs belwoon
Hmits wo and 1o, Then following the caleulation of step (i) of the cited
scetion for W=, # is necessary to determine the maximum  of
FW e e for e £ W2 W, where FOFY is the optimum value of step (1),

{2} Stock Rectangles WXL with Continuous L

This is & very difficult problem requiring the solutions of | L, [+% knap-
sack problems, where Lqis the limiting length and where | L, | s the naumber
of distinguishable lengths that need be considered.  With one knapsack
caleulation I7:(0) fov any L, L= Ly, and any 1, is determined, but then for
each L a step (ii) caleulation is necessary.

The Three-Siage Threed¥mensional Problem

The diflicultios of extending the methods given above to higher dimen-
sional culting stock probiems are ilnstrated by considering the three-
dimensional problem.  ITere the over-all problens is to cul smal! rectangular
parallelepipeds out of stock rectangular parallelepipeds.  The correspond-
ing knapsack problem is to fit. the most valuable combination of paratlel-
epipeds into a pavent parallelepiped.  The restrictions are similar, the
parent paraliciepiped s first cut into layers, the layers into strips, and
finally the strips into rectangular parallelepipeds.  An example of {his
kind of probiem oceurs in the culting up of graphite blocks for anodes.
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We ean proceed in a manner similar to the two-dimensional case. Sup-
pose that paraliclepipeds of dimensions w XXy, €=1, -+ -, must be
eub from a stock parallelepiped of dimengion [V XLXI and ihat 1T,
¢=1, -+, m, are the prices associated with the parallelepipeds for the
knapsack calculation, T h('n, yy considering those paraliclepipeds that
fil. into o parallelepiped of dimensions wo XU, we solve a knapsack
problem for each ¢ and j ta obtain a value o(w;,l,) associated with the rec-
tangular end of dimensions w.XI;,  Onee #(w;,l;) has been caleulated for
all 7 and 4, the problemn has heen reduced to the free two-dimensional one
of optimally cubting rectangles w; X1, 7,7=1, - -, m, of price v(w;l;) from
a stock reetangle of dimensions WX 1.

Again, ii is nob necessary to do a full recursive calewlation for cacl 4
and 7 to obtain all values v(aw,l;). A closer inspection shows that, just as
in the fwo-dimensional case, one ean fix w; and then obiain all l:{’t(?g,[fj),
for all 4, i one reeursive caiculation.  Then for a problem of N different
sized paraliclepipeds, in which N different widths, N, different lengths, and
N d]f crent heights appear, one would expeet to solve the knapsack problem
in Z-bmin (NN, N reeursive compuiations, assuming that rolations are
not punntbe(l.

Position. Dependeni Values

In some problems, the worth of a reclangie depends not only on its
dimension, but also on its position on the parent reetangle. This is true,
for example, if there are defeets present or variations of thickness. Lot us
fivst take up (he one-dimensional problen,

10 a piece of length [ is worth ey if its right-hand end point is ab
point #, then the optimal value knapsack of Tength y eonfains a value

ol )= max; {10y +ely— 03

This recursion refers (he unknown o{y) back (o ely~{. 1 our lengths
ave multiples of a basic uni(, then ¢(y) can be computed when »(a) is
known for a=y—1.

The step 10 wo dimensions is a big one.  Consider for example the
free two-dimensional case when the price for a demanded reclangle i
dependent upon its position in the stock reclangle.  Even assuming (hat
the reclangles oceurring in a strip appear along one edge of the strip doos
nob result in an easy computation.  TFor, in order fo reduce the problem to
its one-dimensional form i is necessary (o caleulate the value () of a
steip of width ; Tor cach possihio vahie of y, w, SyS W, where y is the
focation of the upper edge of the strip in the stock 1(-ci‘1nnlo Then one
recursive computation will provide 1y for fixed y and all 4, but
7 —10mia] -+ 1 such computations are necessary to compule Hi(y) for all ¢
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and . With this data calewfated the probleny ean be solved by a recursion
jike the one-dimensional recursion above,

Immportant simphifications arve possible if the posit 'i()n (I{‘])(’nds‘n{, sudues
are a conscquence of well defined defeets. A practieal iNMusteation, for
exanple, is the problem of eatting dofeet-lree picees lm' furniture of given
widths and lengths from Juber with defeets.  In this case a furlhoer
simplification occurs sinee the patierns pm'ml tied ina strip, which in this
ase yuns across a board rather than down ifs length, are simply multiples
of a single given width.

THE CORRUGATEDR BOX PROBLERM

In apprrion to the problem of gencrating the eutting patterns and de-
fermining the number of times each is to be used, which is the aspect of
the problem we have discussed so far, there are often special side con-
ditions to be met or sequencing problems involving the cutting operations
that must be solved.  Sometimes these are relatively unimportant; some-
times they dominate the problem and reduee the question of pattern
generation to relative ngignificance.  We will illustrate one of tlis latter
Lype in the next section aftor discussing in this seetion in some detail the
corrugated box problem

Corrugaled boxes are made from rectangles of cormgated paper.  The
paper is generally manufactured and eul hmedialoly on one machine.
The comrugated paper is manulzetured from rolls of paper so that the lengih
dimension of the stock can be ignored.  As the corrugated paper moves
off the corrugator, it is Immediately slit in lho length and chopped across
the width.  Generally, however, there are but two chopping knives avail-
able, an upper and lower, cach of which has its own limitations as to the
length it can chop. Consequently, the problem is a two-dimensional
problem in which the strips are grouped into two groups for chapping but
m which the cffectively infinite length of the stock rectangle frivializes the
chopping patierns in a strip to simple repetitions of a demanded lengtl.

If one assumes that Tor cach # and 7, i w.s€w; then L4, and one is
restricted (o catting exacty, then the problem immoediately reduces Lo a
onc-dimensional problem. Thiz we eall the restricted corrugaled box
problem. For this problem al moest Lwo distinet widihs may ocour in o
culling pattern. The demand d; for a rectangle of dimensions w2 %! boe-
comes, i the one-dimensional problem, a demand for a quantity dd; of
paper of width w, The cutting patterns that are in the solution to this
problem are the slitting paticrns for the corrugated box probiem, since
cach such paltern confaing al most two widths and therefore the strips
ghit can be grouped inlo Lwo groups for chepping.

The assumplions made for the restricted corrugated box probiem are,
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in our experience, realistie.  Methods for solving the corrugafted box knap-
sack problem when these assimptions are not made can be devised but as
we are interested in discussing an important side condition of the problem,
we will Teave a diseussion of these methods to a later paper devoled fo the
knapsaclk problem.

The only special fealure of the restricted corrugaled box knapsack
problem apart from the resiriction of at most {wo widths fo a slitting
pattern is the form of the cost of the stock widths,  Generally, there are a
large mumber of diffevent paper widths available for a corrugator —ten or
even Lweniy is not unusual.  The purpose of maintaining the farge number
of widihs is of course to veduee paper waste.  But & reduction of paper
waste is not the only objective i seheduling 2 corrugator for one must also
try o maintain an efficient wiilization of the corrugator—to rn a 607
width of a paper on an 807 corrugator represents only a 75 per cent utiliza-
tion of the machine.

The two objectives of keeping paper waste Jow and machine utilization
high can be properly eombined into one minhmum cost objeetive 1f proper
costs are assigned {o the stock widths, 1 the cost assigned to a stock width
117 is to be the cost of 1000 Jineal feel of corrugated paper of that widih,
then its eost i determined by the formula Cy-bal¥, where Oy s the cost of
operating the covrugator long enough to produce 1000 fect of paper and ¢
is the cost of the paper and ghie in 1000 lineal leet of paper one ineh wide,
1V s measured i inches.

There are soveral different ways of solving a knapsack problem in which
ab most two widths may ocenr in any slitting pattern and in which there
are many slock widths W, 1<j=r, cach with a cost Cibel; The
sinmplesi, al 'houn'h not neeessarily the most efficient, is 1o simply enumerate
all possible shitiing patiems by generating all possible pairs of nonnegative
integers o and oy, where i<y m and aavstapw W, fors=1, - L
As cach pair {aoe;) B generated its value z*(af-(x-)-“-"-cnlil-w{-«a- A1; s coni-
pared wille the previously largest value obtained for W, and this value is
updaled if necessary.  Other mefhods for this problem will be discussed
in the forthcoming paper devoted to the knapsack probicm,

SCHEDULING 'PHE TRIPLEX IN THE CORRUGATED BOX PROBLEM

Tue sior condition we would like to discuss concerns the seguencing ol the
slitiing patterns obtained as the solution to the corrugaled box cutting
stoek problem.  To understand this problem, it is necessary to understand
ghat the slitting of the paper on the corrugator is done by eireular knives
mounted on an axle at the eutput end of the corrugalor.  Af the same time
the paper is slit it is also creased by creasers mounted on the same axle as
the knives, the ereased lines heing lines of fold for the corrugated boxes.
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After being slit and ereased, the paper goes to the upper and/or Tower
chopping knives to he cut inte rectangles.

In order to make it unnecessary to step the comr ugator for the resetling
of knives awd creasers, generally three axles of knives and creasors arve
mounted on a votaiable frame that permits two axles to be set while the
third is being used. Tt is therefore desirable and important to so sequence
the shitling patterns that the corvugator is stopped as infrequently as
possible for tho resetting of the knives.

A precise solation to this sequencing problem is not meaningful because
the data available about how long it takes for a man to sot the knives and
creasers Tor a given slitting pattern is inaceurate, and beeause of changes
i the speed of the corrugator, the length of time it takes for & corrugator
to complete one slitting pattern, cannot be known aceurately.  Becausoe of
this, simplifying assumptions regarding the seheduling of the corugator
are ot uwnreasonable,  The assumplions we make are:

The corvugnator runs at 2 constant speed so that a unit of time ean be Lrans-
i:x((_,d into o unit of lengil of paper run through the corrugator.
2. The time needed (o set the knives and creasers of the axle lor one slitting
patiom is the same for all slitting patterns.

Asswmnption 2 1s not generally true sinee the nummber of slitlers and
ereasers that must be set on an axie affects the time for setling an axlo,
However, il does provide an approximation.  Without this assumption,
the problem of scheduling the slitting paitern is unsolved excepl in -ho.
casc whore only fwo axies of knives and creasers are available, as diseussed
in references § and 9; in 3 helow we assume there are the usual three.

Agsumplions 1 and 2 mean that for some given A, the $ime needed to
sot the axles for one slitting pattern is the time needed for X units of length
of paper to be run through the ecorrugator,

3. There are three axdes of knives and ereasers availalile, two of whieh can be
sel while the third is being used.

A fourth assumption is also made, but some preliminary discussion is
necessary lor its miroduction.

Let the ]c\nw hs of the runs of the slitting paiterns to be scheduled be
Sy, Sz, -0, Sae Tor each of these lmmbcrs Sy there exisls an integer

q{S;) m}.d a Jmnn.oe,zln»o r(S;) such that

Jgj =N\ (/( .l{’r;) 'i.’( l(;j), where 0 é'}"(x‘\-’j_) <A
9(8,) i the nuber of complete axles that can be set during the time it
takes the corrugalor lo produce the S; units of paper for the jth shtling

pattern. A slitting pattern for which ¢(.8;) =n will be called a ¢, pattern.
IT 9(8;) =1 for every j then no scheduling problem exists hecause no
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makber inwhat ovder the shitting patterns are scheduded, it is always possible
to set the axle for the suecceding pattern daring the yunning of the pre-
ceding pattern.  However, if thee are ¢ palterns, there appears fhe
difficulty that the axles for the succeeding pattern of any one of them might
nol be set and the corrugator would have to be stopped.

The only way that the ge patterns can be accommodalted is to sel in
advance the axles of pattorns that must succced them.  or example, if
858 a gs patiorn, Siar a go, and S 8 ¢, then the sequence

Ty J‘E":i') -S:i"!'h 'Si'i"l) T

allows enough thne for the seliting of the axles for Sq and S;.e sinee they
can both be sef during the running of S,

AXLE 2 AXLE 3 AXLE | PALE 2 \ @
a

S, ON AXLE | S, ON AXLE 2 |S, 0N AXLE 3|5, ON AXLE ;z

AXLE 2 AXLE 3 WAIT AXLE | \ o)
b

Sy ON AXLE ! Sp ON AXLE 2 | S50N AXLE 3| STOE 1S, 0N AXLE | 1

Figure 12

There are also situations in which part of an axle is sef during one
pattern run and part during the next; for example, il #(S;1-Fr( S50 2,
then the soquence

A JS_,’, ’Srj-i-h e

?

is satisfactory if S; s a ¢ and S;uq 8 & 0. Ior, i we enter the run of S,
with one axle set (the one with the patiorn for 5;), we will finish 8; with
S5 axle seb and part of S’ During the run of S5 we will, because
(S (800 2, finish the axle Tor Sy and so be ready {o continue.

There are, however, reasonable limits that should be sot on this process
of sefiing morve than oue partial axle during the running of a single slitting
pattern.  T'his is because there is an interruption and loss of thine when the
{triplex is rolated and rvepositioned o change paltomms—olten the man who
sets the axles also repositions the triplex. Therelore, we make o final
assumplion 1o prohibit too much of this during short runs.

4. 10 a paltern is 2 g0 or @ g, not more than one partial axle ean be seb duaring
s run.
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I we draw a figure giving run times on one Tine and set-ups on another,
then beeause of 4, Iig. (12a) shows a prohibited artangemoent sinee during
the running of Sy, a o, work is performed on both axle 3 and axle 1; while
Fig. (12h) is a satisfactory arrangement.

Beeause of asswmption 3 that there ave but 3 axles, a ¢, palicm, where
nz2, can be assumed to satisfy a stronger agsumption than 4; namely,
that no partial axles are set during ils running, but only two compleie
axles.  Hence there is no loss in assuming that every g, patiemn, where
nZz 2, 18 a g patlern. Further, the same assumption ensures that an axie
is not set during the ranning of move than two different patierns as in Fig.
13, sminee that would require ab least 4 axies.

From 3 and 4 we have therefore

5. (o) During the running of a ¢, patlern, where 122, at most two complete
axles ean be set and no partial axles need e sef.

§ | ae? | /

S, ON | S5 ON
\Sl ONAXLE | AXLE 2 | AXLE 3 /

Figore 13

{0y Any axle that is set during the running of more than one patfern is seb dwring
the running of a pajr of patterns consisting of (i) two go's; or Gi) (wo g's; or Gil)
4 o and a g,

With these assumptions, we will take up the problem of optimal se-
gquencing. A preliminary vemark is helpful. Suppose, for purposes of
exposition, we consider instead of assumption 4 a much stronger one.
Assume {temporarily ) that axles can only be set up entively within a run;
in other words, ne overlapping at all of cither kind shown in Fig, 12 s
permilted. Then the sequeneing problem becomoes  (rivial.  For-—as-
suming thal one starts with one axle sel—one can run all the ¢’s, cach
selting an axle for ils successor. There then ramain the go's and the gs.
The ouly problem s the g’s, and the only way a g, can ever be run {under
the no overlap restriction) s immediately following a gs, for, since nothing
15 set up during the gy run, two axies, one for the ¢y and one for its successor,
must be ready al the beginming of & g run. So g4's can only be run in
sequences like

Ty O oy Gy o

with each ¢ taking care of one g Therefore, under the stvong no overlap
assuwnpiion, the number of unsel or unschedulable axles is Ay— Ny, where
N, s the number of ¢
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Now lel us retarn to our aetusl assumption 4. I any sequence satis-
fying 5, there is a nalural pairing boebween those go and g palierns (hat
shave ho seiling of an axle.  Beeause of asswmption 4, the pairing is well
defined; Lo, a pattern i paired with at most one other pattern,  Further,
once }10 pairings are determined and fixed, the problem reverts {o the
strong no overiap siluation in which the existing pairs are juggled around
like the individuzl patterns under a no overlap assumption. The no
overlap assumption then holds beeause all overlaps are contained within
pairs,  We will now diseuss in gicater detail the material just sketehed out

Irirst, we observe that there s no point in pairing S, with S, unless !h(-\
{otal numhm' of axles set In the pair is grealer than ¢S ) -+¢{8;), sinee if
we only have cquality the excess of S8 over (87 +4(8;) cannol be
wiilized.  The condition for this is, of course, that #( 85 4+r(S; =N We
will consider only these pairings from this point on,

The only cases thal can arise are:

(1) & go—qu pair; Lo, 080 <X g0 < and »(S)-Fr08;) =N Note
that a ga— e pair sefs one axle, and nses up two settings. Therelore, for
purposes ol sequeneing, 4 go—ge pair is cquivalent to a single g

(Y a ge~qn o qr—gp paar. This pair uses up two axles and scls two;
for sequencing purposes, i is cquivalent to a single ¢,

(31 o ge—er pair. This uses up two axles and sets three; 1t s cquiva-
lent: to a single g,

Onee the pairings have been decided upon, then we can replace the pairg
by their equiv }Jtnc{'s {2 go—qy by & s ele.), and then sequence the new
problemt under the no overlap assumption, since all overtaps have already
been laken nto accotort. The merit of the final sehedule s measured by
the number of gy axles that can be set in the schedule eithor singly or in
gz paivs,

Clearly then, the whole problom is to create the proper pairing. We will
show that the fellowing proeedure gives a paleing that results in a minimal
nuinher of unset axles.

. “The gy patterns and the g patiorns on the st are histed together in inerensing
size of » munher.

2. A g pattorn on the bist, say with r number 1y, s combined with the first 4
or g pattern on the list mlh r munber 72 such that r4-r2A When a pair s
formed, the pair s struck from the lise, while il no pair is Tormed, the ¢ paltern is
struek from the list,

Stepn 215 repeated unlil no g patterns remain on the Hst.

A A g paltern on the list, say with » nunboer 7y, is combined with the first g
paliern with » vumber 7y sueh that re-drazh. Wheno o pair s formed, the pair is
slyuek from the Hst, and when o pair is not formed, the g patternois struek from
the list.
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Btep 3 s repeated until no gy patiorns remain on the lst.

We have now completed the paiving; the actual sequencing as outlived shove is
done by Step 4.

4. The ge pairs formed in 3 ave assdgned o g patiorns and g —g, pairs formed
in 2. Should all 4 pairs be so assigned, then g patterns that are not members of
pairs formed 2 or 3 ave assigned (o any remaining ga pattorns and g gy pairs,

We will now show that this algorithm sets the largest number of g
pattemns when we say that a gy pattern is set by & schedule if it inmediately
follows, cither singly or in a go—gs pair, & g or g g, pair.

Now et 2 be a schedule which sets the optimal number of g pattorns
and let 53" be a schedule produced by the algorithim.  Aswe remarked carlior,
any schedule satisfying the asswmptions 3 and 4 produces a pairing of some
of the go and g paticorns, and in particilar, therefore, B produces such a
pairing.  We will show first that all ¢, patterns ocewring in pairs in 5
san oceur in exactly the same paivs in some optimal 2. For let 8 be {the
first ¢ patiorn oecurring in a pair (8777) in B which does not occur in.
that pair in B, considering the pattemns in the order in which they have
heen considered in B

Case {A). (8,1 and (8,77 ave both pabs in B, Since S is the first
qi pattern not ocotrring in 3 in the same palr in which it oecurs in B, 7
must have been available when & was being paived so that necessarily
Py (1), and therefore (8,77 is a possible pair; that is, 7(8) F-r{Tyz N
In cach of the following cases, we will show that the pairs (87,7 and
(S,77y in B ean ho replaced by the pairs (8,77 and (8,777 without affect-
ing the merit of the sehedule.

(i Sand T are both ¢/s. Tf 77 s a go then a gu—aq, pair (8,7) and a
n—qo pair (8,77 are veplaced by a g g0 pair (S17) and a GG Pair
(8,7). Sinee any pair is Interchangeable with any other pair of the same
kind, the new schedule has the same merit as 5. Similarly, if 77 s a ¢,

(i) Sisagoand Tisa g 17 is a g then (wo gy~ g PALES are re-
placed by two others leaving the merit of 13 unchanged.  1f 77 is a ¢ then
a g go pair and a g — g pair are replaced by other pabs of the same kind,

(it} Sis a qo and P is a gy 18 similar to (1),

(iv) Sand 7 arve both go’s. 10 7" is & ge then a ¢ —g pair and a Ja— o
pair are replaced by other pairs of the same kind. I 77 is a ¢, then fwo
g Padrs are replaced by a4 ¢ —¢: pair and a go—qe pair. However in B
the gr—qe pairs are like ¢'s standing alone; therefore removing them from
the schedule does not affect the remaining schedule. Further a ¢y —q, pair
can bo followed by a gy—a paiv so thal the merit of the new schedule is
unchanged from K.

Case 3. (8,7 is a pair in 3 but 77 remains unpaired.  In ench of the
following eases we will show that the pair (8,7 and the pattern 7 can
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be replaced in B by the pair (87,77) and the pattern 7' without affeeti ting
the menit of B.

() Tisaq. I 7T isasoa 4o then a gs—gq pair and a g, pattern are
replaced with another g;— g pair and gy pattern. 1If 775 a @ then o gi—gy
pair and a gy pattern are replaced by a g —q; pair and a oo patiern,  How-
ever the g pattern 1 can follow the g~ gy paiv (87,77 so that the monit of
1 1s unchanged.

(i) Tisag. If 1" isa g then a gi—¢p pair and a ¢y pattorn are ro-
placed by a ¢ —go pair and a g, patiern. The merit of 7 can only he
deereased if the g—gy pair (8,7 was followed by a g or a go— g0 pair and
the gy pattern 77 were preceded by either a gz 0F ag gy pair. In this case,
without foss of mc‘m of I, a o OF & Go— o pair following {8 ’f) can be
interchanged with 77 so that 77 ean be assumed to follow (S°7) in B.
But a g g pair followed by a gy can be replaced by a g, — gy pair followed
by a g without logs of merit. If 77 is a ¢, the resali is innnediate.

Case €. When S is unpaired and (8,71 is a pair in B is similar {0 case
L.

Case D). Neither 8 nor 17 are paiwd in . Then we must show for
rach of the following eases that 8" and 1 can he paired in without affecting
the merit of B,

(i) 7" s a go. Certainly 7" can he paired with & without deer hasing
the werit of B, for pairing 8" and 77 can only release a gy or g pair
which preceded 7 in 3.

Giy 7" s o g, Then no s ean be unsel in 3 since otherwise the
o —q pair (S, 77 followed by an unset o of B would improve the sehodule
B Henee il any g's ocenr at all they are preceded by G5 O g —q, pairs,
which could equally well be replaced by (8,77,

We have shown that any pair in B containing a g1 Can ocoluy i oan
optimal schedule B. Sm(‘(* no farther ¢)'s can be paived, apart from thoese
ocerring i paits in 1, we have shown that the pairs Involving g's in B

an be assumed fo be exactly those of B 8o we ean now assume Chatb
B3 and B have exactly (he same G palicrns availabie for Torming go— g,
pairs.  IMence it is only neeessary now to show that the algorithm produces
the optimum number of i pairs, since such a pair requires the same
support as a go.  But let 8 be the first qo pattern not paired in B as it is in
I considorirw’ the patterns in the order in which they are considered in
B, an.di ST beits mate in B while 7 is its mate in B, hm('(""’l Yy,
T and 77 can be interchanged.  We have therefore shown that the pairing
and sequencing deseribed in Steps T4 will produce the smallest number of
et axles.

Should an optimal schedule still leave axies unsel, a slight relaxing of
the ground rules for scheduling may assist.  For the offeet of agsurption
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3 s seen in S(a‘) {o result in a wasling of potential set-up time stnee o g,
whore n2 3, i regavded only as a . However if a g, patiors, where 233,
is split Into (wo or more palterns, and the fact that there are exactly three
axtes available is exploited, some of the otherwise wasted sel-up lme can
he utilized.  For example, if ¢{8) =13, then the slitting patiern can be run
in two parts, onc of length 2x and the other of length \“‘f (5. While the
fivat. part of the pattern is being ran with the first axle, the remaining two
axles can be set. While these two axies are being run, n()lhmg need be
done beeause when they have been used, (he first axle s g0l availalile for
the second part of the shtting paltern.  Tn (his fashion, it is possible to
sk up g paltems by laking a pattern running for a length S for which
(83> 2, and splitting it up into patterng 7, -, Ty where P 2X and
T is the remainder upon dividing S by 2X, and (hen sandwiching the g's
in pairs befween suecessive 70s0 When a g, paitern S, w23, has been go
spht and used, the whole group l‘o:mod s defined 1o he a g, paticrn with
remainder #(8) and with g, 0 or 1, depending upon whether #is ovenor odd

respectively,
GROUPING TO INCREASE AVERAGE SLITTING PATTERN RUN

v somm cases, i g possible to predict that for a given A a schedule hased
on the assumpiions 1 to 4 will not be possible. For i there are m different
reatangies ordered, then in general there will be e slitting paticrns neces-
sarv {0 {ill the orders. Ilence, using oven the smallest width of paper
available and ealeulating total length of run from the tolal area of paper
ordered, il can occwr that the average shitting paticrn ran s less than A

Clonzequently, no schedule that will set ali ge patiorns can resuit. Theonly
way thal the average shitting patter run can be inereased is by decreasing
the number of slitting patterns used to fill the orders.  In a one-dimen-
slonal culting stock problem, it is possible fo reduce the number of slitling
paticrns appearing in a m?ulmn by accepting a less than optimal solution,
This is accomplished by what we call the grouping of widths, Two
ordered widths w and ws, > wy with rlomz-m(lq Nyand Ny ean be replaced
by the single width wy with a demand N-FN i & second trimiming to size
is done after the slitting.  Vor the Ny units oi width s required are met
by trimming that amount of the N+N, units of uy preduced and therebhy
producing a necessary additional waste of (ws—ws) - N square units. But
one Tower ordered widths oceur and, as a result, one fower glitting patterns
ean he expeeted.

Tror the eorrugated box problew, i all the orders hiave (o be Glled, and
the average shitting patiern run ig less than v, Lhen grouping is a means for
raising the average,  The costs associated with a given grouping may not
consist only of the necessary additional waste, Tor a second operation, per-
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formed simuitancously with shitting on the corragator, is that of creasing
and widths that are grouped cannot be ereased on the corrugator.  Conse-
aguently, grouping widihs can result i additional operations off the corru-
gafor. However, since small orders are generally ereased off the corrugator
anyway, confining the grouping (o small orders resuits in an inereased
average shtling pattern run al the cost of necossary additional waste,

I ™ 3s the desired number of slitting patterns to provide an average
run of A, then m—in® widths must be put into groups iy which th ey are not
the Jargest width.  The grouping problem presenting itself is then to group
sufficiently many small orders =0 as to achiove the number m® with the
least possible necessary addifional waste, This is & problem readily
solvable by a siple recwrsive caleulation. For lot wy, -+, 1w, he the
widths that may be grouped listed in decreasing (}1'('1(?1.‘ of size with demands
respectively Ny, Ny, -, N The pmh](‘m i then 1o choose e g
(m—m™)  widths Wy Wiy o0y Wy =l <G Sy, assuming
s> (m—m"}, sueh that the necessary waste resulting from the groups
fion, o Wa o, e, e e b, e T, ), namely

il 1

T Z (g, =20, ) - N+ 3 {1y ~w0:) - 2_4 (e, ;) - N,

Ty ¢

1 as small as possible.

~
=
A
A
el
=
/'\
f'

,,,,, ¢, be the least possible necessary
additions] waste that can r(rsull !1() widths wy, we, + -+, w, are grouped
mioc u <>'mupq and et ee(a,e) be an ini.ogm‘ o ué:.:’gz:, siteh that there is a
grouping of the widths with 7., as its necessary waste and with {uw,., - - - W)
as is Tast group.  "These functions can be reewrsively defined as follows:

For 1 Zess, Ta= 0

< {0} - ‘V»ém(l allpy=1.
For 25use=ss, To=minl Ty Z a1 (e —w) - N1y <n}

\ ’ r. . .. . ) )
and a(u,7}=¢ 41, where »" Is the index realizing the minimum T i.c.

?
’ . ’
¢ s such that w1 e < and

b

(g =y No= T,

The least possible necessary additional waste resulting from grouping
the s widths info » groups is 7, and this waste is achieved by the grouping

with Tead” widths w.,, wy, - -, w;, c_loi,cm;im\d I)y the reeursive equation:
Lomea(rs) and leg=afl-14—1), l=rr—1, - 2 whoere neeessarily
Py==1,
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