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We consider o machine with a single real variable z that deseribes its
stale. Jobs -0, Sy are to be sequenced on the machine.  Bach job
requires a starting state 4; and leaves o (inal state ;. This means that J;
can be started only when z=; und, ut the completion of (he job, w=13,.
Fhere is a cost, which mav represent Uime or moeney, cte., for changing the
machine stale @ so that the next job may start, The problem is to lind
the minimal cost sequence Tor the N Jobs.  This problem is a speeial casc
of the traveling salesman problem. We give s solution requiving only
O(N%) simple steps. A solution is alse provided for the bottlence form
of 1his traveling salesman problem under special cost assumplions.  This
solution permits o characterization of those dirceted graphs of a specisl
clags whieh possess Hamiitonian cireatls,

1 WILL consider the seqguencing problem for & jobs on o machine
i £

having a state described by a single real variable .7 Jobs Jy, - -,

Ju, are to be done on the machine i some order,  Iach job has two

assoclated munbers A, and By To start the 7th job, the machine must be

state is automatically B, I J; is to follow /., the state of the machine
must then be changed to A ;. The cost of this change is ¢y, the cost of hav-
ing job j follow job «. This is taken to be

f y
EC;‘J‘:‘] ) da it Az B,
§ Iy .
N ( i )
ei; :"—-f glz) de if B> 4,
S A
T This resenrch was supported In part by (he Office of Naval Research under
Contract No, Nonr 3775(00), NR 047040,
1 An announcement of a special case of the resulls of this paper appears in ref-

erence [2],
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Where f{z) and ¢{x) are any integrable functions satisfying
f(e)t-g{2) 20, (2)

flz) can be intapreted as the cost density for inereasing the state
vaviable, amd g{x) the cost density for deereasing it.  Restriction (2)
implies that there is no gain to be obtained by eyeling the skate variable,
Le, by Inereasing it and then decreasing it to its original state.

In this paper, we give o method for finding the ordering of the J, that
minimizes the total changeover cost. We also give a method for finding
the ordering of the J; that minimizes the maximum changeover cost when
gla)=0 and fla)=0.

To make the probiem more conerete let us consider an exmuple.  Con-
sider a fwmaece and let the state variable be the temperature.  Various
jobs are to be put through a femperature evele nside the furnace.  The
wth job, J;, will be started el temperature 4, and faken out of the furnace
ab temperature £, The temperature is then changed for the next job,
There 1s a cost f{2) for heating the furnace one degree and a cost g{x) for
cooling it one degrec when the temperature is . We ave looking for the
least eost sequence of the johs,

Our problem is of cowse closely connceted to the well-known and dif-
fieult Traveling SBalesman problem.,'™ > ™ To see this, et the J. play
the role of nodes or eities, and et the ¢;; of (1) be the cost of going from
node 7 to node 7. We ave looking [or the cheapest path thai passes once
through cach node.  The traveling salesiman looks for the cheapest path
that passes once through cach node and snds up at the starting point.  Ie
looks for the cheapest tour,

Our sequencing problem becomes the tour problem if the machine is
assumed to be in a state By ab the start, belfore the jobs are run, and is
vequired to be left in a state Ay at the end after all N jobs ave done.  Bpe-
cifically, if we add o new jobh Jo , there is always o ons-to-one correspondence
between the tours Jof /0 - Jipds of the enlarged problem and the se-
quences Ji.S5,0 0 - ol the original problem. Thus we can minimize
over tours, and then, dropping Jy, have the least cost sequenee,

As it is o considerable technical advantage to deal with tours rather than
sequences, we will deal with towrs from now on,  HBo we will, inplicitly,
be dealing with a sequencing problem with & preseribed initial and final
state.  However, in the final section we will show how, in some cases, a
tour solution also solves the sequencing problem in which no starting or
ending states ave required.

From this point on we will diseuss only the minimal cost tour problem.
We will state the problem in terms of a permutation ¢ for which the total
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changeover cost ¢(y ),

clg) =200 ey (3)
is minimal subject to the condition that ¢ gives a tour, Le., subject to
Yls)#s (4)

for all proper subsets ¢ of the numbers 1, 2, -+ - 7.

Our method for solving this problem is voughly the lollowing.  Iirst,
find the pemuutation ¢ that minhmizes (3) disregarding {4}, Then by
carrying oub a series of interchanges, we convert the permutation ¢ nto a
tour ¢, The interchanges to e exeeuted will be chosen by finding o minimal
spanming tree and must be earvied out in a special order if the resulting touy
¢ is to be minimgld,

In she next seetion we deseribe the type of Interchange used and its
effect on the cost lunction (3). Wealso find the minimal cost permutation.
In the third section we deseribe the conneefion between the tour and spau-
ning tree problems.

In the fourth section, which i merely preparation for the {ifth, we
describe a special property that the spanning trees possess.  In the [ifth
seetion we determine a sot of interchanges and the proper order to excoute
them to obtain a low cost towr ¢

In the lollowing two sections we prove that the tour ¢* obtained in the
fifth scetion is in faet a minimal tour,

In the eighth seetion we treat the ‘hottlenceld” Traveling Salesiman prob-
lom,  This is the problen of minimizing the largest changeover cost ocour-
ring in the tour.

The last sectlon, containg a complete statement of the algorithm
followed by o nwmerical example.  There is an application to a cutting
problem, various remarks on and extensions to the earlier sections, and a
brief discussion of the rvelation between the preblem deseribed here and
the well-known work of 8. M. Jorxsox, ™

INTERCHANGES AND THEIR COSTS

I'v pescrisiNg permutaiions, interchanges, and their costs, it ig uscful to
indroduce a diagram displaying the B:and A, We will assume that the
B:are so munbered that 7> ¢ naples B2 5 and that they are arranged
on a real line in the pusitions corresponding to their values, DPosition B;
on this lne then gives the value of the state variable at the end of job 7.
It would be natural to display the A on this sane line bui, in order to show
the permutation ¢ better, we will devole a separate line to the A values

(Fig. 1).
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Figure |

in Fig. ¢ is displayed as a sevies of arrows linking the final state 3, of
Ji to the starting state Ay of the succeeding job Jype. 1 i Fig. 1
Agen> [, then the ¢th arvow goes up and the fivst fornruly, of {1} is used i
computing ¢y, the th arvow goes down the second one is used.

We will now define an interchiange aud compute its effect on the cost
().

By an mterchange o;; we mean the permutation eiven b
t3e] J = f

iild) =5,

aii(J) =1, (5)
Lo () =1 (b4, )

Applying an interchange to ¢ yields a new permutation § given by
== g, (6)
e, first apply a:;, then ¢ to get &, Clearly
jiflu) =¥(3),
Vi) =9 (), (7)
B = (). (k54, )

Bo the effect of @ on ¥ is to interchange the suceessors of 7 and 4, (IMg, 23,

—

We deline the cost e4(e:;) of applying ay; to ¢ by
ol = efgas) --e(¥).

We will givea formula for ey {e;). In this formula we will refer to intervals
la,bl, a=h, on the real line.  For sueh intervals, we will use the notation
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b

e, bty = j Ja) da,
b

fadlly= [ e dz,

&
Frla)4gladt de.

Lot us assuie that

i (8)
L ey = g
Then, using {1} we have
Gy [Bit o 0= o Ayl H - o BANLA Gt ol
Capiny= [ Bt o [0 e Ayl — oo, BAN Ay, 4+ = |,
pubtracting gives
Cpen— b = But = DA, Agoll 1o BANA i, pnil ()

Similarly,
G =i = — 1B+ = N Adwall il = BAN A g, gl (10)
Adding (9) and {10} we gol

.H ,',II))_;'] n[i \Hi)r'l %(J’)J

(11)

epla ) = capntein — ey — b ®

Sinee fla)+gle) 20, we have epla; 0200 {11 was of course obtained
under assmuption (8).  If (8) does not Lold and the order of Ay and
Ageny s the reverse of the ovder of £, and By, then the expression on $he
right in (110 1s preceded by a minus sign.
This gives Theorem 1,
Trwowss 1. Lel ¢ be a perinutalion thal ranks the o1, hal &s j> 0 Ouplies
A el ; A o1y ihen
cle) =ming c{¥),

wilh the netndnum being laken veer all permulalions .

Proof. This is elear from Fig. 3, for il & permutation ¢ containg a rve-
versal of order between a B and B and Apgn and sy, {the crossed arrows
of IFig. 3} then the cost of applying a; s negative or zero. Thus by succes-
stve unerossings any ¥ 1s reduced to the erossing free permutation ¢, which
has o cost lewer or equal to e{y).

TOURS AND 'TREES

Lazr g consider the effect of an interchange ay; on the eyeles 1w a pormu-
tation . ‘The situation s tlustrated m g, 4 and it s not hard te prove
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Figure 3

formally what is evident geomelvicaily.  That s

Leania £, Lfy 4s a perinudalion consisting of cycles Cy - O, and ey ts an
anlerchange with (e(', and jell,r5s, then Y., contains the same cyeles excepl
that Croanul O have been replaced by o single cyele containimg all their nodes.

This is geomebrically evident from Fig. 4(a},  We note that if < and j
belong to the same eycle, Iig. 4(b), the elfect i reversed and the cyele is
split,

We next definea graph (7 for any pernutation ¢: Gy has ¥ nodesand an
wndirected are linking the #th and ¢{¢)th nodes, for =1, .- | N, Clearly
there is a correspondence between the eyveles of ¢ and the connected com-
ponents of (. Tor cach evele of y on o given set of nodes, there is a eon-
nected component of (fy consisting of the same sob ol nodes.

This corvespondence between the eyeles of the permutation and the
connected components of the graph can be maintained under certain simple
changes.  Suppose we add to ¢y an are £;; connecting two nodes 4 and 7 in
different components.  The elfeet is to leave all other compouents alone
and unite the two components involved. Sinee 7 and 7 wore in different
cycles of ¢, Lemma, | tells us that the compouents of (yUR - now correspond
to the cycles of Yo ;.

Starting with a graph () we ean add a sct of aves to it until it becomes a
conpected graph.  If G, has p components, the minimal number of arcs
required to connect it is always p—1. We will call a minimal sct of addi-
tional arcs that connect a graph Gy a ‘spanning tree.’  Our nomenclature

Y v
{,(/J; l{ (Ti\\i
e o \
a”{j:\i} j\b:-;'J:; '
(a) {b)

Figure 1
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agrees with the usual one of veference 7 1f the original components ol (7 ave
regarded as points.  We can now state Theoren 2,

Turores 2. Lelan,, qon, 0, o, 4., be the tnlerchanges corresponding
lo the ares of a spanning iree of Gy The aees may be lokern i any order,
Then the permudation & gisen by

4
14 :\I,}LY:'|J'1€Y.':3J':!' CYIL g dpea
1% four.

0
L PR
g )6
14
9 {é 13 .~
I j 18
e 1®
{a}¥

{e) ¥=¥eyg 13%7,3%3,5

Pigare 3

Figure 5 gives an example.

Proof:  Wenced only show that the correspondence between eyeles and
components is waintained, for sinee GyUR  UR: - UR: 5, s con-
nected by the definition of spannig tree, this correspondence would allow
only one eyele for ¢, We know that the correspondence is maintained if
each adeded are connects two components.  However since we are using
the ares of a spanning tree this two-component property s automatie.
For if one of these ares, when added, conneeted nedes of the same com-
ponent, then the remaining ares, without that one would already make
{fy eonuected, which contradicts the assumed minimality of the connecting
set.



662 P. &, Cihmore and R, B, GComory
TREE COSTS AND A SPECIAL PROPERTY OF PHIE MINIMAL TRER

Haviva established o conneetion hetwoeen trees and tours we next introduee
costs on the ares of the trees.

We start with the graph 6, lormed using the minimal permutation ¢
of the second section.  To any are 1, corresponding to the interchange
g, WE assign a cost ¢, {a;;), the cost of applying the coresponding inter-
change (o ¢.

By the cost e, (7} of a tree 7 we mean the sum of the costs of the infer-
changes corvesponding to its ares, io.,

olr)m= 2 colai)iRej e vl

Finding a minimal cost tree is of course quite easy,  One simply applies
the well-known method of Krosgan™ regarding the components ol Gp as
points.  The minimal spanning tree in this situation can be assumed to
have a special property.

Lintsia 20 Theie 45 a mintinal cost spanning tree for (U thal contains only
ares £t 0.

Proof: Suppose 7 is a minimal tree containing the are R, 7> 041,

Sinee Ay and Ag are in the same order as B, and B, we have

e At (12)
.[{27:]))1‘)‘1-1J nl:f—l tﬁ(ﬂhA elpt1) ,jl .

Because of the order preserving property of ¢ this is

! ol @ppia). (13}

The ares By, ppp=14, -+, j—1, form a chain linking node ¢ to node i
Therefore i B is dropped from = and these ares substituted, the graph is
still connected, and the total cost of the ares involved, beeause of {13), has
either decreased or remained the same. By removing superfiuous aves in
the new set, one can get down to & new tree «° of cost < ¢.(7) and which
does not contain ;.

IFrom now on then we can assume that the minimal spanning trees that
are discussed contain only ares of the lorm R: ..

cole) 2

TREE COSTS AND TOUR COSTS

Br wi start with the minimal permutation ¢ with cost ¢{e), and carry out
the Interchanges of a minimal tree 7 i some order, we will get a tour .
However the cost ¢(y) will not generally be e{p)-be,(r). This is because,
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in general, the carryiug out ol one interchange affcots the cost of lator
mterchanges.  For example, in IMg. 6, il we take f(a) =1 and g{2) =0, we
have co(ap)=|[{LBIMH2,4]F =2, Bub i ey is applicd and then o

Comns (o) = L[ 1IN, 11 =4 s e (cep)

However, there are some cases in which ne effect is produced on the
later interchanges,  For instance, in the example just glven, enc can verify
that ey, (om) =colam).  Woe will discuss these siteations in Lennuas 3,
4, and 5.

Iirst, we need Gwo definitions.  We will say that the 4th node is of

.

type | relative 0 a pornoutation @ 1 H:5 Au, otherwise 18 s of type 2,

¢ Py

Figure O

Also, m what follows, we will say a permutation ¢ is order preserving on a
IJ'cLil‘ (!,J) if Hj>Bg~“5:>fl\p(jjéx’lw,‘).

Leaaa 30 Lel o be o pernulalion that ds order preserving on (1.4) and
(pyy). Leb oy and o, be inlerchanges with <5 und p<q. Lel ' =,
Then eylas) = ey (e and o s order preseroing on (1,70 4f any of the following
Jour cases apply:

(a) p>j,

(b} g<q,

() p=47and nedej is of lype 1 relulive lo

(d} g=1and node U 7s of type 2 relalive o ).

Proof. Tneases {a) and (0) ¢ (i) =(7} and (1) =¥}, so the order
is unchanged and the intervals entering inte the cost fovmula (11} are also
unchanged.  Tn ease (¢) we have @' (D =¢(2) and ¢ (Y =¢(g).  Order is
preserved sinee Ay ph=Appz Avm=Apnz Agn=2Ap . The cost for-
mula (11} is also unchanged sinee the only difference between gy (e;;) and
cer {18 the replacement of Ay by Ap . Sinee J s assumed to be of
type §, Ay was alveady 2 535, so replacing it by the even larger Ay does
not affect the interval intersection that appears  the cost formula,  Case
(d) is similar to (¢), We have ¢ (5) = () and @' () =y(p). Ay
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Ao B o= Ay 2y Ay, s0 order is preserved. Again o {i1)
the oty change is the replacement of 1y, by A e = ilegn. Sihwe dgn =
Ay and g <B4 by the type 2 assumption, the interscetion in {11} is
still unchanged.  This established the lomma,  Cases {¢) and {d) are
Hustrated n Fig, 7

We have also established the following property.
Leanis b Tucase {¢) af Lemina 3, node 7 is sidf of fype | velative now to
¢ and in case {d) node 1 is of type 2 relabive lo .

We are now veady for the main lemma,
baansta B Lel o be the avindmal cost pernidalion, oL a, 0,
W, Goseries of inlerchanges wilh o <is<- - <4, Then there is oy, ob-
tacned by execuling the o's (n a paiticnlar order, with the propeity ol

e =ele)d 20 eola, )

\’ftj)

1At

CASE (d)

Figure 7

Proof. We will call an interchange a type t interchange il its lower
node s of type 15 we will call it o type 2 interchange if its lower node i of
type 2. The ovder of execution of the interchanges is as follows. I'irst,
do all type 1 interehanges in order of deeres asing lower index, ie., start from
the top and work down.  Sccond, do all type 2 interchanges in increasing
order ol index, o, start at the boi tom and work up.  Consider a type 1
mterehange p.n encountered duving Uhe first part.  Let it be the o, of
Lemra 3. Cousider the yemaining unexceuted interehanges whose cost
might he affected by exceuting ¢, 1l rematsing interchange has no
nodes in common with e, ., then Lenina 3, case {a) or case (b)), applics,
I any inferehange above w18 unexe (,u[t(i it must be of type 2. 1f it

had a node in common with ayyq, case (d) of Lenma 3 applies, Il there
s an interchange below a,,.,1 with 4 common node, then, sines oy is of
type &, Lemma 3, case (¢), apphies.  Couscquently, during the first puart,
the cost of the remaining interchanges is unaffected, [t is correct to apply
Lenuna 3 throughout since the interchanges start out with B> B amplying
Ap; 2 Ay, and Lemma 3 shows that this property is carvied forward among
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the unexeeuted interehanges, while Lemma 4 shows that the types of the
unexecuted mberchanges remain what they were at the beginning.

The reasoning connected with the exceution of the type 2 interchanges
s sunilar.  Again if a vemalning interchange has no node in eommon with
the interchange o, Lenuna 3, caze (0), applies sinee the remaining un-
executed interchanges must be above appa. Similardy any interchange
with a common node must be above and be of type 2. Then Lennna 3,
wase (d}, applies.  This completes the proof,

With the lenvnas established, we can now state the main result of this
seekion.
’l‘msonl*\{ 8. Lel v be a ominiingl cost spanning (ree of Go. Lol ais 0, -,
'ty be h’ze lype | m!rwh(mr;m carvesponding lu the aies of v wilh r1<1;\ s
1. Lel f‘fmm!, coyad o be the lype 2 ares wilh o> - 0 Then if

1 i k4
TOEF el GG T,

4 a fowr wilh cosl

(") =cle) ey,

Proof. The fact that ¢ is a tour comes Trom Theorem 2, the statement
about cost from Lemmas 2 and 1. The order lollowed b exceuting the
a’s 15 that of the prool of Lenuna 5,

" is of course o candidate for being the minimal cost four.  In the nexg
Lwo sections we prove that i actually s mimal.

AN UNDERESTIMATE OF THE COST OF A PERMUTATION
IFos s cost of having () follow ¢ we have been using (1) which, as in
(8}, can be written as
ey = [ BoT o M=o Ayl 41—, BN Ay, + =]l (14)
Define the interval £;, independent of ¥, as
= (B8 ) A el orian ), (15)

and the set P2, a union of disjoint lutervals, as

{13
Using £ wo define a new cost ¢f; for having j [ollow £

A1, 0 10 NP A0, BN 22 0P, (17)

which is the same as (14) except for the presence throughout of P, Using
the new cost we can define a new cost 27 () for penautations by

N @
L,
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and for interchanges, just as in the secoud seetion, by
e (e =c (o) =" (),

"The formula for ¢, (w5} is obtainod in exactly the same way as the formula
for eglai). The only difference is the presence throughout of 12 so

B BAN Ay, g0, (18)

C‘if,:::{(f ,";) =

for the case where ¢ is order preserving on the paiv (7). Since Jley+
gla) 20, we always have f(;;"(a;;}égﬁt,@-(ﬂ;;)f, and in the case where (18)
applies we have

6" () Seglens), (19)
We can now prove the theorem that gives the underestimate,
Purowmest Lo For any pernaulalion
() zele) -+ ().
Proof. I this proof and in what follows we will want to vefer to the
. . # . . . .
contribution to the cost tipeny ade by a single interval P So wedefine
e{g) by
)= Bt 0= A0 A L=, BN 42 0P, (209
which is merely (17) with Ly veplucing 20 Clearly
2o Senln)=elu

Lot us fivst establish Theorem 1 for the case g=w.  We will do this by
showing that ¢%(g) =0,

For this purpose, and o later one, we prove the following lemma:
Lisyesia 6. For any &5 and o, whentoer the inlervals

fl}’;,"'!" ﬁ}ﬂl_" %,;"l&(,’)iﬂ[ﬂ’f, (2]&)
{-"1‘}(])3“}703.;05““ 'W,[;jfnl),[, (2”})

wre noneinply they ave 1) and should Py be nonenply, they will be P, if and
andy if

iSa<e YD (22a)
¢ Wi Eg<y (221)

hold: respeciively,

Proof. Sinee P, is [1)’,,,B,m}ﬂ{;l¢L¢,),xfl.s,(q,;,l)§ the interval (21a) would be
empty if (> sinee then the interval [Bi,4 = 1085,,1,,,] would be emply,
and also if ¢2¢ (7Y since then the interval {mm-,,-‘l\f,,_;)]ﬂ];l,P(,j},:'lg(,,.i,nj
would be ecmpty.  Should (2243 hold then fox {212} to be other than {7y one
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of B; and Ay would have to lie interior to both the intervals [58,,5,,.] and
[ oA etarny, which is impossible by the indexing of the s and by Ghe
delinition of w. A similar argruient can be repeated for (21h) and {22b).

Applying the lemma to the case Y=, neither (22a) or {22b) can be
satisfied so that the intorvals (21a) and (21b) are always empty.  Conse-
quently ¢ (g) =0 for all 4 and ¢ and therefore ey =0, We define the
‘height’ £ of & permutation ¥ as the fivst index on which ¢{4) differs from
o(?}. 1f A=N =g and the theorem holds.  Let us assume the theorem
holds lor all peritations of heights khza, and prove that it then holds
for all permutations of height n—1.

B--1 N

¥ opln-b) Mgy

o A
n-l d(n-1}
i

8, 1t

A N

Aé(a)

B; T ) A¢“)

Figure 8

Let o have height n—1 and let ¢ be defined by
Y= e,
with 2=n—1 j=¢ 'w(n—1}. (See Fig. 8 where the solid arrows are for
¥.)  Then
Sln—1 =g oln—1]=e(n—1)
5o that ¢ 1s of height 7 and the theeram holds for . Of course ¥ is obtained
from ¢ by the same interchange .. Since 1<y and o W =n—1<
o Y=o P n—1)4 s order preserving on the pair (7,7) and therefore
the interchange formulas (11) and (18) hold without & minus sign.  From
the induetion hypothesis
e(¥)zele)+e(9),
while from (19) eo(e) Zeilas),
s0 that adding we find
c(Py=c()Feplan) Zelo) " () -Fe§ (i) = elo) -+ (9),

which established the theorem,
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AN UNDERESTIMATE OF i1k COST OF A POUR

W susr uow make a connection hetween our eost underestimate and the
cost of the miniual spanning troo,

Let us deline the n-node graph G4 ¢4, contains all the ares 2,0, of
(y as well as any undireeted are £y o4 for every ¢ for which sither for some
¢ (222} holds, or for some index J(22b) holds. We will show later in
Lemina 8 that these lattor ares fyei1 of G are just those for which the
interval £, contributes both to the J cost and the ¢ cost 1y " ().

The next lemma imiplies that ¢, containg o spanning tree,

Luamia 7.0 40§ 45 o lonr (2" 4s connected.

Prooi. Suppose 0" is not connected.  Then it is possible to divide it
nto two disjeint tomponents ¢ and . Since (7" includes all the ares
of (0, and €, ean only be unions of components of (7,, Therefore if
C i the set of nodes in o8

Now suppose that

then multiplying by o gives
YOy =oCy =,

Hince this would wply that ¢ is not a tour, (24) cannot hold and there muyst

. . Lo y -1 e .
be ab least ene 4 such that the node 4 s in ¢ and the vode ¢ Yy is in
Co I ‘l.u<§0hl‘//(‘«'-'n,‘); leb ¢ be the smallest ndox for which

HEG<eHI S0,

and for whicly the node ¢+ Lisin(, DBy definition, the are By Isin G5
in this case.

e (i) < 2, let ¢ be the largest index for which e (4, = g <154,
and for which the nede qisin . Again, by definition, the arc P is in
(" in this case too.

But #2,,,4 links the supposedly disjoint components (% and Co. This
contradiction establishes the lenmaa,

Before proving the miniwality of the tour ¢* of Theorem 3 we necd

twvo Turther lennmas:
Lusiva 8. Gven « Jived ¢ and a pernadation ¥, the nunder of valyes af the
tndex @ Jor which (22a) holds 75 the saie as the nainber of ealues of 7 Jor which
(220 holds.

Proof. Define the Munetion IeS by

B{iy=1 o iy,
Riy=0 it =y,
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Thoen for any permutation ¢
r . M -] . - 3
Do RGY =Rl ()] =0, (23)
since ¢ ¥ mercly rearvanges the terms. The individual ferms
(RO —Rle (D]
will he -1 1f (22b) holds, —1 if {22a) holds, and zero otherwise.  (23)
shows that the nwumnber of —i— 1T and —1 terms must be equal, which cstab-
lishes Lomma 8.
We are now in a position to prove the minimality of ¢
Consider the sum ¢ (), which can be written:
IEDNIATED IR PN (25)
Lot us look more closely at the term in parentheses
2aictein{a). (26)

By Lemma G, if 5y (¢) is nob zero then 16 is cither jj”,,i; or 170, the
former when {22a) holds and the latter when (22h) holds for j=12. By
Lenuna 8 sve ean conclude that the 1£7,]; and [2,, oceur equally often in
the swin (263 so that that swm is always o nonnegative imteger multiple of
1P and thevefore ttself nonnegative.  Should 77,44 be an are of (7 then
necessarily {22a) or (22h) holds for some ¢ or 7 and therefore by Lenma 8
(228) holds for some < and (22h) for seme j. Consequently again from
Lemema 6 we can conelude that

Dochunlo)®
Gy s 2 P iR i),

ol etyysa)
Y . 7 v
() Lq Col i) 10 g cliy ™}

Sinee (7.7 is connected, it ineludes some bree 7. So

Uz 2 colagpin) LR s eli"]

Ho from (25)

and sinee §1°

{27)
ooy, N ’ o N .
= Zf[ Celctgpit) if/ihjw et [ Z ol ).
It 7 is any minbnal spauniug tree we have from (27)
e () zeslr). (28)

Now from Theorem 4, (28) above, and Theorem 3,

P 2o(e) T (W) Zele) b (r) = el{y™), (29)
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where the ¢ of (29) is of course the candidate for an eptimal tour de-
seribed in Theovemn 3.7 (29) establishes Theorem 5.

Trwowes 5. The towr ¢ described in Theorem 3 s « miniinal cost lowr,

THE BOTTLENECK CASE

Anorusr objeetive funetion that ean be considered is mi() delined (or any
permutation as max, <. degppl. The problem of minimising m () for any
permutation ¥ is the bottlencek assignment problem ahrendy solved by
Civoss i referenee 4, The problem of minimizing »(y) for tour ¢ is the
bottieneck traveling salesman problem which we take up here for the cost
matrix fe ) defined by {1) when f(2) 20 aud g{z)=0, The results ob-
tained here apply equally well to the ease when f(2) =0 and gley =0, We
do not yet know how to solve the problem for general fand g,

The method for obtaining a towr ' to miniinize ¢’y is but slightly
different from the method to obiain one winimizing ¢{¢’).  The difference
lies in the cosls assigned to the iterchanges used to obtain a minimum
spanning tree of G, and in the order in which the interchanges are applicd
to . Iustead of the cost eo(ey, ) anare By, of a spanning tree of {7, has
4 Co8t Cyorern.  Having obtained a minimum spanning tree of (7, with these
new costs and with ares say 0,40, + -, £, 1 then ¢ is defined :

£
Y = PO 1 G, ety
wheve 7y, -+ -, 7 are In inereasing order of size,  Somo preliminary results
Es . . . 7

are nesessary to show that ¢ does actually minimize nly ).

Let ¢ be any tow. Consider lih(-z‘_g;'aph Gy previously defined,  We
will show that if £, is an are of G,* vot in G, then

})L{l,b) ;2 Cholnid)- (3())
Whenever £, 1 such an are then either there exists an 7 for which (22a}
holds or a j for whick (22h) holds; but we have seen from Lemma 8 that
should there exist such a j then there also exists such an 4, Henece neces-
sarily for some ¢ (22a) holds.  For this 7 then
g oy o - 2 - - ; .
i‘[))qfi* Ljn['— o r"lw(q—i'i,‘lg—' “’:’:"’" “ mi”“ - :—']\M!)J
and cousequently sinec
mi{y) Z ey

(30) holds. It lollows therefore that any tour ¥ defines a spanning tree of
€, with an arve of greatest cost not exceeding m (),

T huthe fourth section we proved Lemna 2 1o show Chat only the ares 2,0 need
be used for the ares of a spanning troe of &, The resalf we have just eslablished

indicates thal we could have dong without this lemm, Hlowever it does motivate
carly in the prool the limilalion to spamming brees with only the aves £2,,,,.
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From the maaner in which ¢ has been defined it s evident that for
some J either wr(@ b= e or () = ey, I the labber ease m(y'
nmust be identical with the largest cost attached to an are of the minimun
spanning tree of G and consequently [or any tour @ m(Pd = (), Ase
sume thevefore that m{y’) = ¢ and that for some tour () <in(yg').
Then necessmily » 'w(7) <5 and therefore if g=7—1, it folows that

¢ Yl =q<
[From Lemma 8 nw ain there exists an 7 sueh that 7159 <e () and conse-
e 1

quently 1< ¢ (4).  But then
nild) 2y [1Bs, -+ 1N =, Ayl
= EU)J;; e iﬂi Yy L v‘(.i)] ey ""!(t//’}:

contradicting (gz'z) <m{y".

Incidentally this latter argient can be appled to prove that ¢ is a
permutation minimizing m{e).

[ the final section we will give an example to show that in general
the tour minimizing the bottlencek objeetive is different from the tour
minimizing the sum objective.  For one :;p(‘('ial ase, however, these tours
will be identical; that is when H,Z;!w\ or all 7. For in this ease

= i[/))ﬂ} _l[_ * Jni“* “, ""lsﬁ(fi-i-l)”f
= Gyl 1)

and hence the costs attached to the ares of & spauning tree of ¢, are the
sae i the Lwo cases.  Furthemnorve all the interchanges for a spanuing
tree of ¢, will be of type 2 s0 that the order in which they arve applied to ¢
to yield the ¢* of Theorem 3 is the same as the order deseribed for obtain-
ing ¢

These results permit us to solve a welb-laown problem of graph theory
for a special class of graphs.  The problem s that of chamcterizing these
directed graphs possessing Hamiltoninn cirenits; see for example Section
3.4 of reference 9.

For a node 7 of a divected graph & let T be the set of nodes 7 for which
an are of ¢ is diveeted from 7 to 4.
Trwonua 6. Lel G be u divected giaph of nonodes for which WO 1S -~ Cp,
and U,=11, 2, -+, n}; then necessarily there will be pemm!umr,m @ wilh
the piraperly thal for eceh © there is a 7 for which Toe=ip(1), -+, w(i. el
&, be an undirected giaph of n nodes with an aic Rooiq i and ondy I o (q)el’,
and an are Kogm 4 and only 3 ¢(g+ 1 el'y. Then a necessary and suflicient
condition that G possess a Hawillonian clrewil & that O, be connected.
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Praci. Without loss it is possilie to asswme that 1340 sineo without
this assunplion weither ean ¢/ possess a Hamiltonian civenit nor ean ',
he connceted,

For cach < define 4= '{4) and define Bes= (14 s0 that By Bys - <
Booand Ay Sd,m,s - = gun vs previously.  Further let Slady=1 and

glad=050 that for any {and 7, e =0 if ad only il Bz o, or equivalently,

But | Y i and oy il

2lellh o2y, el N,

r
50 that conscquently ¢5=-0 1 and oniy il jeI'. For any ¢ satisfying the
hypothesis of the theoren it follows that ¥ is a Hamilbonian elreuit if and
ondy H o is o tour for which ne) =0, Bul now applying the results of
this scetion we have that there exists o Hamiltonian ehreuit for (73 and
onty il there exists a spanning tree of G, cach are Rupsn of which hag a
COSE Cypy iy Which s zero; that is, if and only if ¢, is connocted.

THE ALCORITHM, EXAMPLES AND REMARNKS

Description of the Algorichm

We start by giving a deseription of the computational steps required
by the minhaal tour algovithry, which have been justified in the pre-
ceding scetions,

The data of the problem are the funetions Sy and gla), which give
the cost of marginally mcreasing or decreasing the state, and & Hst of N
Jobs Jowith thelr starting state vaiues . sand ending state values 3.,

We go through the following preliminary steps.

PLo Awange the nmmbers 7 in order of gize and renumber the jobs so
that with the new wumbering

Big B, d=1, o Nt
P2 Arvrange the A in order of size,
Poo Tind e(p) forall . The permutation ¢ is defined by
wp)=y,
g being suel that 2, is the pth smallest of the A
1. Compute the numbers Coleeiogn) lov =1, oo N, Colvirg) s
defined by
Coletiin) =0 ifmax( B, A0 = min{ o, Ao,
) \min{.'};_E_l,.%’,,‘: .y )
Col i) ’—‘:—‘] ) Fgle)] de
m:m([f_:,.-i‘,,(‘;))

Fmax(Bodes) <minl Bind e ),
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FTABLIL § TABLE 1L
B A No. I A No.
31 34 7 40 43 4
19 43 6 31 ‘ 34 0

3 4 5 20 22 5
40 8 4 19 18 i
26 2z 3 i3 16 3
13 10 y 3 7 1

i 7 i 1 4 2

We now seleet o seb of aves by the following stops.
Bl Form an undirected graph with &V nodes and undiveeted ares connect-
ing the <th and eth nodes 7= 1, -+ N,
52,0 I the ewrvent graph has only one component, go to step 11 Other-
wise seleet the smallest value eo{a:1) sueh that € is in one component wud
i1 tanother. T case of o tie for smallest, choose any.,
53, Adioin the undirected are .54y Lo the graph using the @ value selectod
in 52, Return to 52,
T Divide the ares added in 53 into two groups.  These #2500 Tor which
Az Brgo v group 1, those for which 5> A, go i group 2.
T2, Find the largest index & such that 7.0 18 nogroup [ Iind the
second largest 75, oo, up to 4, asstuming there are £ elements in group 1.
T3, Find the smallest index jy sueh that £, 00 0s o group 2. Find the
swond smallest fu, cbe., up to /.., assuming there arve i clenents in group 2.
The minimal tour is obtained by following the 4th job by the job

H0,

=14

\& ( 1 J ST IES LA OIS N € BN TS 14 ST PPN Lo ) L o U SO 1( 1)

In the above expression the permutation «p, s defined to be
e
]
Il

o) =1,
et (1)
Lorgld) =1, (15D, q)

TABLE L

i (i
" .
2 7
3 3
4 3
5 [
O 3
¥ !
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and the order of applying the permutations is from right to left in the se-
guence given.
We next show these steps in a numerieal example.

Naumericol Exampleo

For owr numerieal example we take o probiem with f(w) =1, and g(2) =
0. There are seven jobs with A’s and 7s us given in Table 1.

Testep (P we rank and number the johs to obtain the first Lwo col-
uruns of Table T1 that give the job nwmber or rank 4, and the value of 2,

Lu step (P2) we arrange the A, that appear i coitn 3 of Table 11
with their job uuimbers next to them in columm 4.

The permutation ¢ of step (P3) is given by the first and fourth columns
of Tabie T1; the entry in the 44h row of columm 4 18 (1),

In carrying out the next step, (P4}, we need various niwmbers sueh as
max (5, Agn). max (B A e(n) i the larger of the two nwnbers appear-
ing in the th row of Table 11 in eolumns 2 and 3. Computing the ¢, (o)
we find

colon ) =0,

18

Colen ) wj el 2,
1%

L

(c‘;(_ gy ) / = 3,
1

<
49

3|
eol oty ) —j (==,
25

s 445

eoletg 1) = ] dr=6

We are now ready Tor (513, We form the graph of Iig. (9) using the
ares fan that arve, aside Fronm ares of the form £ that do no connceting,
arc t; s and f, .

To carry out (82) and (83) it is convenient to adjoin to the graph of
IMig, (9 dotted lines for ares Bsiqx together with their costs, Tig. (10a).

b earrying out (52) and (83) repeatedly we choose in suceession 1ts .,
Ros, 155, and Ku, which gives a connected graply, g, (10b),

‘Fo carey out (F1) we divide the ares into two groups.  Ciroup 1,
e, Ryab, Group 2, [ Req Ryl
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(T2} gives

1,1 = 3,

1y = (u,
and (T3) gives

ji 4:

Ja=D

Then (T4}, the minimal tour, is given by the permutation

= o0y g0 00 500 6,

ONOROROES
o

@)

' (a) (o)
Figure ¢ Figure 10

whose values appear in Table [T, Sinee ¢*(4) gives the successor to the
wth joby the minimal cost tour is 1-2.7-4.5-6-3-1.  Its cost is 34, This may
be computed dircetly, using the changeover costs, or by compuiing the
cost of ¢, which is 16, and then adding the costs ol the interchanges used,
which adds 18,
Numerical fxample in the Bottleneck Case
I the bottlencek case the eosts ¢y must be computed,  They are:

Cipm=T—1=0,

Crpiy = 16—3 = 13,

Cooiny = 18— 15 =13,

Cipiy == 22— 10 =3,
Cotm =34 —20=8,
Che(7) ™ 45 —3] == 1.

In place of the graph of Tig. 10a we now have Pig. 11,
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The minimun: spanning tree for this graph has cxactly the same edges
as the one in Fig, 10b even though the costs are different.  But the inter-
changes corvesponding to the edges of the tree ave applied to ¢ in a different
order; the minimal tour ¢ is defined :

R

rs
Y=o povy 40y st 5,

and s 1-2-3-7-4-3-6-1.

Figuve 11

Sequences and Tours

Having worked out a tour exatnple we return to the question of the
conneebion hetween the sequencing probiem and the tour problem. In
sho introduction we observed that the problems are the same provided that
the sequeneing problem has specified initial and final states.  If theve is no
sueh requirenent there is still & connection if either g} or f(a) is zero.
Let us now assume that ¢(x) =0,

Case (7). An initial state B, is given, but the final state can be any-
thing. I this case the sequencing problem is cquivalent to the tour prob-
len with an additional job J,, if J, has starting state JdySming, .. o8,
and ending stale 3,

Case (47} Any state is availabie ot the beginning but the final state
must be Ao Then the equivalent towr nvolves the additional job J,
with slarting state «, and ending state Byzmax..,, ... ;

Case (i), Any state is available at the beginning and the machine
can be left in any state.  Thea the equivalent tour has a J, with

cxdd

AgEmine,y, .., 28

and BeZmax, g, o owd
e reasoning in all these cases is the same as that of the introduction.
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We need only show in each ease that the cost ol the scquence equals the
cost of the corresponding tour. This s so n Case (3) because, by using
our tour, we force the machine to end its sequence in state Ay it can
switeh into »'l(; from any possible ending state £3; at zero cost because Ay= B,
clll{,]. glx) =

The same argument applies in Cases (4 and (4) and also when
(,'(.L) =0 aned flay=0.

One-Sided Cost Functions

Beeause of the special vole played by the cases where one of the cost
funetions is zero, we state the following theoren.

Tavore 7. L{’[ v be & mindnal cost lowr tnoa problem wilh cost funclions
JGey and g(2).  Then ™ ds still a winimal cost lour in the new problem ob-
tained by replocing f(x) by fla)-Fgley and g{x) by O.

Proof. T earrying out the algorithm ¢ is determined from e, which,
because it depends only on the A; and B, is the same in both problems,
and from the ¢,(«;4), which, beeause they depend on the swn of the two
cost funetions, are the same i both probicws. “Fhis ends the proof.

The equivalence bhesween the f) g ]}mbl(\m and the ¢, 0 problem is
not complete however,  The cost ¢{¢™) is not the same in the two prob-
lemg beeause ¢fe) ean change, and the equivalence does not extend to the
free ended sequenecing problews such as (43, (¢, and (&%) above.  More
precisely o probleny such as (2), (40, ov (#00), but with cost lunetions S
and gla) both nonzero, does not in general have 'l"h(' game optimal seguenee
as the same problem with eost functions f{e) +¢(e) and 0.

further Exanples

Turning now to further examples, we Hlustrate the ease f{a) =0,
glx)=0 by an application closely rvelated to a scquencing problem dis-
cussed in reference 3,

A palr of axles with Slitting kaives on them are being used one af a tiime
to cut an endless strip of cardboard as it runs beneath the knives, Various
arrangements of the kpives are needed,  Fach armangement takes a time
A, to prepare and will he used 1 eutting for a tinwe B:. While one nrrange-
ment i being used for cutting, the kuives in the other axte are being posi-
toned for the next arrangement.  If J; precedes J; and B:2 A5 then the
arrangement for J; can be completed during the run of ()thm wise
the machine is stopped and theve s a delay of o~ B while the arrange-
ment for J; s completed,  The cost invelved is the delay, so f{wy=1,
and glax)=0. The state of the machine is the amount of thne siuee the
start of the last job.  The sequencing problens of velerenes 3 dilfers Trom
this problem in Em—\fmg three axles vather than fwo.
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A guite dilferent sounding example of a one state-variable machine i 15 4
bruck running along a rond.  The truck picks up & load at point 4, and
delivers it at B:; it earvies only one load at 2 time.  The tine spend travel-
ing from delivery points to pick-up points Is wasted and is to be minimized.
Fhe position of the truelk on the voad is the state variabl ¢, and the speeds
the truck can attain on the various parts of the road in one direction or
the other provide the j(x) and g(x)

Relations lo the Two-dMachine Sequencing Problem.
i) &

Finally we take up the velation hetween the problem discussed heve
and the well-known two-machine sequencing problem solved by 5. AL
Joussox™ We will discuss this relation from various peints of view.

FFirst, Johnson’s problem can be regarded as being, in some seUSE, 8
one state-variable machine problem.  The state in which the machine is
teft after o job is the differe u('o n the time of completion of that job on the
sccond and first machines.  If this is X, then the next job accepts any
starting state and leaves a fmu.E state Xy given by

X = [)>, i1 “‘%“H!fl.\:{.(}, XN Pl )?

where Ay is the thme spent on the first machine and By the thne spent
on the sccond.  Thus there is a state transformed by the A's and B
but i & wanner dilferent Trom the one we have diseussed.

Secondly, one can also sce that the eutting-knife exanple we discussed
suggests the Johnson problem,  Setting up the baclk-up axle is equivalent
bo spending time A on machine 1, and the running time 73 is cauivalent to
spending thne on machine 2. However, in our example, even during a
very long run, ouly one arrangement ean be set up on the reserve axle
beeause there is only one reserve asle.  In Johnson's problem, a great
many jobs could be completed on the first machine while the sccond ma-
chine was doing a long run on one job.  Johuson’s problem then can he
seen to he aversion of our putting probien but with an unlimited array of
reserve axles,

Finally, one may wonder it (l(‘spi[v the apparent differences, Johnson’s
method, applicd to the A% dll(i £, might yield the same suswer as ours:
perhaps from some other view poml the apparent differences would dis-
appear or cancel out. That this cannct happen is shown by the following.
Johnson’s optnnal sequence depends only on the ranking of the assembled
numbers Acand B Any change in these numbors that preserves ranking
does not chann'v the f'hoi(-v of optimal sequenee. However, these changes
do affees the e e ) of this paper and can and do cf nge therefore the
choice of oplimal sequence. 8o the avswers, in general, eannot be the

Saine.
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