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IBM Corporation, Yorktown Heights, New York

The econcmic lot size programming problem as studied originaliy by A. 8.
Manne and Iater by B. P. Dziclinski, C. T, Baker and A, 8, Manne, is the prob-
lem of making economic lot size, inventory and work force decisions in o multi-
production proeess. When several thousand distinet items are involved, the
large number of equations that result from the linear programming fovmu-
lation makes computation infeasible. Also, s large number of variables are
involved because of inclusion of slternative set-up sequences for each item.
In this paper, the application of the Dantzlg and Wolfe decamposition prin-
ciple and a method for creating alternative seh-up sequences as they are needed
by means of a computation of the Wagner and Whitin {ype is descerihed as a
method for overcoming the computational difficulty.

A digital computer program has been developed using these methods, The
resuits of some experiments where production was planned for a large number
of distinel items are described.

Intraduction

An application of the linear programming method o the problem of making
economic Job-size decisions for a multi-item production process has heen studied
and reported on by A. 8. Manne [4] Recently, B. 1. Dzielinski, C. 1. Baker,
and AL 3. Manne made additional studies lor making economie lot-size, inventory,
and labor-force employment decisions by the use of the economic lot-size model.
These studies ndicate thal linear programming offers a promising method for
the practical economic planning of such activities [5].

The economic lot-size model developed fov performing these tasks, howaver,
containg certain characteristics which lead to diffieulties when applications to
large scale production sifuations are considered.

(i} Tirst of all, a very large-sized linear programming problem results when
lot-gize decisions on several thousands of distinet items are considered.
The model involves a large number of equations and puils computation
heyond the capahilities of current linear programming codes. The dif-
ficulty may be overcome by performing certain approximations (by form-
ing aggregate classes of items), but it may persist even with these approxi-
mations.

(i1) Secondly, the model containg an activity vector for every time-phased
veetor of labor-hour coefficients, These coeflicients satisfly the demand
reguirements over time for an item. This results in an unmanageable
niunber of variabies, since in general, there wili be a great many such
feagible labor-hour coefficiont vectors for each tem.
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The purpose of this paper is to show how these objections can be met: first,
by employing the methods of the Dantxig and Wolle Decomposition [3], here
the task 1s to accompiish a reduction in the large number of constraints i the
original problem, second, by showing how the SBimplex Algorithm can be aug-
mented with the ideas of Ford and Fulkerson [6] to deal with the namber of
variables. This involves using information (the prices) generated by the Simplex
Algorithm to simply creaie a new improved alternative labor-nput coefficient
vector. In this computation the Wagner and Whitin algorithm [17] replaces the
method of looking over a vast collection of existing veclors as Is requived for
the economie lot-size model. The approach and notation are closely related to
[10].

The Problem

The problem studied here is given in Manne {14} and will be restated in our
notation in equations (4.0)—(4.3) below. In this formulation an important part
is played by the labor hour input coefficient vector. This is the vecior that over
time allocates the needed labor resources to the requirements for a partieular
item. These veetors, which are columns In the LP model, are obtained as follows:
A T-period set-up sequence is denoted by a vector A; and consists of components
& taking on values of zero or one; i.c., when §; = 1, a sebup is incurred in g
period 7, otherwise no setup is incurred.

63’1

The demand requirements #; for each item ¢ in period -, are denoted by rs .
Corresponding to each of the A; vectors, a time-phased production veetor X,
may be written as:

Tl
- J = 11 Tty J
Xeg = | @ipr
o=, -0 f
L& _|

The output levels, 2 , are determined by a set of rales; these rulegs essentially
are equivalent to the rule, “each delivery requirement is satisfied out of pro-
duction during the nearest preceding period in which a setup is incurred.” It can
be shown [5], [14] that only these ouiputs need be considered. The vector X,
is denoted as a production schedule.
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Bpecifically, when generated by the set-up plan 4;, the corresponding vector
Xz, must be {easible from the viewpoint of the delivery requirements; that is,
the components of X;; must satisfy

(1) m‘ir-l Tijr 2 Z:l Tir s f=1,.-, 7~ 1,
and
) S = Y ar,

Ilor exaruple, let us consider the case of three periods with requirements 7 ,
T, and 73 for the first, second and third periods, vespectively. The dominant
feasible production schedules, that is the ones produced by the above rule arve
listed, and they are:

Amount Produced in Period: »
Scaguence Ne, -

1 2 i 3
3=1 &= rn ek ory o= { B0
Fo= 2 &= Ty ri =0 =1
7=23 T =Ty [ I ST i o=
j=4 @ = T B = Ty l €= Ty

i

It is clear that no requirements are split in this process; that is, each s (r =
1,2, -, 1) is allocated in its entivety to one peried, The maximum number of
such dominant production schedules is: J = 27, In a production process, it is
possible to generate the corresponding labor-hour input coefficients, Iy, , the
hours of each labor of type & needed for the production guantity, 2. , for each
Bemu:{(d= 14 -, k=1 -, LK) as:

J 0 1 = [0}
(3 Lijrr = 4 b according, as: 2 {
(Gik + b - Ilkjj > OJ

where a; and by refer, respectively, to the labor set-up hours and labor produc-
tion hours per unit of item ¢ using labor type k.

Then, the corresponding labor-howr input-coeficient veclor is denoted on oppo-
site page.

The most cconomic production schedules, when determined by the linear
programming computation, pick out at least one L; vector for each ifem, such
that the set. of vectors picked for all the ifems concurrently will optimize the
defined objective funetion, subject to the restrictions of the probiem.

The economic lot-size and work-force planning problem can be writen as

(4.0) Minimize >, 3;Cry 61
subject to:
(41) Z?} Ziﬂ:raij = ZJ‘ Ilrf:;.?;’I’rgf, k= I i I(: To= 1: tt T:

(42) Zj fi; = ]':r 7= ]-7 the :]r
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I:fjll
ijir
lq'le
lz‘jkl
L,‘j = l{j-if;r Z == ],, ,I
]'ijlﬂ'
ij)'\'l

l'ij'K';

_li'jKT__J

and
(4.3) 8:; = 0.

The variables 6;; require some interpretation. There is one for each feasible
labor-hour coefficient vector, If the 6.5 are infegers, conditions (4.2) and {4.3)
assure that they can take on only the values 0 or 1, and, in fact, for each 7 exactly
one of the f;; will have value 1; the others will be zero. Thus, if the 6:; are inte-
gers and satisfy (4.2) and (4.3), they can be interpreted as picking out from
the existing list of feasible labor-hour coeflicient vectors for each item, exactly
one production schedule that is to be followed. To each 8;; there corresponds g
cost coeflicient:

T
Cij = Z.—r—q Cir " Xigr

where ¢i 15 a cost value indicating the discounted material cost of item 7.

With this interpretation of the 6., then (4.1) are the equations of labor
balance in planning the production for the 7 items. We have the labor required
on the left, in labor man-hours. The right hand side ferm gives the labor avail-
able 2 L H, - Wi, (r = 1, -+, n). The number of workers of the k* labor class
and the 7 payment type is Wi, . For example, r = 1 indicates stzaight time
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worl; » = 2 indicates straight and overtime work. The number of hours a type
r, k worker will work in & period is A, The problem is to find 6, that satisfy
equations (4.1)-(4.3) and minimize {4.0).

Later we will deseribe a version of the model in which the W5, are variables.
There will be costs K7, for using the labor of the various classes, and there will
be eguations connecting labor quantities in one period with labor guantities in
the next, see {12.0)-(12.4) below. To simplify the exposition however we con-
fine ourselves to a simpler model in this part.

Quite aside from the problem of gefting integer 0,5, we have in {4.0)-{4.3) a
formidable lingar programming problem, There ave 7 4+ KT rows, K and T may
each reasonably be around 10 for many situations; I, the number of distinet
items, may be from a few hundred to several thousand. When the number of
items is much over one thousand, it becomes impossible to compute with the
Manne model. Coupled with this, the number of columns can become over-
whelming even for smaller 7, For instance, if 7 = 10, then for cach item the
total number of feasible production vectors equal J = 27 = 512. Thus, with
I = 500, there would be at least 256,000 columns in the tableau, It is here that
the problem lies,

Decompaosition of the Lol-Size Problem

The decomposition method of Dantzig and Wolfe applies divectly to linear
programs in which the set of constraints can be partitioned into {p - 1) sub-
sefs where p of these subsets are mutually independent. That is to say, each
subset involves a different set of variables. The solution to a given problem
requires replacing the problem with (p 4 1) smaller lincar programming prob-
fems, 1.e., with p mdependent problems and one connection problem.

The equations {(4.0)~(4.3) can be rewritien as:

minimize €4,
subject fo:
A9 =D, 420
We can now divide 4 into two sub-matrices, so that Ag = D is replaced by
(5.0 L = dy,
(5.1) AP = dy .

Where L has K7 rows corresponding to the rows in (4.1) and can bhe partitioned
vertically into [ sub-matrices i (¢ = 1, ---, I'}. A; has the I rows correspond-
ing to (4.2), A; can also be partitional into sub-matrices 4,4 (2 = 1, -+ - I}, each
consigting of a gingle row. This situation is shown in Figure 1.

We now transform the problem into one with KT +4- 1 rows and a great many
columns by the following reasoning, due to Dantzlg and Wolfe [4]. The only 6
vectors we need (o consider as solutions to (5.0) are those that solve (5.1);
clearly the solution space fo (5.1) is bounded. Thus we can, in principle, give
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c [ 1 Cp Q3 Cr
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o £ 24 1/ - .: %
£ 4 £ 4 A /A B
111 1 - 1
All 1111 = 1
A21 1111 = 1
Al ;\31 - dy
An
1 ¥ 111 = 1

Fia. 1. Fableau description of preblem (5.0)-(5.1)

a complete list of vertex solutions ¢ to (5.1) and any solution, whatsoever, to
(5.1) is a weighted combination of these * with non-negative weights A, total-
ing 1; so any feasible solution is of the form:

(6.0) 6= 20t A E O, 2 = 1,
By substitution in (4.0)-(4.3), the original problem can be written asg:
(7.0) Min z = 2., 0,

subjoct to:

{(7.1) Doy, = dy,

(7.2) 2iahg = 1,

(7.3) =0,

Where C, = C¢" and L, = L¢".

The relations in (7.0)-(7.3), define a new linear programming probiem. In
passing from (4.0)-(4.8) to (7.0)~(7.3), the number of equations is reduced
from I -+ KT to KT - 1 at the cost of adding a large number of variables. There
is now one for every vertex solution of (5.1).

We now want to solve the problem of (7.0)-(7.3) by employing the simplex
algorithm. Suppose we have a basic feasible solution, which is denoted as B,
and we wish to perform a simplex iteration. We use the revised form of the
simplex; the top row of the inverse of the current basis provides the prices

po= (m, o0, mreg) = (F, Trog)
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Now the criterion (cf. Ref. (2), (11), (15)) for introducing a column vector
into the current basis matrix B is determined from the scalar products of ¢ with
the column vectors (I, 1). In fact the coluinn selected is the column which
maximizes —Cy + p-(Ly, 1). Thus the problem of selecting a column s

Max, —Cy + u-(Lg, 1) = Max, (—C3' + p- (Lg% 1))
= I\{[axq {”“O "i" fL) 'ﬁbq "+“ TR

Thus we are maximizing a linear function over all vertices, ¢" or equivalently
over a convex body. Therefore, this problem is again a linear programming
problem of the following form;

(8.0) 1\{33\' (_‘C “E‘ 'fi“L_) ~p + WEP1 .
subject to
{8.1) Ap = dy, ¢ = 0

This is a large linear programming problem; however, we sce that this can be
solved casily If we split L into submatrices corresponding to each 2t item. If we
let L:; be a column of L corresponding to the component 8:; , of 0, (8.0), {(8.1)
splits into a series of subproblems each of the form:

i\fl'ax (‘“’C{l + ':'?“‘Lu, "“C{m + 7?']:‘1‘2, Ty "‘Crin; ‘{“ W:Lfn,‘)
(9.0)
'(8L'1 3 91‘2 y T, gini)
subject to
(9.1) D0 =1 (all ©)

The solution is simply to set 8:;; = 1 for the 7 value for which— C; + #-Ly; is
maximal, and sct all other 8:; = (. Thus the problem reduees to that of finding,
from ali possible feasible production schedules for the 7t item the one for which
wr (gp = # - Loy 15 maximal. This is then repeated for each 4. It is at this point that
we run into the difficulties caused by the multitude of possible production sched-
ules.

Generation of Alternative Labor Input Vecters

The procedure for solving (9.0)-(9.1) above is essentially a column-selection
procedure performed for each item. However, when the number of periods for
which production must be planned is 77 = 10, the maximum number of possible
production schedules is 2° ™ = 512. If production is to be planned for 500 items,
256,000 columng must be generated beforehand; and in doing the column selec-
tion, 256,000 scalar products, ¢y -+ #-L:; , must be computed. Even with the
help of a large-scale digital computer, this caleulation will tend to get out of
hand.

Fortunately this maximization problem, finding max —C; + 7 Ju; can be
handled by special methods. The problem for each ¢ is to find the “dominant’
schedule 7 that minimizes
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Cip - (—=7-Liy) = Zkr ~ e aad(n) + biwis)
-+ ZT Cirsjr = Z:r {A-ﬁa(m) b Bz

where §(2) == 03 & = 0 and is 1 otherwise, and

Ay = Zk Rk

B = (Zk — '."?k;bi]\:) -+ eir
since the m, are = 0, it follows that 4., 2 0, B, = 0. The problem of minimiz-
ing (10) over production levels that satisfy the demands 7y, in each time period
is precisely the dynamic economic lot, size model studied by several authors 1],
{12}, [16], [17]. We follow the approach of Wagner and Whitin [17].

In viewing (10) as an economic lot size problem 4., becomes the setup cost
and Bi; the marginal cost of production. To minimize (10) we introduce the
function Cy(y). Ci(y) s the minimum cost of fiiling all requirements 7., up o
and including the +*" period and having on hand at the end of the + period an
amount y of extra production. €', (y) can be obtained recursively from
(11a) Caly) = Adud(y + o) + Buly + ra)

and

(10}

Coly) = min {A.8(2) + Bulz) -+ Connly + v — 2)},
(11h) 022y + 7w, r>1

"Fhe caleulation in (11b) is greatly reduced by two ohservations whose justifica-

tion can be obtained from [17].

(1) Itis only necessary to consider the two z values z = Qand z = y + 7, when
performing the minimization.

(i) Cu(y) is needed only for the 7 — = - 1 y values

Vip = >.:2Pr;,
where r £ p £ T

Thus to obtain C:»{0} which is the minimum cost of filling all orders it is only
necessary to compare valaes corvesponding to z = 0 and 2 = y + r, approxi-
mately T(T - 1)/2 times. Backiracking to obtain the @ that gave that cost
is only very small additional caleulation. This then is the amount of caleulation
that is substituted for evaluating the 2”77 sealar products.’

We have just explained how to solve the individual problems (9.0)-(9.1).
When solved for all 7 these provide all the components 4., for the vector ¢ satis-
fying (8.0)—(8.1). Then I,¢" is the new vector fo be introduced into the hasis.

At this time, we summarize the work as follows: by a Dantzig and Wolfe
decomposition followed by an application of the dynamic programming tech-
nique just discussed, a problem originally calling for simplex operations on a
(I + KT) X (I + KT) matrix, and the investigation of scalar products with

! For computational experience with this recursive caleulation, see [1].
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golumns as numerous as production schedules, 1s reduced so simplex operations
ona (KT - 1) X (KT 4 1) matrix, and a succession of [ associated dynamic
programming caleulations.

Next, let us turn to the question of infeger 6:;. Fortunately, as Manne [14]
has observed this problem tends to take care of itself. For in the system, there
are [ 4+ KT cquations and, therefore at most, 7 -+ KT positlve variabies in the
oplimal solution. There must be at least one positive variable appearing with a
non-zero cocfficient in each of the equations (4.1). This accounts for 7 of the
I 4+ KT positive variahbles, so there ave at most KT values of ¢ for which more
than one 8;; is positive. If I is much larger than K7, this means that almost al-
ways only one 0;; is positive for o fixed <. Therefore, it must be an integer with
value 1, Fortunately, then, there are at most KT variables at proper fiactional
values. These may be treated by seme arbitrary rounding process.

An Experimental Computer Code

An experimental computer eode was developed for overcoming the computa-
tional problem of the large number of constraint rows and activity vectors. We
are mainly concerned with accomplishing the task by the techniques of Dantzig
and Wolfe, and by the dynamic programming technigue for creating new least-
cost fabor hour coefficient vectors.

Ti testing the computer program, the economie lot size and work -{oree planning

model gtudied by Dziclingki, Baker and Manne [5] was used. That is, the problem
not only includes (4.0)-(4.3), bul also variables that allow the work foree to
rary. Before writing out in full the equations on which the actual caleulations
were made we will review some notations. It should also be borne in mind that
these equations correspond fo (7.0)-(7.3), i.e., the master coordinating program
of the Dantxig and Wolfe decompesition and not to the original inear program-
ming formulation (4.03-(4.3}.

We will refer to “Production Plan Vectors”. These are veetors Lo” of our
previous discussion. Here they are written as vectors Py with elements pug; per
is the labor hours of type &k required in pericd 7 under this plan, and
i o= D liowe , whete jgy s the index of the production schedule selected for
item 7 by solving (9.0)— — (0.1} P; also contains & 1 in the KT 4 1 position and
a cosh Cp = 2, Ceyn. With each P; we associate the vaviable Az , satisfying
A = 0 and Zq Ag = 1

Now we ean write the full equations used which are:

Minimize

(12.0)  YanaCe + Soer S0 BEWE] + 5o [TEWE + ThWa]

Subject to

(12.1) S ihaPes — roH WL S0 k=1, ,K r=1,---,T
(12.2) i b = Pogdg = 1 s=KT + 1
(12.3) Wi — Wi + Wo = 22 Wi (all &, 7),
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WORK FORCE VARIANLES CHANGE nGHyr
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AA XA \\] wz wl“ K 2 \.\*:S w4 . \\'2 \\"; -.v-: W
COST |32 ze e ze RS RbLrMwiRT et ot R P
ROW i i
F <
TrpEgrs >4 s l-u-n ~H-E 1T 1 T
i L
<
21 |Nixd T ixE -f b
1 U 1
JTotal Lubor, .Labor , Tabor Jabor. . P.o.o ...
L Reguirements . . L Avaiiability + Availabiliy Availability, |[.. .. L
TH: xguf - zdng -1 -1 ST -H 1 i1 Ig
B i
STRAINT) T 1 1T 1 =L
1L 1, T 1 . -1, =% T
¥ VT
-1 -1 1 ~1 -1 -1 1 = 0
.............. . Yabor Balance . Lahor Dalance Iahor Balance L ... .
1 1 1 R
5 o=l 1 -1 1 -1 1 1 =0
11 Far
..... PP Tabor Capachy [y v v v v s o v v 6 o fe mm v e n v v ens
11
i1
......................... Labor Capacily b e e e
11
31 < Mk
.............. s e s e ek arae s Tabor Capaeity ..
. i1 i<
MIC
Fra. 2. Tableau description of problem (12.0)-(12.4)
1 2 . .
Wi -+ Wi 5 My, ( First Shift.)
3 4 :
(124) Wi + Wi = M, (Sccond Shift) (all &, )
12.4 5
Den - rrr 3 .
Wi - Wio= M, (Third Shift)
. g -
}\f!: TJV':”'J Hflu:f 3 ﬁfkr 3 81,].] ; 0.

Trigure 2 depicts the model of (12.0)-(12.4) in tableau form.

In the above Wi, is the number of workers of Type k& and payment class r
working in period r.

The superscript v = 1 means straight time for the first shift, » = 2 means
straight time and overtime on the first shift. The superseripts 3, 4, 5, 6 refer to
the same payment classes on the second and third shifts. H," is the number of
hours this type of worker will work in a period and Ri. is the corresponding
labor rate cost coeflicient.
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problem having a very large number of columng, the usual rales of thumb for
sinplex computations often do not apply, the computation may have a very
long “tail”, i.c., have a tremendous nwmber of almost optimal solutions before
coming out to the optimum, see for example [9]. Aithough atiaining the actual
optimum is not a vital practical coneern in most casges, it is important in this
problem as we explain below in cur discussion of split lots.

Fortunately the computational results were in fact encowraging, sce Tabie 1.
All ten of the test problems terminated and in reasonable runs. It is quite clear,
from looking at Part 11 of Table 1 that many of these problems could net have
been run as standard linear programming problems. In fack, both the decom-
position and the use of dynamic pregramming Wwere NECESSATY.

We now explain the importance of actual termination in our problem. The
number of split lots, i.e., items for which there are more than one production
schedule, can be bounded in the complete work foree model just as in the simplex
model. The namber of split lots in a basic feasible solution to the direct LP
formulation would be at most {(§ + 2)KT, where S ig the number of shifts. Now
a basic feasible solution obtained from (12.0)-(12.4) will not usually be a basic
solution in the direct TP formuiation, Consequently, a virtually unlimited
number of split lots could ocenr making the solution useless. Fortunately, as
long as the problems have unique optima, the optimal solution to (12.0)-(12.4}
will give the same schedules as the optimal solution to the original LP, and since
this latter i¢ basic, the optimal solution to (12.0)-(12.4) also has at most
(8 -+ 2)KT sphit lots.

This limit would not apply if we bad been obliged to stop at a non-optimal
solution.

160 @ ==

80~

60 ~

Percent

40 -

20 -

’?f J P T ¥ T 1 1 I T
5 60

0 20 25 20 35 40 45 5¢ 55

Ieration Number

Fre. 4. The percentage of items with split lots in the solution to problems (7}, (8), (),
(10).
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In Figure 4 we give a graph showing the evolution of the number of split
lots in the solution of four problems. In these problems, even before the optimum
was reached, the mumber of split lots had become quite small. This raises the
possibility that even if problems were encountered which did not terminate in a
reasonable number of steps the near-optimal solutions could still be used.

Appendix A
The Lot-Size Programming program is outlined in schematic form in Figare
3. It 1s a combination of several FORTRAN and FAP programming language
routines. The entire system compiles and executes under the IFAS-I1 lob proces-
sor on the IBM 7090/94 Data Processing System.
It includes:

column vector data on the work force variables, and right hand side cle-
ments,

and ariificial veclors, and the initial solution.

3. PARTIE-a program that generates a cohumm row dictionary for the slack and
artificial veetors, and writes this table on the problen cutput tape.

4. PARTG—this prograin is the main computation and linkage control progran
of the linear programming algorithm. It controls the subprograms that
gewerate the least cost item production schedule and the production plan
vector on any given iteration, i performs certain arithmetic operations,
and controls the subprograms which output the values for the work foree
variables, production plan vectors, and item production schedules in the
golution to a given problem.

The following programs are subprograms of PARTG and their functions are
as follows:

PARTH--a program that conirols the subroutine DYMDP. Tt also creates the
produetion plan vector and stores it in the matrix data ares for the master
LP problem for consideration by the simplex algorithm on any given itera-
tion.

DYMP-—a subprogram of PARTH that generates the individual least cost item
production schedule by a dynamic programming algorithm, ecomputes the
associated labor hours inpul coeflicients and cost coeflicients for the given
schedule, and stores it for PARTH. This is the program that uses the dual
variables, item demands, set-up times, unit process times, and unit material
costs as input to generating the least cost schedules.

PARTI—an output program eoncerned with giving the values of the work force
variables, change in work force variables and slack variables in the current
solution on any given iteration or the final optimal solution of the problem.

PARTE--a program that writes out the values and identifies the production
plan vectors in the current solution on any given iteration or in the optimal
golution.

PARTJ—a program that determines which item production schedules malke
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up $he production plan veetors in the current solution on any given itera-
tlon or in the optimal solution, and writes out the corresponding production
quantities for each time period.
Tixplicit details and operating instructions for using the program will be part
of a fortheoming publication.
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