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The Traveling Salesman Problem

R, E. Comony
1exM Corporation

The travelng salesman of the traveling salesman prohlem ig interested
in only one thing—maoney. Ife seis out to pass through a number of points,
usually called cities, and then returns o his starting point. When he goos
from the #th city to the jth ¢ity, he incurs a cost ¢, ;. His problem is to
find that tour of all the points (eities) that minimizes the total cost.

Now this problem, although easy (0 state, s out to be an extremely
diflienly one (o solve. This is swrprising, because the traveling salosman
problem is almost indistinguishable from a very casy problem-—the
assignment problem.

The asgignment problem is illustrated in Figare 1. That figure shows
a situation in which there are n nodes, or men, which can be assigned
to n other nodes, or jobs. If the #th man is assigned {o the jth job, there
is a cost for that assigiment ¢, ;. The problem here is simply to find a
permufbation, or assignment, which assigns to every job a man and min-
imizes the total cost of the assignment. One assignment or permutation,
@, ig iHlustrated in the top of the figure.

Another way of Hustrating the assignment problen, which makes the
connection with the traveling salesman problem more obvious, is not o
have two scts of nodes representing jobs hut only one set. When the 4th
man is agsigned to the fth job, an armvow is drawn from the ith node to
the jth node, and the cost ¢, ; is mewred. The problem is, of course, un-
changed. It 18 to find a permutation ¢ which assigng to cach node 7 a
successor «(2) such that the total cost is winimized. Now, as the lower
part of Figure 1 shows, the only difference hetween the assignment prob-
lem and the fraveling salegman probiom is that we allow small closed
loops in the assignment preblem. The traveling salesman problem, as can
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be seen from Figure 2, is almost exactly the same. We are Jooking for
& permutation ¢ that gives to every node ¢ o successor 7 and which min-
imizes the total cost. In the traveling salesman problem, we must have
a cyclie permutation; the diagram must not break up into listle loops.

The two problems, the assignment problemy and the traveling salesman
problem, may not scem to be very different; but they are, and we cannot
really ignore either of them. They boih have a considerable number of
applications. I will not try to list these applications in general. TTowever,
for the traveling salesman problem, there is one very important application
that I will outline. This is the probiem of sequencing jobs on a machine.
Let us assume that there are a number of jobs fo be run in succession
on the machine, After the ith job is run, the machine ig set up to run
the jth job, and a certain cost ¢, ; is incurred by this setup. The problem
i to run the jobs on the machine onc alter the other so that the Lofal
changeover or setup cost is minimized. Now this is very close to the
traveling salesman problem because one must run through all of the jobs,
incwrring a cost ¢, ; going from © to 4. If the jobs arc represented by points,
this is the same as asking for a path that runs through all these points
(Gobs) with the least tolal cost. One differance is that we are not now
asking to come back to the starting point. Actually, this is of very Little
consequence, and there are tricks that transform the sequeneing problen,
just deseribed, into the traveling salesman problem. The two problems
are essentially the same, and the traveling salesman problem is eagier
to work with, since one deals with complete permutations.

If we fake these two problems, the assignment problem and the traveling
salesman problem, which appoar to be only slightly different, and if we
ask how mueh work must be done to obtain the optimal permutation,
the answers ave tremendously diffcrent in the two cases, In the assignment
problem, the optimal assignment can at present be obtained in O(n")
elementary steps, The corvesponding bound in the fraveling salesman
problem is O(n*2") clementary steps. So these two problems which scem
to be so close are, af least at the present time and so far as owr hounds
are concerned, radically different,

One of the ways that this difference could he investigated js to take
a look at the polyhedra associated with these problems to sce if they
look more or less alike, This is & reasonable procedure hecause there has
been considerable success on the assignment problem by using vertex-
to-vertex scarches on polyhedra-—this is in fact the linear programming
approach. Since we have to specifly which polyhedron is under discussion,
let us first fake the assignment problem. Any permutation ¢ provides
a feasible solution to it, and any permutation ¢ can be reprosented as
an 7 X nomatrix with a 1 in the 77 position if £ goes to § and with a 0 other-
wise. Thus, with every permutation there is an associated 7 X n matrix,
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which can then be regarded as a point in 2%dimensional space. Taking
the convex hull of these points gives a certain polyhedron, For the assign-
ment problem, the associated polvhedron is the convex huli of all permuta-
tlong, For the traveling salesman prohiom, it is the econvex hull of those
permutations that are eyelic. In any case, to solve our problem, we try
o maximize a linear form 2 ¢, ; 2., over these polyhedra.

A number of facls about these polyhedra were assembled by IHeller
(1954 and 19553, by Motzkin {1956), and by Kuhn (1953), and are il-
lustrated in Ingure 3. Flrst, what about the dimension of the polyhedron?
Although these points are in #’-dimensional space, they could perfectly
well all be in & lower-dimensional subspace; in Fact, they are. The dimension

of the polyhedron PP of permutalions is (o — 17, and that of the poly-
hedron @ of cyclic permutations is (n — 1)° 7. So the convex of all

tours ig a little bit smaller In dimension, which suggesis, rather mis
leadingly, that this problem might be the easier one. Something further,
that is perhaps more relevant to a vertex-to-vertes search, is the question
of the neighhorliness of the points on the polyhedra. Should one expect
io travel a long distance to get from a starting vertex to the optimal one
in doing a vertex-to-vertex search? To answer this, some measure of the
neighborliness of points on the polyhedra is needed,

Two measurements of neighborliness will be diseussed here,

One way to measure neighborliness is to say that two points are very
close if they have a one-dimensional face in common. That is aboui as
neighborly as vertices can be on a polvhedron. Let us also say that they
are fairly near if they have a two-dimensiona! face on which both verfices
lie, and so on up. In fact, we will say that points are n-neighbors if they
both lie on the same n-dimensional face. According to this index of neigh-
borliness, all vertices on these polyhedra are very close to each other
because the most unneighborly pair of points are neighbors of ovder [1/2};
in other words, theve is a face of dimension [n/2], or lower, containing any
pair of points on the polyhedra. This is a very low dimensional face eom-
pared with the dimension of the space in which the polyhedron is, and
this is just as true for §, the convex of fours, as it is for the polyhedron /2.
In fact, it is slightly more so for @, since it is known that on @, for n < 5,
each vertex is a one-dimensional neighbor of every other vertex; it is only
for n = 6 that it takes two steps o get from one point to another.

This suggests another measure of neighborliness, which is the number
of edges to be traversed to get from one vertex to another. In the case
of P, this number is known, because iwo vertices are one-step neighbors
if their difference, the difference permutation, contains only one eyele.
The number of steps to get from ane veriex to another is the number
of cycles in the corresponding difference permutation. Thercfore, the
maximum distance on I in this sense iz again an inleger part of /2,
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namely, (/2] so this measwre of neighborliness comes out the same
us the other measure. For @, bowever, no faets about this type of distance
or neighborliness are known, and this is the first place that the two poly-
hedra seem Lo look different, but, of course, this difference is not certain.

We now come to anobher way of looking at the polyhedra in which
they definitely do look different; this is again suggested by & linear pro-
gramming approach, For the linear programming approach, the numbor
of faces is relovant, as each one of these represents an inequality of the
linear programming method. 8o it is relevant to ask: If we had to write
down all the equations deseribing these polylhedra for a linear programming
approach, how many would have to be written?



a8 R. B, Gomary

Let us first consider the assignment prohlem. The permutations of the
assignment problem safisly the two scts of equations shown in Iigure 4.
These are the cquations that eut the dimension of the polyhedron P
down from 2%, Tn addition, in this lower-dimensional face, there suwe the
nonnegativity conditions, aiso shown in Iigure 4, which actually provide
the faces. There are {n — 1)* of these. This then is the number of faces,
{One ean show that these inequalities cach give faces; none is vedundant
or misses the polyhedvon entirely.) When we consider the convex 3, the
story iz very different. First of ali; there are the scts of equations which
cut down the dimension. There are a fow more of these than there are
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in the case of the assignment problem, When we come to the inequalitics,
we have the nonnegativity conditions, Just as in the assignment problem,
and then another group (group 11 in Figure 4), which says that we cannof
have an assignment both from 7 to j and from j o ¢, beeause then we would
have a two-step loop and not a tour. In Figure 4 these inequalities are
illustrated for the case n = 5, where there are ten of them. There is a
third set (zroup 111}, which contributes 240 more inequalities in the case
n = 5 the origin of this group is teo complicated to be given here, There
is also a fourth set of 120 more incqualitics not shown in Tigwre 4.
Together, the four groups give 390 faces in contrast with the 20 faces
of the assignment problem, so we start to see a difference. The assignment
problem yields a very simple polyhedron; the traveling salesman problem
yields a multifaceted one. As Figure 4 shows, the traveling salesman
problem in general yiclds a polyhedron whose faces from class I are
almost 2°7" in numsber, while in elass IIT they are even more mumerons,
Those of class 11 that extend the notion of climinating two-step tours,
which appeared in the casc n = 5, are the incqualitics that eliminate
subtours or lengths less than [»/2].

This very farge number of faces would discourage most people from
trying to use the lnear programming approach on the traveling salesman
problem, but it did not discourage Dantzig, Ifulkerson, and Johnson,
whe tried it anyway. They were, perhaps, a little encouraged by the Tact
that the nunber of faces does not seemn to he quite so excessively large
in the symmetric case (e ; = ¢, ;). In the synumetric problem, groups 1
and TI of the incqualities (Figure 4) are suflicient for n = 5, but not for

situation, although better, is not good. However, Dantzig, ¥ulkerson,
and Johnson worked on a traveling salesman problem involving 42 cities
and obtained the solution shown in Figure 5. This was guite a remarkable
achicvement and T would like to indicate, roughly, what they did, They
would start with some tour 2 and a starting convex made up of a subset of
the inequalities. (For instance, one could take just the nounegalivity
conditions.) Call this the convex €. Our tour # is an extreme point of (.
Use the simplex method to move to an adjacent extreme point ¢ in €'y which
gives a better value. 11 ¢ is a tour, repeat from it. If it is not a tour, then
among the unwritten inequalitios there must exist & hyperplane separating
the starting point from e. Tind onc of these which passes through 2, and
add it to the problem, making a new convex . Start with © again, and
repeat the procedure until a touwr «* and a convex C,, are found over

f This group was overlooked in the original presentation of my paper. T would like
to thank T1. W. Kuhn for bringing to roy attention his paper which corrests carlier
work on this tapic (sce Kum, 1955}
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which o* maximizes the linear form 2 e ;@ according to the usual
simpliex erifevia.

Using this method, Dantzig, Fulkerson, and Johnson managed to solve
the problem. They found that they encountered very few Inequalitics
from the third or complicated family. Apparently, in practice, the rela-
tively easy fypes, one and two, are predominant. The method they used
has a very large artistic component; the way that the imegualitios wore
produced to cul off the non-tour points was not routine but bad to be
Invented at each step. Also, the procedure was not certain of being ter-
minated, and there was also the problem of maintaining o hasisin a compact
way that T would deseribe asg artistic rather than algorithmic. Neverthe-
less, they solved a traveling salesman problam of a size comparable to
the hest that can be solved today.

I do not see why this particular approach stopped where it did. Tt should
be possible to use the same approach today, bt in an algorithmic manner.
We no longer have to be artistic about generaiing the separaling hyper-
planes or cuts, sinee this is now dene automatically in integer programming.
It seems likely that one can get over the difliculties of maintaining the
bagis as well. So it should be possible to do the whole thing now systemat-
jeally. This is an approach one might not expect {o work, but we alveady
know that it does.
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Now we will turn to an entively different approach, one based on dynamic
programmimg. FThe approach 1 am going to deseribe was mnvented by
Bellman {$960) and, later, independently by Held and Karp {1962). Their
procedure is Hustrated in Figure 6.
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Freune 6. Dynamic prograniming

Let us imtroduce a function C0S, 1), This is defined as the least cost
associated with any path that starts from node 1, fraverses ali the eloments
of the set S, and ends with the element £ belonging to 8. The funcéion
C(8, 1) is casy enougl to ealeulate i S consists of a single element; then
as Tigure 6 shows, G/}, 0 is simply ¢, ,. Now let us suppose that we
have C(S, &) for all sets { contaimng some number of elements p, where
p is greater than one and less than n — 2. Then we can find the ¢S, 1)
for a set coniaining » 4 1 elements by a second recursion. For the cost
C(8, &) is the minimum over all m of the cost of the path that starts out
alb node 1, traverses all the elements of § — I and ends up at m, plug
the cost of then getting from node i to node L Pinally, for sets of m — 1
clements, there is a similar recursion which allows the computation of the
cost of a complete tour. So it is clear that the various C'(8, ) can be com-
puted suceessively, starting with the one-clement sets, going to the two-
clement sets, and so forth, until finally a cost for the entire tour is obfained.
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The main guestion is how much arithmetic will have to be done to get
fhis answaor.

y n— 1 . .
There are ( ; ) ways to pick a subset of k elements, and in every such
i *
subsef there are & cloments that can serve as the last eloment; therefore,
C e . . , {1
the minimization in the sceond recursion will have to be done ;’;:( p )
0

times, and the minimization can he regarded as having about & — |
moves, a move being an add or a compare. If this is then summed over
the various-sized subseis, we get the formuia

Rezn—3d ) —
> fc(n i 1)(:". e 1) = — D - 027 o — 1,
b= 15

so the computalion s On2"7"). All that this work gives us is the cost
of the minimal tour, and there would be a certain amount of extra computa-
tion inveolved in going back to find out which tour gave that minimal
value. However, this is negligible by comparison with the rest of the work.
As far as storage i3 concerned, we can asswme one location for each of the
CS, &) values, which gives us the formula shown below and something
of the order of 22" locations for the n-city problem.
Storage one location {for each O{S,

LEF R T
> nlil(n i 'j') m (g 132070

M 7000 - 13 eities — 17 scoonds

Roughly speaking then, what the dynamic programming does is to replace
a roughly n! problem with one of the order of 2. On a computer one can
get up to aboud 13 cities without too much difficulty. At thai point we
begin to get a little short on storage, and times stait to go up by a factor
of 2 each tinne, roughly speaking.

Now Held and Karp did net stop at 13 eities, They took the same
technigue and applied 1t to bigger problems to obtain approximaie solu-
tions. The sort of thing they did is llustrated in Figure 7. They supposed
that they had some sort of a starting solution-—good, bad, or indifferent—
which they would break up info litlie sequences of a few citics cach.
Then they would regard these pieces themselves as being cities. The cosé
of going from this piece to some other piece is the cost of going from the
last node in the first picce to the first node of the second picce. This then
gives the ¢; ; for a new problem.

This new problem is, of course, smaller than the original and, in fact,
is usually broken up into a 13-city problem, because that can be done
with rveasonable rapidity by the dynamic programming technigue. If one
particular way of cutting up does not work, in the sense of producing
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Frgure 7. Terating the procedure
a bebler tour, there are other methods of cutting up that can be fried.

Held and Karp called the procedure of cutling up into approximately

13 equal pieces the “global® approach:
[1, 2,314, 5, 6117, 8, 9] --- [37, 38, 30]
[10, 11, 12} [35, 36, 37] --- [7, &, 9).

They have also o “local” approach, where a tour is divided into 12 one-unit
stretches and one very long stretel:

(13620 (3114 - (12118, -+ -, 59]
(B2 n2pis, -, 39)

Here we are looking for a local improvement heeause most of the tour
will be unehanged, while the tours within a short streteh are rotated.
Held and Karp have g number of rules for how many times to try
the various methods of cutting up, and they seem to get fairly good
vesults on problems up to about size 50, that s, either the correct answer
{(known to be optimal by some other means) or a good approximation.
The large-seale Dantsig, Fulkerson, and Johnson problem was solved
five times, with five different starting solutions. Two of the answers
ame out optimal {699); the others were quite close (704, 704, 705).
For a 20-city problem, devised hy Croes, three starting solutions gave
optimal answers, A highly structured problem (a knight's tour on an
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8 X 6 chess board) was attempted. The optimal solution is known to
be 48. The answers obtained wore 56, 52, 54, and 56.

Roughly speaking, tha sort of computational resulis that were obiained
by Held and Karp were: in the range of 20 to 25 cities, they almost always
got the optimal solution, with running times of 2 to 5 minutes; in the range
of 25 to 50 cities, they seemed o get good results, nearly optimal. Of
course, “nearly optimal” is a little hard to define, but it suggests what
the resuits look like. They are optimal abouf one out of every five times.
The running times in this range are approximately five to fifteen minutes.
Now this sort of result takes the traveling salesiman problem, computa-
tionally, further than it hag been taken before. 1t does not fie in very much
with the polyhedral approach or with methods for the assignment problem.
The next method to be deseribed s a little more in that direction.

This is the branch-and-hound method, due to Little of al. (1963}, Ihe
relovant figure here is Tigure 8, which shows a node marked “all tonrs”

TG
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Ifreure 8. Branch and bound
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By some schome not yet specificd, wo find a lower bound ¥ on the cosl
of all tours; thal is; the optimal towr must be at least 1. Then we selocl
a particular are-—the are 1, 4 is an example—and divide the Lows up
mto two groups: those w hmh use the are 1, 4 and those which do not,
that is, those from which the are in question is excluded. Again, for each
of these new groups of tours, each one of which is indicated by a node,
a new lower bound is cormputed. Any tour in the groupn will have a cost
cqual to or exceeding the associated lower bound. The idea is to go on
branching in this way. As a conveniion, we will say thal when we branch
to the right we go 1o a new node in which an arc is included, and when
we branch to the lelt we go to a new node from which an are is exeluded,

Once we have branched n times to the right, there is only one tour
rematning in the node at the end of that branch. 1f the cost of thatb tour
is less than the bound appearing on all the other nodes of the tree, that
tour must be optimnal. So the idea is to develop the tree until it reaches
this state. There are two kinds of choices that can be made in the develop-
ment of the tree: (1) deciding which node, or group of tours, is to be broken
up next and (2} once the node has been specified, deciding which are is

the one on which inclusion and excusion are (o be based, Before making
these decisions, we will briefly discuss the bound that is used.

'This bound comes from doing the first few steps of the Hungarian
method lor the assignment problem. 1t is well known that if a constant
is subtracted from any row or any column of the cost matrix, the solutzon
doesn’t change, in the sense that the same permutation is still the sohution,
although the cost associated with the solution does change. In f act, the
cosh of the optimal solution is veduced by the amount subtracted from
the row or column. Therefore, if one subtracts numbers from rows and
columns in such a way that what remains is nonnegative so that a tour
using the remaining costs will still have o nonnegative cost, the fotal
amount taken off will be o lower bound on the cost of any tour. This is
the idea that is used to provide the bounds here and which is illustrated
in Figure #. The cost matrix is obtained from the cost maftrix of Figire §,
taking as much as possible away from each row and each column. One
takes the smallest clement in the row and subtracts that from all of the
other elements, Fverything remaining is nonnegative, and the total
amount taken off in this fashion from the original cost matrix is 48, This
then is the lower bound for the node representing all tours.

Let us now consider branching. We will explain later why the particular
noede 1, 4 was chosen for branching. On the assumption that we do branch
on node 1, 4, the fours split up into two groups: those using the are 1,4
and those in which its use is not permitted. Now once it is decided that
& particular arc must be used, you may coalesce the two cities involved;
so you are now dealing with an (n — 1)-dimensional traveling salesman
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problem, This means that in the new cost matrix for the (n — 1)-dimen-
sional matvix, one can strike out, in owr case, row 1 and column 4. Further-
more, gince we are using the are 1, 4, we will not use the are 4, 1, which
would complete a loop. So the are 4, 1 can receive o cost of infinity, It
may now be possible in this new, smaller matrix with changed cosis
to make further reductions and thus get a new lower bound, Tn this
particular case (Tigwre 9), the new Jower hound is 49, Sinsilarly, on the
other side in the other branch, the cost formerly attributed to the ave 1, 4
1s changed to infinily, since that arc is now forbidden, This makes it possible
t0 take 10 off the fop row and still preserve the nonnegativity. Thus,
the bound associated with this node goes from 48 fo 58. One goes on
in this fashion, updating the bound by using the new cost matrices ob-
tained after each branching operation.
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Lot ug now consider how to decide whiek are to branch on. It ig plausible
to try fo choose the branching arve so that the new bound associated
with the lefthand node goes up as much as possible. The idea behind
thig is that we would Hke to find our optimal solution down onc of the
righthand paths, for that leads us into smaller and smailer problems and
gets 1o a solution. We do pot want to have to pursue lefthand branches,
because the problem size there remains large. So the idea is to do the
branching in such a way that the bound on the left goes up, and this
branch is unlikely f0 obtain the optimal solution.

1t is guite casy to check through a matrix and find out which branch
gives the biggest inerease in the Iefthand bound (see Little ¢t of., 1963).
1t tarng ont that we want to branch only on those ares that have zeros,
and it is not hard to pick from among those the one that docs the most
for the bound. We have branched aceording to that rule in the procedures
shown in Figures 8 and 9,

There is still the question of which branches of the tree should be
developed and which branches should be left alone. A very plausible
thing to do is to pursue that branch that has the lowest bound associated
with it That would be where the low-cost tours ean he found. So one rule
to follow would be to branch on the node currently having the lowest
bound. We may, of course, mun into the problem that the tree becomes
too Inrge and that there may be too many nodes to bold m memory,
This difficalty can be avoided by a different approach. This is to proceed
by always branching to the right wnti we have reached a point where
no further right branching is possible. FThen back up and take one left,
and then back wp again and stay, so to speak, as far vight in the tree as
possible. This scheme would not be expecied to be as fast as the one in
which the choice of node is made on the hasis of the lower bound, but
it has the advantage that we ean keep the number of stored nedes down
to a small multiple of n. So there ave two things we can do with the node
choice. We can use it o promote a ramd calenlalion or to conserve memory.
This sccond nse is also Hlustrated 1n Figure 10

Tigure 11 shows some of the computational results. They are very good.
The problems on which the test runs were made were random problems
with cosis drawn from a uniform distribution of three-digit mumbers.
The firgt column shows the number of citics in the problem, the second
column shows the number of problems run, the third column shows the
time in minutes of 1oa 7090 fime, and the fourth column shows the standard
doviation of the running times. These results are very good because wo
are gebting answers up to 40 cities; this is an avea where people have
nob previously obiained optimal solutions. Toven an incomplete ealeulation
gives bosh a tour and a lower bound. A good rule of thumb for the running
times involved here is that adding 10 cities multiplies the running time
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CHOICK OF BRANCHING

(1) Good hewristie for
rapid ealenlation

(2} To conserve memory

opfimal
tour

Fravms 10

Uniformly distributed three-digit random distances

Mean 7

No. of No. of {mmx 7000 Standard
cities problems minles) deviation
10 100 0.012 007
20 100 0.084 63
30 100 0.975 1.280

40 5 8.37 10.2

Freury 11, Computational results
i
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by 10. 8o, as far as computing is concerned, we are still dealing with an
exponentially increasing method.

In view of this, it i3 especially comforting to note that this computation
has the feature that if wo do not finish, we can still leave it. This s be-
~eause we have bounds on each node, The smallest of these bounds is an

undercstimate of the cost of the optimal solution. Thus, the gap between
the smallest bound and the best solution we have at that point is an
overestimate of the error we would make in aceepting our cuirrent best
towr as the optimal one.

So far T have discussed the general traveling salesman problem. ! am
not aware of much work having been done on special cases of the problem.
Nevertheless, in sequencing problems, it i not true that we have to deal
with every possible cost matrix. IPor example, here is one very special
ase. Consider making sandpaper in a sandpaper-making machine (Max-
well, 1062). When the machine finishes making coarse sandpaper, there
is a great deal of coarse sand in the machine. If fine sandpaper is made
next, the coarse sand must be taken ont. On the other hand, if coarser sand-
paper is made next, it doesn’t matter that much. The changeover cost 1n
this problem is the cost of taking the sand out of the machine. Clearly,
here the problem is easily solved. You should start with the fine sandpaper
and work steadily up to the coarser types. This situation is very special
and very simple, but it is a solvable special case. What else can we do
with speeial traveling salesman problems?

We nexi come to some work of P. C. Gilmore and mysell on a special
iraveling salesman probiem (Gilmore and Gomory, 1964). I will start
by wiving o particular example. Buppose that there are a number of jobs
to be done on a furnace. 1hach job is loaded into the furnace at a certain
starting temperature, is cyeled through various different temperatures,
and is taken out at a eertain ending femperature. For example, in the
problem of Figure 12, job 1 starts at a temperature of 500°, and ai o
fater time it comes oub leaving the furnace af 611° The next jobr must
he started at a temperature of 750° HBo the furnace has to be heated
up from 611° to 7509 before the next job can go in. Job 2 ends at 400°,
and we must now heat the furnace to 550° for job 3. The problem here
is to arrange the jobs in such an order that the cost of changing the furnace
temperature is minimized. That cost may be a delay in time, it may be
the total energy involved, or anything of that sort. The gencral probiem
of this type, which we eall the problem of sequencing a one state-variable
machine, is quite similar to this special case. There is one variable which
characterizes the state of the maching, and moving this variable up and
down is what incurs changeover cost. More precisely, we will assume that
we have n jobs, J, , -+, J.. Bach J, is characterized by two numbers,
A, and B,; A. can be regarded as the starting state of the machine and
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FURNACH Job 1 Sharts T o= A00°
Tonds o= 6110

Job 2 Harts 7= 750°

Tinds T o= 400°

Job 3 Starts T o= 550°

Gost of changing 7" between jobs is 1o be minimized
GENERAL PROBLEM
Jobs J,y, -0 T,
Ji= (4, B
{ El

G o= {{x) dx i A, > B

SRy

By
G [ gl dx il A, < B,
;

Ay

Jx) A+ gl@) = 0

Iraumis 12, Sequencing a one staic-variable machine

B3; as the state in which the machine is left. If 4, > B, the cost ¢, of
following  with § is given by

e wm { v () du.

oty

In other words, if we must go to a higher state, there is a cost {2} for
every infinitesimal increase in the state variable. There is a similar cost
if the state variable must be changed downward (that is, if A; < B)),
and we can have a separate cost varishle glz) for a downward change.
Then,

Bi
Ci; = f glx) de.

L

The only importani condition is that the sum 7z} ~ g(&) be nonnegative.

One state-variable machines are not alwnys as obvious ag a furnace.
Iere is o different example of a one state-variabic machine, Tet us imagine
a long ribbon of glass that is being cut up by a cuiting device, Figure 13
The device consists of two axles and round knives on each axle. There
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j BEING SET up\ /C/

! CUTTING

Job is a cufling pattern

Joo= {4y B o= (setup time, run time)

il 7 follows ¢« and 4; > B, delay 4, — B,

il jfollows 4 and A, < B, no delay
Fraune 13

is a succession of patterns for knife positions which must be used for eutting
the correct amounts and the correct widths of glass. Iach pattern must
be seb up on an axle; then, while this axie is actually running and eutting
glass, suother pattern can be set up on the other axie. The problem is
Lo sequence the patterns so that there is always time to set up the next
pattern while the previous one is running, All patterns have different
running times and different sctup times. The setup time is the A, asso-
cianted with the #th job, and the run time is the B, If we try to minimize
the delay that is incurred when there is an inadequate setup time, then
the cost equations given in the preceding pavagraph assume the following
forms:

fag =1, gl) =

henee, when 4, > B, (delay),

Ag
Cey o= [ 1 el = 4 ;- 'Bh
o7

and when A, < B, (no delay),
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"The one state-variable here is actuaily the amount of time that the cutting
pattern emrrently being used for cutting has aiready been runuing. Thus,
we can regard this cutting machine as a one state-variable machine just
like the furnace, although in this case what the one state-variable should
be is not quite as obvious.

Next we tarn to a deseription of how the one state-varisble sequencing
problem can be solved. As you will see, this is a throwback, in a way,
to Lho polyhedral systems which we discussed earlier.

Phe first step in this calenlation is to solve the corresponding assignment
probiem. This will give us a point, in fact a vertes, on the polyhedron .
Next (Igure 14), we consider some interchanges o, ; which will modify
this permutation. Iigure I4a shows the agsignment problem. The inter-
change a. ; is itself a permutation which sends node 7 into 7, node 7 into 4,
and leaves all other nodes the same. The effect of applying o to a permuta-
tion ¢ isshown in Iigure 14h. The effect of using «, ; to modify ¢ is the
same as adding a four-are Joop which is directed forward along the dashed
lines and backward along the two conneeting straight lines. Since ¢ and
the modified permutation ¢ differ only by this single cycle, they are
neighboring points on the poiyhedron 2. The cost equation hecomes

C(UC,-,,-} == C(d)aa'.i) - C(d’)

Thus, a series of such modifieations will be a vertex-to-vertex exploration
scheme. It is also clear that if such an interchange is elffected on (wo
nodes ¢ and 7 in different subtours of the permutation ¢, the result is to
unite the two subtows into a single larger tour. Thus, we are moving
closer to a single tour.

Nexf, we can associade costs with each interchange o, i+ Lhe cost of o, ;
is the cost of ¢, ; less the cost of ¢. Of course, this cost depends on ¢
as well as on ay ;. 3« ; were applied to a different permutation, the cost
would also be d Iu(‘n{

[Text resumes on page 114]
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(a}  Solve Assignmoni Problem

\

-+

(b} Consider Interehanges o ; and Their Costs

Fravne 14, Methed

1E5
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We now consider a set of interchanges that will convert these permuta-
tions into a tour (Figure 13). Il we simply drop the directions on the ares
in Figure 15n, we get Figure 15h, and if we put in a dark Iine whenever
an interchange is applicd, then the corresponding interchange conneets
the dirceted components in Tigure 15a, just as the dark line connects
the undirected components in Figure 15b. Consequently, a set of ares
that would conneet up the components in Figure 15b corresponds fo a
set of inferchanges which, if exceuted, would transform the permutation

-
2
{!za:f_f:/
4 3
5,
8
5]
3
14
9y B
D 1”" ®
il ) 15
(a) o (h) G\ R\ Beaa W Ba s
((:) ¢ = Weryy, 5087, 180ty 5

Fraunn 15
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in Figure 13a into a tour such as that ilustrated in Figure 15c. Now
this suggests the following procodure: Put in the costs on all the ares,
and then choose the minimal-cost set of ares that connect up the graph,
Then perhaps the corresponding set of interchanges will, at least cost,
transform the original permutation into o tour. This idea s Hustrated
in Figure 16, where the original arcs of the permutation appear as dashed
lines, A number of interchanges are drawn as solid lines with their costs
attached, and the bold solid Iines are the minimal-cost inferconnecting set.
Fortunately, picking the minimal interconnecting sct is a very slight
modification on the well-known problem of picking a minimal-cost spanning
tree. For this problem there is a well-known solution due to Kruskal (1957).
So this is a solvahle problem and one which can be done, in fact, extremely
rapidly.

What we have said so far can be summarized as follows: It is plausible
to pick a seb of interchanges by o mimimal spanning-tree argument and

TN T T

¥

i

Cost depends on order
as well as sel of interchanges

Fieune 16
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then to exeeute these interchanges to get what we hope will be a minimal-
cost tour,

There are only two things wrong with this approach. First, the costs
are generally wrong. When the mterchange marked with a cost 7 is ex-
ecuted, it will not generally change the permutation cost by an amount 7.
This s because, in general, the interchanges aflfect cach other; the cost 7
was computed on the basis of the original permutation ¢ and will be dif-
ferent if the interchange is exceuted Jater, affer several other interchanges
have modified ¢. Second, mevely picking a set of interchanges, even if they
are the right ones, does not specily a tour, because different tours will
be obtained by executing the set of interchanges in a different order,
Since, in general, these different resulting tours will have different costs,
merely specilying a set of interchanges cannot possibly specify the optimal
tour. It is necessary to have both a set of interchanges and a specified
order in which to exceule them before it is even possible to reach an answer.

These, then, are the difliculties which, in general, apply to this approach
to the traveling salesman prebiem. However, in our particular case, we
can gel over these difficulties. In our case, the following three stalements
are correct, provided that the jobs are remunbered so that their final
states 5, are numbered in increasing size:

First, the set of nterchanges chosen by the minimal spaming-trce
algorithim is correct and contains only interchanges of the form T
Lhus, it is meaningful to tall about the 4th interchange, meaning e ..

Second, the minimal-cost tour will be obtained if this set of interchanges
15 exceuted i the corvect order, that is, if we divide the interchanges
Into two groups. The 7th nterchange goes into group 1 if under the original
assignment the 7th job left the state variable so that it had to bo increased
for the start of the succeeding job. An nterchange goes info group 2
if under the original assignment the corresponding job left a state variable
that had to be decreased. Then a pamutaltion ¥ is obtained by applying
to ¢ the Inlerchanges of group 1 with the largesi-indexed mterchange
first, the sccond-largest interchange sceond, ele., and then applying the
interchanges of group 2, starting with the lowest-numbered interchange,
following with the sccond interchange, ete. The resulting permutation
w¥ will be a cyele and will be the minimal-cost tour, The correct order
is given by

1:&)(?) = ¢ T TR T PO Y FE L PUE PO ¢ # I (7’)1

group 1: Ay = B, group 2: A, < B,
where 7, > &, and j; < 7,

Third, the amount of computing that has to be done is very slight;
it is O(n").
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By way of summary, we can see that the methods reviewed in this
papor can be divided into three entegories, Iirst, there was a pari where
we dealt with linear programming and polvh(dm Then there was a
part dealing with the work of Ield and Karp and the hranch-and-bound
method. And finally there was a method that dealt with special e; ;. Ac-
tually, I thivk that i all three arcas which have been represented hem,
there is a great deal more work that can be done. In the area of Tines
progranmuming and polyhedrs, there are now methods available w Im'h
should enable us to extend the more artistie, less systematic work already
done. Certainly in the branching and dynamic programming aren there
are many more possibilities to be explored that could put us into o now
range of practieal applications, now that we know that present methods
already take us into the range of 20 fo 30 cities. In this area people will
be producing one method alter another, now that they know that o certain
degree of success has already been obtained along these lines. Finally,
it is hard to belicve that there should be only one speeial case in the
traveling sadesiman problem. This is an arca which deserves to be looked
at in more detail; o good look wil probably reveal o variely of important
and solvable special cases.
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DISCUSSION

H. W, Kunx: T would Ike fo make a correction to the number of
faces cited in Dr. Gomory’s paper for the nonsymmetrie traveling salesman
probleny with five cities,

The correct enuwmeration, found by me in 1953, and presented at the
sunmer meeling of the American Mathematical Society in Ann Avbor
in. 1955, includes 300 Jaces. That is to say, the miserable polyhedron
hag 24 vertices, is situated in cleven-dimensional space, but has 300 faces.

To turn this quibble in a more positive direction, let me deseribe an
experiment that was vun in 1953 with the help of ALm Hoffman, Imagine
yourself sitting al the center of gravity of {hc polyhedron with a pistol.
I youfive at random, the distance the bullet travels inside the polyhedron
can be calealated by solving a linear program- namely, maximize the
distance gubjeet to the condition that the coordinates of the hullet he
a convex combination of the vertices. In general, the vertices in the optimal
buasis will span a face, and thus, if you fire enough shats, you should find
all types of faces.

In the actual experiment, the random divections were taken from a
Los Angeles tolephone book; the problems were sent to the Nalional
Bureau of Standards and solved by Saul Gass on the SEAC, & angely
enough, no matter how many times we tried it, we always hit the faces

0. That is, out of 390 possible faces, our bullets always passed out
through one class of 20 faces. This means to me that these are the “walls”
of the polyhedron und that all the vest of the Tees are small irvegularitics
i the “corncrs” where these join, This is an empirical fact that has never
received suy theoretical explanation.

Of course, the same E('dmu;uo can be used to construet new consiraints
in any integer program in which the vertices are known explicitly,

3. [ Cuasex: I owould like to compare the concept of randomuncess
with its extreme opposite. T know that this will be repulsive after all
of hl’-; fine analytical work, bul let us introduce a Litle of the coneepls
ol statistics. I think this is necessary for completeness, Sunpose we fake
a number of nodes—for example, the 42 indieated eitios of the Inifed
States. We pass through the eitics randomly. With all of the different
(,0nﬂ_nmi,zons, there are 42 factorial, which we might regard as infinite,
for all practical purposes. Tt ocours to me that if we completely randomize
our scleetion of tours from cily to city, which is not clegant by any means,
it does not take the compuier very long to traverse around. We can do
literally tens of thousands of tours with very nominal expenditure of
computer time. Again, for the sake of completeness, how would this
progedure, if we picked the minimum route or the minimum cost, compare
with the optimal solution in terms of pereentage of crror?
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R. I Gomony: T can only say that I do not know,

S. H. Cuasexn: Could certain empirical investigations be done on a
low seale?

R. 1% Gomonry:  Yes.

S, H. Cmasmwy: This is very important because, as the density of
points increases, we might expect that there arc a number of solutions
which are very close to optimal—not optimal, of course, but, for all
practical purposes, adeguate.

R. I8 Gosory:  This is an approach which people have fried on numer-
ous scheduling problems. Sometimes it scems to be pretly good, and
somelimes 1t secms to be preity bad. I do not know of any experiments
in this way on the traveling salesman problem, This does not mean that
it would not work.

D, W, Swrexny: There are some experiments going on now al the
University of Rochester. Professor J. W. Gavett informed me that he
is comparing the optimal solutions of job-shop setup problems with the
rule-of-thumb solutions gained by taking as ihe next job the one with
the shorfest setup time, On a 25-city problem, less than 1,000 branches
{partial or complete fours) were followed, using the branch-and-bound
procedure to find an optimal tour. T would say that this is a far more
hopeful approach than the use of random-walk technigues.

. E Gosory: I woukd not be very optimistic about a scheme {hat
went randomly from one city to another, because the sajesman s then
going to go to very distant points and ruin the tour.

5. I Cuasen: A lot will depend on the confines of the area involved,
will i not?

R. . Gowmory: Yes, but there are bound to be some points that are
distant.

A. J. Gowpgrzmn: T personally did the experiment that you have
mentioned. T took an i-city problem and exhibited all of the 1.8 million
possible tours in aumerical order. This took a minute and a half on {he
M 7004, The interval befween the minimum and the median tours was
divided mio ten intervals, and T asiced how many tours were in the first
interval. I teok several random 1l-point examples from the unit square
and lound that this firsé interval had between 15 and 50 of the 1.8 million
tours.

May T montion some resulis in the compelition for speed and size
of problem. Shen Lin a$ the Bell Telephone Laboratories has modified
the dynamic programming approach so that on the sy 7094 (which is
4097 faster than the 7090} he has cut the time for a 13-city problem from
17 to 3.5 seconds. He has also used an iterative approach on the 20-, 25-,
and 48-city problems discussed in the Held and Karp paper that you
cited. The 25-city problem takes about 8 seconds to run, and the optimum
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is found in 309 of the runs. T'or 48 cities the fizures are 30 seconds and
3095, The ruunmg time is proportional to the cube of the number of cities.

J. Tiparonng: T have a comment on the polyhedral approach to com-
plete analysis, supplementing Professor Kuhn's remarks. 1 do not believe
there is any reason for taking as a measure of the algorithmic diffieully
of a class of combinatorial extremum problems the number of faces in
the associated polyhedra. For example, consider the generalization of the
assignment problem. from bipartite graphs o arbitrary graphs. Unlike
the ease of bipartite graphs, the number of faces in the associated poly-
hedron inereases exponentially with the size of the graph. On the other
hand, there is an algorithm for this generalized assignment problem which
Las an upper bound on the work involved just as good as the upper bound
for the bhipartite assignment problem.,

W. IKomn: T ocould not agree with you more. That is shown by
the unreasonable cffectiveness of the Norman-Rabin scheme for solving
this problem. Their result s unreasonable only in the sense that the number
of facos of the polyhedron suggests that it ought to be a harder problem
than it actually turmed out to be. Tt is not impossibie that some day we
will have a practical combinatorial aleorithm for this problem.

JoEmaonns:  Actuadly, the amount of work in carrying out the Norman-
Rabin scheme generally increases exponentially with the size of the graph.

The atgorithm I had in mind is one T inteoduced in a paper submitted
to the Canadian Journal of Alathematics (sce Edmonds, 1063). This
algorithim depends eracially on what amounts to knowing all the hounding
inequalitics of the associated conves polyhedron—and, as 1 said, there
are many of them. The point is that the incqualities are known by an
easily verifiable characterization rather than by an exhaustive listing—so0
their number is nob important.

This sort of thing should be expected for o class of extramum probloms
with a combinatorially spedial structuce. For the traveling salesman
problem, the vertices of the assecianted polvhedron have a simple charac-
tevization despite their number—so might the bounding inequalities have
a simpie charactevization despite their number. At least we should hopoe
they have, beeause finding a really good traveling salesman algorithm
is undoubtedly cquivalent to finding such a characterization.

What amazes me is that the known suceessiul examples of the philosophy
T am propounding are so searce. Perhaps a reason for the searcity is the
Incle of attention which has been given to the theovetical distinetion be-
tween linite algorithms and “hetter-than-finite” algorithms.

Practically the oniy other successiul example that I know is the problem,
mentioned by Dy, Gomory, of finding a minimum spanning tree in a graph
which has a real numerical weight on each of its edges. The well-known,
very easy algorithm for the problem is not usually regarded as an instance
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of linear programming. THowever, the justifieation of the algorithm can
be used o prove a simple charactorization of the h(}umlmg slanes of the
polyhedron whose vertices correspond to the spanning trees of the graph.
The number of these planes inereases exponentially with the size of the
graph. However, the algorithm can be intorpreted as o refinement of a
linear programming method operating on this polybaedron.

Dyr. Gomory’s gencral algorithm for integer programming may be
regarded as g charascterization of the bounding inequalities of the convex
hull of the mteger points in & prescribed convex pelvhedron. The work
involved in carrying out his afgorithm depends not so mueh on the mumber
of these Inequalities as on the complexity of using the characterization
to identily them,

15 Gosory: T think i g clear that the faces have nothing to do
with it, particularly if we are not going te try something iike a linear
programming approach, which usually presupposes that we Hst all of the
faces and equalifies. In the spanning 11&:0., we do not go at 1t that way.
I is not a measure of the inherent difficulty so much as it is o measure
of what we have to Taee i we take the linear programming approach.
Sometimes oven the sheer nwmber of [aces is not a deterrent if we have
some systematic way of geliing at thom. For example, i we took (he
cutting stock problem, which hag millions of columms, and dualized that,
we would have millions of faces; bul if we generated the fnces of the new
problem by kuapsack methods, we would get the same good computational
results that we have on {the pramal problem. So the number of faces is
not the problewm, The question is whether we can gel them., And the
frouble mlh the traveling salesman problem s that we have not, up to
now (I sl think 1t can be done), heen able to produce enough of them
sasiy enough, whereag, if we have a thing with only o few faces, we can
tist them once and for all and then unieash the linear program,
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