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ANNALS OF MATHEMATICS 

Vol. 61, No. 1, January, 1955 
Printed in U.S.A. 

TRAJECTORIES TENDING TO A CRITICAL POINT IN 3-SPACE* 

BY RALPH E. GOMORY 

(Received August 13, 1954) 

1. Introduction 

The object of this paper is to study the behavior of a solution to a system of 
ordinary differential equations, dv/dt = F(v), v a real 3-vector, as this solution 
approaches a critical point P. The motion of the solution will be projected onto 
a unit sphere D around P, and the limit sets of the resulting projected motion 
will be studied. These limit sets, which characterize the asymptotic behavior of 
the solution as it tends to P, will turn out to be closely related to the solutions 
of a certain 2-dimensional system of differential equations defined on D. It will 
be proved, for example, that the limit set of the projected motion must contain 
some critical points of this 2-dimensional system, or else be a closed curve. 
Hence any solution tending to P must either return arbitrarily often arbitrarily 
near certain special directions, or else spiral asymptotically to a cone whose 
vertex is P. 

The behavior of a trajectory tending to a critical point P in 2-space is known 
from [1]. The trajectory either tends to P asymptotically tangent to some line, 
or else spirals infinitely often around P. The behavior in 3-space will turn out 
to be considerably more varied. Certain of the theorems to be obtained for 
3-space are valid also in higher dimensions. 

2. The set L(v) 

Consider the equation 

(1) d= F(v) = (v), dt 

where F(v) is a real analytic vector function of the real 3-vector v, v = (x, y, z), 
in some neighborhood of the origin, and F8(v) is the vector whose components 
are the terms of degree s in x, y, and z. We can assume that the critical point P 
is at the origin, so F(O) = Fo(O) = 0, with 0 the zero vector. Also let m > 0 
be the first integer for which F8(v) is not identically zero. 

Now let v(t) be a solution of equation (1) tending to P as t -? o. The behavior 
of v(t) will be studied by projecting its motion onto the unit sphere D around P. 
Let v(t) = o(t)u(t) where a is the norm of v and u is a unit vector. Then, as 
v(t) -* P, u(t) traces out a path on D which may of course be self-crossing. We 
will define the set L(v) of limiting directions of approach of the solution v(t) to 
be the positive limit set of the motion u(t) on D. Thus a point uo on the unit 
sphere is a limiting direction of approach of the motion v(t) if and only if there 
is a sequence tn. t4, > o, such that u(tn) >_ UO. 

* This work was carried out under Office of Naval Research Contract N6ori-105, Task 
Order V, Mathematics Department, Princeton University. 
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If in the 2-dimensional case we form the one sphere D1 of unit vectors, and 
define L on this, then the results mentioned in the introduction assert that L 
is either a single point of D1, or all D1. On D1 then the possible structures for 
L are very limited. We will try to see what structures are possible for L on D. 

3. E and E' 
Let v' denote points in a second real 3-dimensional vector space E', and let a' 

denote points on its unit sphere D'. Let i be the mapping of E' onto the original 
space E which sends v' into the vector in E with the same components. Then 
the mapping j: o'u - > au; o' = 1 + a, iu' = u, sends D' and its exterior onto the 
original space E, with D' going into P. Outside D' however the map is one-one 
and analytic at every point, so there is an inverse, and this inverse carries a 
solution v(t) of (1) into a motion v'(t) in E'. Also as v(t) tends to P, v'(t) tends 
to D'. 

As v(t) satisfies (1), v(t) = o(t)u(t), and o(t) = (v(t), v(t))+ we have 

do= (u, F(v)) 
(2) 

du 1 
=u- {F(v) - (u, F(v))u}, dt a, 

with the round bracket denoting scalar product. Arranging in powers of a gives 

do- 0 
dt= E8=m asT(u, F.(u)) 

(3) 
du = (u{F8)- (uF8(u))u}, 

so for o' > 1 the motion v'(t) = o'(t)u'(t) satisfies 

do = ES=m (o' - 1)8(u', F, (ut)) 

(4) 
du' 0 
dt= =m (o- 1)8 {F8(u') - (u', F8(u'))u'}. 

4. The set L(v') 

Since as t -* o, v'(t) tends to D', the ordinary positive limit set of v'(t) con- 
sists of points on the unit sphere D'. This set will be called L(v'). A point u0 
is in L(v') if and only if there is a sequence tn -o such that v'(tn) -* u0 . Clearly 
if there is such a sequence then o'(tn) -* 1, and u'(tn) -* u . Hence for v(t), 
-(t*) 0 and u(tn) = iu'(tn) - iu' . Therefore by the definition of L(v), if uo 

is in L(v'), iuo is in L(v) and conversely. Therefore L(v) = iL(v') and L(v') may 
be studied in place of L(v). 

It will be useful to reparametrize the motions v'(t) in E' while preserving un- 
changed the limit sets L(v'). For this we need the following simple remark. Con- 
sider two analytic vector fields V1 and V2 defined throughout the same region R 
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and which differ on some open set A of R only by a continuous positive scalar 
factor. If p is a point of A the fields define two motions through p whose trajec- 
tories coincide as long as they remain in A. If both motions remain always in A 
they will both have the same positive limit set. 

Now the equations 

do- 
(ET' 1)8-m+ (, F8(u'))u' 

(5) 
du' 
dt = 8 ('00 - 1)'-m {F8(u') -(u, (u')) }, 

are defined throughout E' and differ from equations (4) by the factor (a' -l) 
which is positive for o' > 1. Since v(t) in E tends to P as t -* oc, v'(t) tends to 
D' and so lies always in the region o' > 1. If we take a point p on v'(t) and the 
trajectory v"(t) of (5) through it, it too will tend to D' as t increases. However 
it can not reach D' at any finite time to, for on D' do'/dt = 0 and therefore a 
trajectory on D' at any time to is always on D'. It follows that v"(t) also remains 
in the region at- > 1. Therefore the limit sets L(v') and L(v") of v'(t) and v"(t) 
are the same. However, equations (5) have the important advantage of giving 
a non-trivial motion on D' itself. 

5. Trajectories on D' 

Trajectories of (5) starting on a' = 1 remain on a' = 1, their motion being 
given by 

(6) ddf = Fm(u') - (u, Fm(u'))u'. 

The trajectories of this system on the sphere D' will give information about 
the structure of L(v'). 

However in its present form (6) is a system of three equations in the three 
variables x', y', and z' with the restriction xf2 + y'2 + z'2 = 1. In practice the 
form of the trajectories on and near D' can be investigated more easily by using 
local coordinates on D', so that the motion of (6) on D' is given by an ordinary 
2-dimensional system and the motion of (5) near D' by an ordinary 3-dimen- 
sional one. For example consider only points (x', y', z') in E' with z' > 0. Let 

= x'/z', 62 = y'/z', and r = z'(1 - (X'2 + y'2 + Zf2)I). Then the coordinates 
0 and 62 of a point p, z' > 0, specify a line through p which intersects D' in a 
point ut,, and r is the projection on the z' axis of the distance from p to uN. 

In terms of these coordinates the motion (5) becomes 

-= EsQ-m D m{X,(s1 22, 1) - 1Y8(,1, 62 1)} 

(5a) Y22 = E.~m Ps8m{ Y8( 1, f 2, 1) - t2Y,(41, t 1)} 
d-a) dT = m Z( 1 

do = .9% 
rsmlzl 

421 1) 
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where dt/dT = (1 + tl + 42),m-1) and Xm(x, y, z), Ym(x, y, z), Zm(x, y, z) are 
the components of Fm(v). Points Q1 2, 2 ) with r = 0 are on D', so the 
motion of (6) on D' becomes the 2-dimensional system 

dr = Xm(ni, 02, 1) - Zm(i X ,2 X 1) 

(6a) dT 

d2 = Ym(ti X 022 1) - 02Zm( X 2 X2, 1) 
dT 

with 4, and 62 local coordinates on D'. 

6. General structure of L(v') 
The positive limit set of a motion in a compact set is closed and connected. 

Also if a point q is in the limit set, and T(q) is a trajectory through q, then all 
T(q) is also in the limit set. 

Thus if v(t) passes through a point p and tends to P, and v'(t) and v"(t) are 
solutions to (4) and (5) passing through j-fp, we have always i-'L(v) = L(v') = 
L(v") and by the remarks above L(v") is a closed connected union of trajectories 
of (5) in D'. Hence 

LEMMA 1. L(v') is a closed connected union of complete trajectories of the two- 
dimensional system (6). 

From this we have at once 
THEOREM 1. If L(v') consists of a single point u , then uo must satisfy the equa- 

tion Fm(u') - (uo, Fm(u'))u' = 0. 
PROOF. As L(v') contains u' it contains the complete trajectory through u0 

as well. As u' in all L(v'), the entire trajectory is just the one point u' . There- 
fore u' must be a singular point of (6). Hence the right hand side of (6) is zero 
at uo0. 

This theorem selects the possible asymptotic lines of approach to the critical 
point P. For if v(t) tends to P asymptotically tangent to some line 1, the set L(v) 
will be a single point uo, the intersection point of 1 and D, and this is only pos- 
sible when F1uo = u0 satisfies the condition of Theorem 1. As no vector distribu- 
tion on the sphere D' can be free of singular points, there are always some pos- 
sible asymptotic lines of approach. 

To obtain further information about L(v') two lemmas will be useful. 
Let T+(u') be the positive half trajectory of (6) through a point u' on D', 

and T-(u') the negative half trajectory. Then 
LEMMA 2. Let A and B be two disjoint open sets on the sphere D'. If L(v') n A 

contains any complete trajectory of (6), and L(v') n B is not empty, then there are 
points ul and u2 on L(v') n [D' - (A u B)] such that T+(ul) C D' - B 
and T-(u2) c D' - B. 

PROOF. If C is any set on D', let C(E) be the set of points v', v' = o'u', where 
u' is in C and 1 < o' < 1 + E. Thus A(E) and B(-) are disjoint open sets in 
D'(E), and D'(c) - (A(E) u B(E)) is closed in D'(E). From this it follows that 
any arc in D'(c) having points in A(E) and B(E) has points also in 
D'(E) - (A (E) u B(E)). 
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Suppose now that the conditions for Lemma 2 are satisfied. Let p be the 
point of L(v') = L(v") whose complete trajectory T(p) lies in A, and let p be 
a pointof L(v") in B. By the definition of L(v") there are sequences t, -* oo, 
in ?? 0 v"(tn) -+ p, v"(in) ->+ p. We may choose the sequences so that tn < tn < 
tn+1 < tn+1 . Since v"(t) -* D', we may assume that for all t > to , v"(t) is in D'(E). 

For all n large enough v"(tn) will be in A(E) and v"(kn) in B(E). Hence the 
closed arc of the trajectory of v"(t) between v"(1n) and v"(tn) must intersect 
D'(E) - (A(E) u B(E)), and as D'(E)- (A(E) u B(E)) is closed, there is in fact a 
first intersection point e-(n). Also, on the arc of trajectory between v"(tn) and 
v"(tn+l) there is a first intersection e+(n) with D'(E) - (A(E) u B(e)). Thus we 
have a series of open arcs E(n) in A (e) with end points e-(n), e+(n) in 
D'(E) - (A(E) u B(E)). As v"(t) tends to D', so do the arcs, and the e-(n), e+(n) 
will have points of accumulation on D'- (A u B). By choosing a subsequence 
Ie-(n') } we may assume that the e-(n') tend to E- on D', and that the corre- 
sponding e+(n') tend to E+. Clearly E+ and E- are in L(v"). To prove Lemma 2 
it is only necessary to show that T+(E-) and T-(E+) are in D' - B. 

Let T(t) be the transformation carrying each point into its position t seconds 
later under the motion given by (5). Suppose that for some to > 0 T(to)E- is 
in B. Then we can find a neighborhood N of E- in D'(E) such that T(to)N c B(E). 
In fact we may choose N so that even for the closure N we still have T(to)N Ca 
B(E). Now N contains an infinity of end points e-(n'), and under the transforma- 
tion T(t) each traces out a path which begins with its arc E(n'). Since under 
the transformation T(to) each e-(n') goes into a point of B(E), T(t)e-(n') must 
already have cut D'(E) - (A(E) u B(E)) for some t, 0 < t ? to, and e+(n') is 
the first possible intersection. Therefore the set U, U Uto t o T(t)N, contains 

FIG. 1 
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an infinity of complete closed arcs E(n'). The points v"(tn,) are on the E(n') 
and tend to p. As U is closed, p is in U. But if p is in U then T(t)p 
is in T(to)N c B(E) for some 0 ? t < to. However the trajectory through p 
is in A for all t by hypothesis. This is a contradiction, so T(t)E- must be in 
D - B for all t > 0. 

If the transformation T(- t), t > 0, is applied to E+, the argument may be 
repeated to prove that T(-t)E+ is in D - B for all t > 0. This establishes 
Lemma 2. 

LEMMA 3. If C in D' is a closed curve solution of (6), then L(v') does not have 
points in both the exterior and interior of C. 

PROOF. Let u' be a point of C, and let P be the plane normal to C at u' . As 
C is closed, the motion through u' returns and cuts P again at u'. It is well 
known that under these circumstances all the trajectories passing through any 
sufficiently small circular neighborhood N1 of u' in P will cut P again, and that 
the transformation T which sends each point of N1 into its trajectory's next 
intersection with P is an analytic map of N1 into P. 

Consider the arc X in N1 consisting of the points o-u , a > 1. TX is again an 
analytic arc in P and has the same end point u'. Consider the intersections of 
X with TX, either, (a), there are only a finite number of intersections in some 
neighborhood of uo, or, (b), the intersections accumulate at u . In this second 
case analyticity implies that X and TX must actually coincide throughout some 
neighborhood. In case (b) the trajectory arcs starting on X and ending on TX 
form a band B, and B will have a minimum height 6 > O. Hence D'(6) - B 
consists of two disjoint sets I and E, open in D'(6), with I containing the interior 
of C and E containing the exterior. It is clear that a trajectory starting on B 
remains on B while in D'(6), so no trajectory in D'(6) can cross from I to E. 

Since the motion v"(t) tends to D', it must lie in D'(6) for t > to, and if L(v") 
has points in the interior of C, v"(t) must be in I for some t1 > to . Then v"(t) 
can never be in E again, since it cannot cut B to cross from I to E. Therefore in 
case (b) L(v") can not have points in both the exterior and interior of C. 

In case (a) choose a circular neighborhood N2 in P so small that in N2 X and 
TX intersect only at u' . Then the band B formed by arcs of trajectories starting 
on X in N2 and ending on TX can be closed up by the portion P' of P lying be- 
tween X and TX in N2 . See Figure 1. So now B u P' divides some D'(6) into sets 
E and I. If N2 is taken small enough no vector through a point of P' is tangent 
to P, so trajectories cross P' only in one direction, say from E to I. As before, 
if L(v") has points in both I and E, then v"(t) must cross B u P' from I to E, 
and this is impossible. Hence in this case too Lemma 3 holds. 

These lemmas will now be applied to the various trajectories that are pos- 
sible on D'. 

7. Structure of L(v') when D' has only a finite number of critical points 

In this section it will be assumed that Fm(u') - (u', Fm(u'))u' vanishes only 
at isolated points on D'. The various possible trajectories of (6) on D' will be 
considered one by one and related to the structure of L(v'). 
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7a. Isolated critical points. These critical points of the two-dimensional system 
(6) may be classified under the headings stable, unstable, stable-unstable, or 
centers. A critical point will be called stable if there are trajectories in D' tend- 
ing to it with increasing t, and if no trajectory tends to it with decreasing t. 
A point is unstable if trajectories tend to it only with t decreasing. A point will 
be called stable-unstable if there are some trajectories tending to it with in- 
creasing t, and others with decreasing t. From the general classification of criti- 
cal points of an analytic two-dimensional system, see [1], we have that any 
critical point which is neither stable nor unstable nor stable-unstable is a center. 
On the relation of isolated critical points to the set L(v') there is the following 
theorem. 

THEOREM 2. If L(v') contains an isolated critical point of (6) which is stable, 
unstable, or a center, then L(v') is a single point. 

PROOF. Let p be a stable critical point in L(v') and suppose that L(v') con- 
tains any other point p'. Take a neighborhood N(p) so small that p is the only 
critical point in the closure N(p), and so small that there are no closed solution 
curves in N(p). For a small enough N(p), p' will be in D' - N(p), and since p 
is a complete trajectory, N(p) and D' - 2(p) are two sets satisfying the con- 
ditions for Lemma 2. Lemma 2 asserts that there are points u' and u' 
on N(p) - N(p) with T+(u') and T-(u') entirely in N(p). From the theory of 
limit sets, see [1], we know that the limit set of T-(u') lies in N(p) and is either 
a single critical point, a closed curve solution, or else consists of trajectories 
linking stable-unstable critical points. As there are no closed curves or stable- 
unstable points in N(p), the limit set of T-(u2) would be the single critical point 
p, but T-(u2) can not tend to p since p is stable. Therefore L(v') contains no 
second point p' if p is stable. If p is unstable the argument may be repeated 
using T+(u') instead of T (u'). 

If p is a center there are closed curve solutions C arbitrarily close to P which 
contain p in their interiors. Any other point p' of L(v') would lie in the exterior 
region of some of these closed curves and this would contradict Lemma 3. This 
proves Theorem 2. 

THEOREM 3. If L(v') contains an isolated critical point p of (6) which is stable- 
unstable, then either L(v') is p, or there are positive and negative trajectories in 
L(v') which tend to p. 

PROOF. Let the neighborhood N(p) be formed as in the proof of Theorem 2. 
If p is not all L(v') then, as before, there are trajectories T+(u'), T-(u2) which 
are in L(v') and remain in N(p). If both trajectories tend to p the theorem holds. 
If one does not tend to p it tends to a closed curve or to a trajectory linking 
stable-unstable critical points. As we can take N(p) small enough to exclude 
closed curves, the second possibility is the only one, and the limit set consists 
of trajectories linking p to p. Since L(v') is closed these linking trajectories are 
also in L(v') and since they tend to p with both increasing and decreasing t the 
theorem holds in this case too. 

7b. Trajectories tending to a critical point. From Theorem 2 we have at once 
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THEOREM 4. If a trajectory T+ (or T-) of (6) tends to a stable or unstable isolated 
critical point p, then T+ (or T-) is not in L(v'). 

PROOF. If T is in L(v') so is p, since L(v') is closed. But then, by Theorem 2, 
p is all of L(v'). 

7c. Trajectories not tending to a critical point. For trajectories that are not 
closed curve solutions we have the following. 

THEOREM 5. Let T+ (or T-) be a positive (or negative) half trajectory of (6) that 
does not tend to a critical point. If T+ (or T-) is not a closed curve solution it is 
not in L(v'). 

PROOF. If T+ is not closed and does not tend to one critical point it must 
(a) spiral to a closed curve solution of (6), or (b) spiral to a graph whose vertices 
are critical points and whose sides are trajectories linking these critical points, 
with the whole graph forming the boundary of a two-cell E2 containing T. See [2]. 
This last configuration will be called a generalized closed curve solution. 

In case (a) if T+ is in L(v'), so is the closed curve C, since L(v') is closed. We 
may suppose that T+ spirals to C from the interior region. Since T+ spirals to 
C there are no closed curves in the interior region within some small distance 
6 of C. Let B(6) be the set of points in the interior of C distant more than 6 from 
C. If 6' < 6 is taken sufficiently small B(6') will contain points of T+. B(6') is 
open and D' - B(') is open and contains C, which is a complete trajectory in 
L(v'). Hence Lemma 2 applies and asserts that there is a trajectory T-(u2) start- 
ing on 3(b') - B(Y') and remaining in D' - B(6'). This trajectory cannot cross 
C and hence remains in a bounded region free of singularities and closed curves 
other than C. Hence it must spiral to C. This is a contradiction as positive and 
negative trajectories cannot both tend to C from the interior. It follows that 
T+ can not be in L(v'). 

If instead of T+ we have the negative half trajectory T-, we need only replace 
T-(u2) by T+(ui) in the preceding proof. 

In case (b) essentially the same proof applies. In place of the interior region 
of C, the two-cell E2 is employed and the rest of the proof is unchanged. This 
completes the proof of Theorem 5. 

The closed trajectories excluded in the preceding theorem are related to L(v') 
in a very simple manner. 

THEOREM 6. Let C be a closed curve solution to (6). If C is in L(v'), 
then C = L(v'). 

PROOF. If L(v') # C there are points of L(v') - C arbitrarily near C since 
L(v') is a connected set. We may assume there are points of L(v') - C arbitrarily 
near C and in the interior region. If there are no closed curves arbitrarily near C 
in the interior region, the trajectories through points of L(v') - C will be trajec- 
tories spiraling to C, see [1]. These trajectories however are in L(v') as their 
starting points are in L(v'), and this contradicts Theorem 5. Again referring only 
to the interior of C, if there should be closed curves arbitrarily near C, we could 
select one containing any given point p' of L(v') - C in its interior and contain- 
ing C in its exterior. This closed curve would contain points of L(v') in its in- 
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terior and its exterior and this contradicts Lemma 3. Thus in both cases L(v') F C 
leads to a contradiction. 

7d. Possible sets L(v'). On a sphere with isolated critical points the only pos- 
sible trajectories are critical points, trajectories tending to a critical point, 
closed curve trajectories, trajectories spiraling to a closed curve solution, and 
trajectories spiraling to a generalized closed curve solution. See [2]. 

L(v') is always a union of trajectories. By the preceding theorems trajectories 
tending either positively or negatively to critical points that are not stable- 
unstable can not be in L(v'). Also those that spiral positively or negatively to 
closed curve or generalized close curve solutions are ruled out. Using also The- 
orems 2, 3, and 6 we obtain Theorem 7. 

THEOREM 7. If D' has only isolated critical points, then L(v') is a single critical 
point of (6), a single closed curve solution of (6) or a graph whose 1-cells are trajec- 
tories and whose vertices are stable-unstable critical points. In this last case each 
vertex is approached by a positive and a negative trajectory of the graph. 

Although the possible limit sets L(v') resemble somewhat the possible limit 
sets of a motion on D', it is not true that a trajectory in L(v') is necessarily in 
the limit set of some motion on D'. This is shown by the following example. 
Let the motion near the critical point be given by 

dx = (x3 -x2Z + xy2 - 2xyz + y2z) + (-xz + YZ - ') 

dy = (X2y -2xyz + y3 - 2y2Z) + (-XZ3 - yz3) 

dt 
dz= (x2Z + y2Z - 2yz2) + (_ Z4). 

These equations give rise to a motion in E' near D'. We will consider only 
points in E' with z' > 0. For these points we may use the coordinates 41, 42, 

v described in Section 5. From (5a) we have that the motion near D' is given by 

dti = 2 + 2+ 1) 
dr 

(5a') 6= - 21 + -(-41) dr 

__ -(22 + 2- 22) + 2(_1) 
dr 

On the sphere D', r = 0 and we have 

-_= 
- 1 + t2 dr 

(6a') 
j_- = 

- 
22102, 

dr 
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so that t = = 0 is a critical point. It can be verified directly that the family 
of circles 0 + (2 - a)2 = a2 is a family of integral curves for this equation. 
Hence except on 62 = 0 the trajectories move on these circles and all tend to 
the origin with increasing and decreasing time. See Figure 2. In particular the 
motion on the circle a = 1 is not in the limit set of any motion on D'. However 
it will appear that this trajectory and the critical point at the origin form the 
limit set of a trajectory v"(t) tending to D'. 

FIG. 2 

Consider the equations (5a'). Let v"(t) be a solution starting at any point 
r > 0 of the cylinder 2 + (% - 12 = 1. It can be verified directly that this 
cylinder is an integral surface of (5a') so a trajectory starting on it remains on it. 
On the cylinder dr/dr = _2 So v' (t) tends toward ? = 0, and t = 0 contains 
its limit set. This set is either the origin t, = 6 = = 0 alone, or also includes 
the trajectory on the circle 2 + (2 - 1)2 = 1. If the origin alone is the limit 
set, v"(t) eventually remains inside an e-neighborhood of it. However near the 
origin and on the cylinder we have _- 2 + t2 < 0 So (d~i/dr) < - 2. Hence 

|i(T) -1(To) I > 2 f (s) ds. 

But (dr/dr) = So t(T) = (r + r1(ro))-1 and therefore I 1()r)- 1(r- ) | X 
as r -- X. So v"(r) cannot remain in the E-neighborhood, and its limit set must 
be both the origin and the trajectory on the circle a = 1. 

It should be noted that Theorem 7 does not assert that there are only a finite 
number of 1-cells in the graph described in the Theorem. For if there is a closed 
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nodal region at some critical point on D', any finite or infinite union of trajec- 
tories from this closed nodal region will form an admissible graph. 

8. Structure of L(v') when D' has a curve of critical points 

Suppose that Fm(u') - (u', Fm(u'))u' vanishes for an infinity of points 
(x', y', z') on D', but not for all points on D'. For an infinity of these points one 
of the coordinates, say z', is not zero. Setting x' = Liz' and y' = 62Z' and remem- 
bering that on D' where z' F 0, (1 + 01 + 6)z'2 = 1, we have 

(7) (1 + 01 + 02)4(m+2){Fm(u') - (u', Fm(u'))u'} = P(1 , 22) 

where P(%1, 62) is a vector whose components Pi are polynomials in 4, and 62 of 
degree < m + 2. As the entire vector P(%1, 42) vanishes for an infinity of values 
of t, and 42 the Pi taken in pairs must have an infinity of zeros in common and 
so have common factors. Hence we may write P( 1, W2) = P'(%1, 62)4'(%1, 42) 

where 0' is a polynomial in t, and 6 , and where the components of the vector 
P' have only a finite number of zeros in common. As P( 1, 62) = P((x'/z'), (y'/z')) 

is of degree <m + 2, multiplying both sides in (7) by (Z,)m+2 gives on D'. 

(8) Fm(u') - (u', Fm(u'))u' = Pff W)'). 

Here p"(u') and the components of P"(u') are polynomials in x', y', and z', and 
P"(u') vanishes at only a finite number of points z' 5 0 on D'. As an infinite 
of zeros on z' = 0 can then be dealt with in the same way, we may assume that 
P"(u') has only a finite number of zeros on D'. 

8a. Possible trajectories on D'. The trajectories of (6) on D' can now be studied 
by relating them to the trajectories of 

du' du' f (9) dt = P"(u'), and (9a), d = -P (u'). 

Let uf be a point of D', with T+ the positive trajectory of (6) through it. If 
of(uf) = 0, then uf is a critical point of (6) which is not necessarily isolated, 
and T+ is a single point. 

If c"(uo) > 0, let T+1 be the positive trajectory of (9) through uf, while if 
(u < 0 let Tt1 be the positive trajectory of (9a) through uf. Let A be the 

algebraic curve off(u') = 0. There are then two possibilities, (1) T+ intersects A, 
(2) T+ does not intersect A. 

In case (1) we may assume without loss of generality that O"(uo) > 0. Then, 
up to the first intersection point p of T+ and A, the trajectory T+ lies in a region 
where (6) and (9) differ only by a positive scalar factor. Therefore the motion 
u(t) of (6) through uo pursues the same path T+ before the intersection point p, 
and tends to this critical point p as t -- x. In this case then T+ is always a tra- 
jectory tending to a point on the curve A of critical points. 

In case (2), as T1 does not intersect A it lies always in the same component 
of D' - A, and therefore is always in an open region throughout which (6) and 
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(9) differ only by a positive scalar factor. Therefore the motion u(t) of (6) has 
the same limit set as T4 . Hence To has for its limit points a set which is; (a), 
a critical point of (9); (b), a closed curve solution of (9); (c), a generalized 
closed curve solution of (9). Since the limit set may contain points of A, in 
cases (b) and (c) it will not always consist of a closed curve or generalized closed 
curve solution to (6). 

8b. Structure of L(v'). The possible trajectories on D' have been listed, now 
consider the possible limit sets L(v'). Theorems 2, 3, and 4 refer only to isolated 
critical points and trajectories tending to isolated critical points, and the proofs 
of these theorems are also unaffected by the existence of an infinity of zeros on 
D', so Theorems 2, 3, and 4 still hold. Theorem 5 holds too with a slight modifica- 
tion in the proof, for trajectories on D' not tending to a critical point tend to a 
closed curve solution or generalized closed curve solution of (9) or (9a) rather 
than of (6). However, as before, we can form the set B(6') so that there are no 
closed curve solutions of (9) in E2 - B(Y') where E2 is the interior of the closed 
curve or generalized closed curve. Also, as T+ does not cut A, and A has only a 
finite number of components, it is easily shown that there are no points of A 
in E2 - B(Y') for 6' small enough. Now applying Lemma 2 we prove as before 
that if T+ is in L(v'), then there is a trajectory T-(u2) starting on R(8') -B(Y) 
and remaining in E2- B(Y'). As (9) and (6) differ in E2- B(Y') only by a posi- 
tive scalar factor this implies the same behavior for a trajectory of (9) and this 
leads to the contradiction which originally proved Theorem 5. So Theorem 5 
holds. 

With similar changes we can prove a slightly modified Theorem 6. 
THEOREM 6a. If L(v') contains a closed curve solution C of (9), then L(v') = C. 
Of course the closed curve solutions to (6) are closed curve solutions to (9). 
Applying these theorems to the possible trajectories on D' we have The- 

orem 7a. 
THEOREM 7a. If D' has an infinity of critical points, but also some non-critical 

points, then L(v') is a single critical point of (9), a closed curve solution of (9), 
or a union of points of A and trajectories which tend both positively and negatively 
either to points of A or to stable-unstable critical points. 

By applying Lemma 2 it is possible to obtain considerably more information 
about the sets occurring in the third case of Theorem 7a, however this will not 
be carried out here. 

In both cases, with a finite or infinite number of critical points, we see from 
7 and 7a that L(v') either contains critical points, or is a closed curve C. Geo- 
metrically this means that a trajectory tending to a critical point either passes 
arbitrarily often arbitrarily close in direction to the unit vectors satisfying 
Fm(u) - (u, Fm(u))u = 0, or else must spiral in asymptotically to a cone. The 
only allowable cones being those whose intersection C with the unit sphere is 
a closed curve solution to (6). This remark also holds vacuously in the one case 
that still remains to be considered, and hence for all possible critical points. 
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9. Structure of L(v') when every point of D' is critical 

When Fm(u') - (u', Fm(u'))u' vanishes on all D', the points (u', Fm(u')) = 
0 on D' are identical with the points where the entire vector Fm(u') vanishes, 
and as this vector was assumed not identically zero, (u', Fm(u')) is not zero 
for all points of D'. 

Consider then the equations 

d= _ =m (F'-)1(u', F8(u')) 
(10) 

d - +1 (a'-1)8-(m+) {F8(u') -(u', F8(u'))u'} dt 28- 

which differ from equations (5) by a factor (aT' - 1). On D' (10) becomes 

(11) da' = (u', Fm(u')), du' = F.+I(u') -(u') Fm+l(u))uf. 

Now let v"(t) be a motion of (5) tending to D', and let v"'(t) be a motion of 
(10) through a point of the trajectory of v"(t). v"'(t) traces through the tra- 
jectory of v"(t) and either tends to D' as t -+o, or reaches D' for some t = to . 

If v"'(t) tends to D' as t -+ o it can contain in its limit set only points of D' 
and hence only points whose entire trajectories are in D'. Call the set of these 
trajectories S. Since in this case v"'(t) and v"(t) remain in a region where the 
vector fields of (5) and (10) differ only by a positive scalar, their limit sets are 
the same, and therefore L(v') c S. Also S is clearly a subset of the set of points 
of D' satisfying do'/dt = 0. Hence for every point of S, Fm(u') = 0. 

In the other case let to be the first t for which v"..(to) is on D'. Then clearly 
v"(t) tends to this point as t -- c, so L(v') = (v"'(to)). Therefore Theorem 8 
holds. 

THEOREM 8. If Fm(u') - (u', Fm(u'))u' is always zero on D', then L(v') is 
either a single point or a connected set on which all components of Fm vanish. 

This implies that unless the components of Fm have some common factor, 
L(v') is always a point. 

9a. Trajectories tending to P. If Fm(u') - (u', Fm(u'))u' is always zero it is 
easy to show that there actually are trajectories tending to the original critical 
point P. 

Clearly a trajectory of (10) cuts D' at every point where do'/dt $ 0. The 
portion of such a trajectory outside D' is a path of a motion of (5) which trav- 
erses the trajectory in one direction or the other and hence tends to D' either 
as t -> o or as t -+ - x. Therefore we have Theorem 9. 

THEOREM 9. If Fm(u') - (u', Fm(u'))u' = 0 for all unit vectors u', then there 
is a positive or negative trajectory tending to the critical point asymptotically tangent 
to every line whose unit vector satisfies the inequality Fm(u') T$ 0. 
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10. Extension to higher dimensions 

Theorems 1, 8, and 9 still hold if the v in equation (1) is an n-vector. The proofs 
are unchanged. 
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