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Bieartier papers on the euiting siock problem we indiented vhe desicabifiny
of developing fast methods for computing knapsacl Tunetions, A onoes
dimenstonal knapsack Tunetion is delined by

Fley= max L4 - 82 S, 72,20, Z: integerd

where I and £ are given constanis, 2=1, » ) m. T'wo-dimensional knap-
sack funetions can also be defined. In this paper we give o chavacteriza-
tinn of knapsack Funciions and then use the characierizaiion io develop
morve efficient methods of compuiaiion,  For one-dimenstonal knapsack
functions we deseribe certain periodie properiies and give compuiational
resulis,

NAPSACK problenws of the most general type con avise divectly in two
ways, L a portion of spaee is being packed with objects, each having

aovalae, the kuapsack problem is to find (he most valuable pucking.  Alter-
nalively and cquivadently i o porition of spaee is being cut into picees of
different valaes, the knapsack problem is o find the moest valuable way of
cuiiing,

An example ol the first viewpoint is the problem of loading o ship or
box car with the most valuable cargo as diseussed, Tor example, n reference
1 an exanmple of the second kind would be the cutting of a shecel of glass
into the most vahmble assortment of pieces {or windows, windshiclds, ele.

In addition 1o arising in these divcet ways, koapsack problems also
arise s column generating subproblems in very large Hnear programs.  In
reference 33 we showed shat mueh ol the difficalty of the ene-dimensional
cutting stock problem could be overcome by solving a one-dinensional
knapsaek subproblem,

The one-dimensional knapsack problem is this: given positive lengths
Ly« o) Ly, and corvesponding nonneeadive values 1L, « -, 1L, find for a
given x the value M), where F{z} is the maximum of 1L 24+ -
U, 7. with Zy, -+ -, Z,, nonnegalive infegers satislying L 240, 2, S,
Intuitively one is fitting lengths /7 inlo a box of fength 2. The function K (&)
s eadled the baopsack function.

T This research was supported in part by the Oflice of Naval Rescaveh under
Contract No, Nony 3775000}
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1046 PO Gilmore and R. E. Gomory

[ velerence 5 we showed that higher dimensional cutd ing «lock proldems
could be solved by linewr programming if cortain higher dimensional knap-
sack funetions could be ealeulated oy specified values of Thelr arguments.
We also diseussed in some cases methods of ealenlnéion.  Fop i general
bvo-dimensional cutting stoek problem for example, 4 (wo-dimensional
Knapsaek Tanction 6 i defined s follows: One ix siven rectangles of

positive dimensions (0w, =1 - that have nonpegative volues
Wy - 3L, assovinted with them; then Glr, o) b the masimum of
) ? H 3 H ..l,‘
i Zd - R, 2L where Ar, e, A oare nonnoeative mtegers sueh (hane
{2)
(1)
K (3}
(1)
(2}

Figure 1

there exists aoway of dividing a rectangle (v, y) into Z: vectangles (4, ),
for =1, -+« m, Tor example, in Fig. 1 a permilted division of the
vectangle {2, ¥} into (wo rectangles marked (1), two rectangles marked
(2), and one rectangle nurked (3) i lustrated. In that case, (x, )
5 known (o be ab least 20,421,410 Ly WL is the value of o rectaugle
marked (7). The ealentation of (e, ) for given wand y 15 nof an casy lask.

Fortunately, Tor many practical ull{mo stock problems, the ealeulation of
another knapsack function # suffices. F s (iohmc hi\c' G oxeept that in
dividing a rectangle {(x, %) into 7, rectangles {1 for =1, it
the f r)HO\\ing restriction s imposed:  The division .um.\{. inke i;u{é E)}

series of straight lines that extend from one edge of n 1'(3(:%:1:15_);10 (o un
opposite edge, parallel to the other two edges; woe will el them ‘guillotine
cute”  Here by % rectangle’ is meant either the oviginal rectangle (x, 5)
or a rectangle oblained fron it by one or more guitlotine cats.  In g, 2
a pevmifted division of the reet tangle (&, 73 in the ealeulation of #{z, 4)
s illusteated. T that case, F(r, 4) is kinown to be at loast - 1142101,
211,
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Beenwse of the way I/ las been defined in terms of guillotine cuts it
sadisfies  two  fundwmental  divide-in-two  equalities:  Flogdo, y) 2
Pley, )41, ) and Fla, ybya) 28000, p) 40 (e, 4). The one-di-
mensional knapsack function satisties o divide-in-two inequality  also.
Fo faet, the one dimensional kinpsack funetion can be regarded as o special
case of the two dimensional function. For, giver £, =1, -+ -, i, with

I this puper, we wish to study in gronter depth than we did in references
4o i the theory and computation of knapsack funetions (hat satisly the
hasie divide-netwoe inequalities. Ouly hriefly in Sections 3 and 5 will we

(1)
) (4)
’ (2)
(3} {3)
{(4)
Lo o 3 3

Pigure 2

study functions that do not satisly these inequeditios, and ondy it the case
of some one-dimeusionat knapsack funetions having speeial practiesd
importnnee, We restrict our atlention fo knapsaek functions of two
dimensions and less because the theory and computation of higher di-
mensional koapsack Tunetions is sulliciently  well Hlustented in two di-
mensions,

In Seetion | we ook st (wo-dinensional krapsack functions more
abstractly than we do elsewhere it order 1o lay foundations Tor the re-
ninder of the paper. In that seetion one-dimensional knapsuck functiows
ave {0 he regarded as defined by P{x, 1) as just indicated. Tn fact, almost
the entire puper could have been writlen abont two-dimensional knapsack
funetions with ene-dimensional knupsack funciions regarded as speeial
sses, Flowoever, the gnin i eleganee would result in o loss inintelligibility,
Tnstead, thevefore, with the exception of Seelion 1 owe will freal one-di-
mersgonal Knnpsaek Tunelions separately from two-dimensional knapsack
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funetions using the 1'92111[‘4 concerning the former to provide introductory
insights into the study of (he Lulter,

In Beetion 2 we take up the study of one-dimensional knapsack [unc-
tions (o provide o basis for their computation as described in Seetion 4 as
well as to prove some theorems in teresting for themselves.  For example,
we prove that knapsack Tunctions have periodic properties thal can be
exploited for their compulation.  In Seetion 3, ws said earlior, some one-
dimensioual knapsack funetions not sabisfying  (he basie divide-in-iwo
mequality are studied, and in Seetion 5 methods of computation for them
are discussed.

o Seetion 6 o simple method of comput g two-dimensional keapsack
!umtmm iy described in detail to provide @ basis for the deseription in
Section 7 of & more elliciens method. Finally in Section 8 we discuss two-
(Imu,-n:-smlml kispsack funetions arising from what we called in reference
a staged guillofine culting,  Sections 6 and 7 provide the Toundalions for
this discussion.

Throughout the paper, the lengths £ and w, /== Ly -y ire are vogaided
as integer and the variables = and g are regs udvd as integer valued,  In
practical problems the lengths £ and w, ure rrely iteger but they are
always mtional,  Consequently, it is always possible 1o convert them into
mtegors by choosing §>0 and replacing £ by [1/78] and w, by fw. 5]
Here ns elsewhere in the paper f2] denotes llm greatest integer not execeding
£

EOTHEQRETHCAL FOUNDATIONS

[N s section we wish o look al multidimensiona] ko ipmack funelions
from o more abstract view than we do elsewhere in the paper to provide u
foundation for the main part of the paper.  Beenuse all of the difi ficulties
of higher dimensional knapsack funetions abrendy ocewr {or two-dimensionsl
functions, we restrict our atiention o (hose funetions.  ow ever, we do
regard one-dimensional funefions as a special ease for he theory developed
in this section.

From the discussion in the troduction, it is clear that when (he
rectangles {4, w:) of worths (L, i1, - i, are given, the kuapsack
fanetion #{z, i) defined from 1hf'm sutisfies the following (hree seis of jn-

cquanlities:
e, y) 20, (1)

Bl y) 21, y) 4 (o, 4,
ey yaby) Z (2, )+ F (w4,
F w210 (i=1, -+ m) (3)

(2)
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Drequatdities {1} and {3) speak for themselves.  The inequalitios (2) are n
consoquence of the pe}nm(,.vd method of cutting a large vecinngle {, 4)
mto the smallev vectangles (4, ). # s not the only Nunetion (o salisfy
these ineqaadities, abthough it s the minimal Tunetion iy the sense of he
following theoren.

Turowss 1 I ds a knapsack junclion defined jroin the reclangles (1, we)
with volues 1, d=1, -, I and only 1')" Fosadisfies (1), (2), (3), and
CHr Do any G salisfying (1) o {3), FQe, gy SG(e, y) for all v and y.

The value of the knupsack Tunction If for arguments @ and y s the
maximwm value that one can obtain from o rectangle (), ) by dividing
it into the smaller rectangles (£ w:) of values T by woseries of euillotine
auts. P osatisfies (B} to (3}, There remains therclore to prove that F
satisfies (4) ulso. This proof will he ciwrried out by induetion on the fotal
number & of cuts needed to achiove the value Fla, ) from the rectangle
(i, z,')

I #Ce, )i achieved by no eutiing, that is k=0, then necessarily
(!iLher € l,—, g, and Fle, gy =10 lor some 7, or 2==y=0. In the former
ease sinee (o satisfios (3), Gla, vy = e, ). In the latier case J{"(O, ()=
0 because of {1} and (23 sud therelore (.'(U D300, 0) by (

Assume therefore that 4) s true for those o and y Tor \\lll(l Fix, )
moachioved with & or fower cuts, We will prove it rue also for Lhoso
achioved  with A+1 cats, Let Fle, yy=20 I+ b 2, 11, where
Z s the mamber of rectangles (£, w:) used o achiove F{x, ). At least
one of the k41 ents divides (2, ¢} inlo two reetangles aid withouwt loss
generality we can wssume that the cut produces two rectangles {a, i)
and (@, 4), where pi-bae=. Within the veetangle Ger, 1) we will asswme
that f'or each 7 there are contained 7, of the ith reetangle and within (ry
u), 4 of the dth rectangle, where Z,=2+ 275 By (2), !"('t‘; T, /)
20y, )+, ) and bv the def mm(m of Iy, Flay, y)= 2 lh—}-
A2 W and Flag, )= 25 20 {[,,, But ]’(\.117_.1.3, I VARITES

A2 0, so0 that n(x(*essurliy /« (e, ) =240 T2, 11, and
Flas ) =28 bR Z7 100, By the induction assumption Ga, y) =
Pieg gy and Gl 1) = Al'{a) i) fov any (O osatisfving (13 1o (3), But
sinee such a 6 satisfies )) it follows that Glogctas, v) 26, )+
Gy, y) 2 8o, g ), g )= Pk ) and theeelore Gla, gy 2 Fr, i)
Slee wypb =

Sinee o minimal funetion ' {in the sense of (437 satist ying (L) to (¢
necessuily unique, wo have established Theorens 1.1

The chameterization of a knapssek funetion given in Theorem § s a

-
R

b

T Theoren 1 ean be vegarded as a statement abovt the dependence on their right-
hand sides v of solution values Fie to 1 m(-qulln\ Hiteger prograing, The theorem
genernlizes withoui any diffienliy vo the meinequality ease. 11 is unly necessary 1o
change the induetion from the sum of cus to the sum of the integer variables,
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charactorization of the funetion for given rectangles (7, w;) of values 11,
More abs(ractly, however, we can ask: given any funetion 7 debned for all
and g, 20, how can it be recognized s s knapsack Manetion, aud if it
s kuapsack function, then what are 1he rectangles (4, w,) and values
(L defining 17 'g prepuare {or the theorem auswering these guestions is js
frst necessary to give a definition.

A point Loy g will be said o be a sowree point for o funetion 4 0F and
only if there exist no ayoand ey, >0, we>0 and ¢ =y, such (hat
(e, y)= G, Yt Gles, gy, and (here exist no doand g o >0, >0,
and gy b, such g (e, yde G, YOGl
Tirones 2. necessecy aid sufliciend condition Joia function Foto be o
knapsach funclion is that i salisfy (U and (2). 1y ey wa)d, (b wy), -

oy W) wre all the souree poinds (o, ) for which © <1 qnd Y= then I s

the Lnupsack fumction defined from rectangles (1, ) of radues Pl )
t=m e i e tange Osesloand 0y <

That conditions (1) and (2) are hecessary follows divectly  from
Theorem 1. Now log £ sahisly (1) and (2). Then certuinly saifios (33
also when (4, Wik, v 0y are the soureo poinis of £ oand 1=
w:). Lo show that /iy o, knapsack Tunetion dofined from veetangles (/)
w,) of values #{{, w;) it is therefore sufficien: by Theorem 1 o prove ihal
W salisfies (1) 1o (33 then M{x, Y3 =0, ¢) for all ¢ and i OEasl,
OZyE1. But let F be any funetion satisfving (1) (o (37 and assume
Gl, ) <F{a, 4) for some and o Lot (g, 40) be sueh that Gy, i) <
g, wod, while for every ey w <, Gl g 2 B g and CVerY U, i <<y,
Gl y) 2 7, ), {29, ¥6) eannnot be o sowrcee point of F osince then (7
could notb salisfy (3}, Therefore either there exists @, and Ty, >4,
>0 and wys=ade, sueh that Flag, oy =1 {a, Yo +F (s, 1) ov there
oxisis gy and gy, >0, >0 and gy, g such (hat F(ry, yy) s B (o, 1) -
F s, y2). Without loss of generality we ean assume the laffor, From the
defintiion of vy and go 10 follows that FCxo, 40) G (g, 11 and Py, )
G, ) while HETETA <Ilr, ). But ihen (v, g} < (e, Yo b ==
F g, 1) - o, 72) Z 00, 1) Gy, i) contadicting (2).

One remark is relevant about our definition of knupsack funcetion and
the necessary and sullicient conditions of {his (heorem, The number m
of given {engths £ in (he one-dimensional case or of given reclangles {;,
w:) has heen assumed fo be fniie, When o knapsack funetion is defined

over an mfinite range this Nmitation is no louger necessary or desirble,
The statement of Pheoremn 2 minkes this eloar: the avmber st i< o funetion
of the bounds L and 1V and could fnerease without bowned as £oand ‘or
I inereased without bound. However fov the sake of convenionee we will
continue (o regard i as always finite,
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Theorem | does have as an interesting consequence that the problen of

compuling the knapsack Tunetion /) for given (4w} and 1, :m(l for a
inite range of its argument s a linear programming problem.  For let
X, ¥) denote a variable Tor cach (o, y) in the range for which /7 is 1o be
comptiied.  Sinee by Theorem | necessaily /(1) 2 X (e, y) when (e
g) setisfies (1) (o (3), i follows that 2. 2o, Fle, ) S 20 20, XN, w)
F s therefore the soluiion to the Hoenr progranmming problem of minimiz‘l
e 2. 2o, A, ) subjeet (o the inequatities obtained by substiouting .V
for & in (1Y to €3). This s an inleresting conclusion cousidering the
ovigin of owr inferests in knopsack funclions.

An efficient method for computing I s by o modified dynamie pro-
gramining fechnique thai iz based upon the functional cquation:

Fla, gim=maxtFale, ), £, yiH e, g3 Pl ) 00 o)

0 2 et i, and G <Dy

where Folie, yye=muaxt0) Uy £ S and w;

(0

To justify sueh nomethod we wani therelove (o prove Theoren 3
Turores 3. The functional equeadion (3 s sadisfied only by the bnapsack
Junclion.

That there is o fuselion satisiving {3) ean be quickly established by
induetion on 2 and ¥, Thal o funetion P satisfving (5) sadisfies (1) :m(l
{23 e abso be quickly verified. Applying Theorem 2 we know thevefore
that any Bunetion /7 satisfving (5) 1= knapsack function on the rectangles
defined by s souree points i any fisite range of its seguments. Cleady
any source point (e, 7o) of F s o paint (4, we) sinee for such o point #(x,
yod = Foleg, god. But not all points (4, wi) are necessarily souree poinds,
By Theovem 1, £ i then the minhnum funetion satislying (L}, (23, and (3)
for those § for whiels (7; 4 ix aseuvee point. Bul i {4, w') s not i souree
point G w2 and therefore clearty 1 osatisfies {3) for wll 7 oand
Horemains minimun wiih respeet o the culareged set of inegualities,

THEORETICAL DISCUSSION OF ONE-DIMENSTONAL
ANAPSACK FUNCPHONS
Ix puss seerroy we will deveie owr attention 1o one-dimensional knapsack
functions only; that s kuapsack functions £oe) defined from lengths 4,
o h of given values 1y, - -+, 1, by the equation:
Figy=max} 2 4 - -R2 L 20 nonnegative integers,
and AL e XL e

-1
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Clomdy this function satisfies the one-dimensional form of {53, namelys

Fia = may e ), Pl o) R i (8)
< é:l'g} .

Therefore by Theorern 3 {T) can be taken as another definition ol the one-
dimensional knapsack funetion and we will do so for the remainder of the
paper. However we will veturn to (8) in Section 4 where algorithms lor
computing #are deseribec,

The purpose of this scetion is 1o provide motivation and justifieation for
the knapsack algovithms deseribed i Seetion 4. To that end it will be
necessary not only to know the value F(2) achicved for particutar length
+ but also kow that value s achieved. Tt would appear o be enough 1o
know the mimber 7, of tmes the length £ i usedd Lo aehieve F{a) Tor i=1,

-, iy that s nonnegative integers 7 for which F{) = Z[ 211 where
e E:i 7. b, But wmore detail s uzeiul.

Actunily a specifieation of how to cuta lenutit o is what we will eall o
partition of @ o sequencee of numbers @, L, 0o, O 0oy <
<o, where enchoay indieates noeat 1o he made.  We will desevibe o

pariition by specifying o fced ordering iy, day o, Ge of the indices 1, 2,

ooy then i 7. pleces of longth {0 ave to be cut for f=1, oo, the
sequence of s s debined: L, 20, - 2o by o oAb, 2 L2l oy
/ARSI SV /A T NP SN P SRR S A Tlowever the last nune
her i that sequence is nol neeessarily @ DBut we can without loss add

[ for which [l =0, since such a tength simply perniits

o fength L=
o uitization of Svaste’ at zero value, and Uen have for some Z41, @ == 70
Lo 3, Ly H 2 L Consequently a partition of @ s defined
by i, Ay o 2 ppte

We will assome that an ordering dy, -, 7, has been chosen and thad
the lengths G, -+, L have been coindexed =0 that by by, -, L 18 the
desived ordering of the lengths. In addition we wssme That L el
=0,

A consequence of ow assumplions s that for any given @, vz 0, there
exists one oF more partiions Zy, 2y, Zusn vendizing (o) thul is such
Chat Py =20 - o 2 B We would like to associate with
ench oo unique partition realizing ey, To do this we choose from

bl
anong those partitions replizing F{

2 the reverse loxivographically largest
one,  Precisely we choose  thai partition 7F, con, K realizing Fla)
sueh thal if Z1, -+, Zass inany parlition reslizing P and Zoqa= /R

N/ 2%, then 7,3 We enn now Lhen define an nieger vadued
function 7(o) as follows:  For 220 define {{e)=1. tor >0 o unigque
partition Zy, -0y Zu i associiled with & for which 2744 for some 1.
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Befine then Hady=rnax|s; Z=200 Allernatively &) can be defined
divectly o termus ol F as lollows:
Hay=maxil, 73 F{w)=F{e—1)-F1 (9

With this infroduction wo cun pz'(w-' 'l{ 0100
Tuponresm L. Phe knapsack funciion F{e) 4s defined by the equalion:

Floy=nmax{0, Flo— {3+ izile—1, e=2 4, {10)
where L 1s defined by (9).

Lot Zy, -+ -, %o be the partition associnted with @ and let 7= {2} w0
that F() =2, - - 720 and Z,200 Then Zg, -, (Z—1) s n
partilion  realizing Fie--0). For by {2} (2] (o) F =
FPla—{04 11, and honw A1 A - ALz e 1L Conge-
quently - - 00 =1 L2 Fle—4) Trome whiclh follews # (e

wm feb e (A 1Y . Further 4y -, A1 ds the reverse lexico-
eraphically lagest partition realizing £'(e--1) since from o larger one, sy

AN /S /,,f, 2 |)=lill{l()!l of @ rger than Zy, -, Z,, -0, Zm i.":
/ A Consequently r2 e~

obtained; numely, 75 - -
and we have lf{z) ----- FUES

The recirsion (10) with the nssociated function { defined tn £9) s the
basis or o method of computation of F described in Seetion 4, Clertain
vefinements of this method become important when F has 1o be computed
for nrange of x buwge wlative (o the sizes of 4y, - -+, L. Inthe remainder of
this section we wish (o provide a hasis for the relinements as woll as prove

some theorems nteresting i themselves,

No asswmplion hos been made so far about the purticular ordering
chosen for the lengths £, Ly, -, L. For the remainder of this seetion we
will assuime wparticular ordering dependant upon the relative value densi-
ges ope= L7, d=1, - e of the dengths, We will asswme that the
lengihs {, &, -+ -, L. have been so ordered (hat

= Epunt (1)

Tl additional length £, 051 wilth 1. .= 0 i necded again only at the end
ol this section.

Before proving two (corems it is nocessary {o Introduce some noelation,
For any »and 5, 1Z2rSsSm, P will denote the knapsack function de-
fined from the lengths £, Ly, -, Lowilh the values TE, 1Ty, ooy H

Sinee the sequence (11) of clmm ties iy inerensing then one would expect

i For those readers familiny with the knapsaek algorithn deseribed in reference
4, note that the ordering we assume here is just the veverse of {he ordering assumed
there, For equally dense lengihs vo specinl order Is implied in {11} nor necessary
for any of the resulis derived in this paper.  However practical benefits can resuly
from ordering Lhe lengihs of equal density in decreasing lengih,
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thad the fengths of higher density would have a belter chance of being
cmployed sinee for @ given tengih ¢ they ean potentially conlributie more to
the lolal value #{z). These expectations au be made precise in the fotlow-
ing theorem:

Prmokia 5. For ey v there exists Jor cacl v, L SrSin, an Fy such thal

flas

’vr_l o (.Jf:!t) |- l"’l(,- R f‘.{'l} . { i]]

AT T AN EN -

o soie &

By (1) poSpe for all s s Consequenily o replacement ol any
combinntion of tengths &, -, Lol otal longth o by suine mmultiple of
fy0 of the same total lengih A will nol deergase the value obtained for &
The proof of the theorem reguives only o preelse use ol (his deviee.

vor oneli 7, 158, lot a, nnd by be integers such that o {=b; Lpry, and
lot wp=say b4 -o-bas b We wish 1o show ihat this fnfter g s sutinbie
for the theorem. Let o and e be saeh that ppeboa sy aned suel that (12)

i satisfied,  For the given @ let 2w be ehosen as stnadl us possible so thad if
I lee) = Zy T o2 then e Zp e w4, IE weSae then
the theorem has been established for the given oo Assne therelore
i e, Then for somwe ) ZiEan sy fe o Boenuse @ b e o
and beenuse prSpe 1t Jollows Chet e 150 T But then iy ==

ey Ly one has Bl f"{f.a‘-_z"}~%--lf’(.a.‘;) and (12Y

lor s conliny (o an assinplon nuvele enrlier. Gonses

!
""" w4 and oy

saiisfiod Tor o st

8
i
l

quiently we S an the theeram i= extablished.

The method of ealeulation of w deseribod in ihe proof is chunsy. In
practice @y e be computed white 2 0s being computed by Algorithi 1.3
dosceribotl in Seetion 4. Results of caleulitions mdienie that for any ¥,
o is el smadler than the value for it computed in the proof, See, Tor
exanple, the table in Seetion where results of eadeudintions on o series of
khapsiek problems are elyven.

OF speeial interest is the ease whoen #=aee- 1o Then the theoren asserts
> g, there is

that thore exists an e with the following property: for auy &, 8
AL, e e, for which Oy = P ey () A ) T Clonsequently
W(y = L) R L, for w2 2 Then if we define

E3E N ARDES Lo il SE)
we have thal floy=F{e—{L01 1, I P Db At = =)
L = L) T P T I S T L0 We o have  proven

dherefore the following interesting theorei:
Frrowea G Theve exisls an o such Hial for ol &, &2 X, Tl ==,
that s [{e) 03 perind o af period LT

Ml

# P his thesrem has sinee heen exiendod i relevence 7 Lo the sase when F s
delined with o discount factor oo {1 ihis case a facior o7 multiplies Fle—1:) i
(103,
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The furetion j s defined Tor all ¢ but s most interesting e us i the
range i which il ks periodie,  Thai s we are really inderested in the fune-
tion defined for all £, 0L <L, a5 follows:

[et N be an mteger such that N, 2w then:

e (D fIN A1 (10

@ enn ol course be compuied by {ist computing Fle) and e 40 Tor all
, DZr S (N1, that = by compuiing 0 diveetly Dom {08 T iz
interesting {o nofe, however, that ¢ can be computed independently of F,
momuch the same way as F s compuied from the equations (9) and (10

Fo prepare for the deseriplion of the procedure given o the next seetion we
wil subsiitute for £ in (10T by means of (137, After trausposing [o /0L,

£

cquation (105 hecomes:

Pt e masd O, Jla—{ bt = e L= 1) /0D

The terin 0 many be ased nstowd of e ] sinee when QSe <,
Lo ]=0 while \“\lun g, the second term it the nuxhmizadion is nononega-
tive.  Leiting U =01,
by goand detiing £ =00 the equaiion ean be weition:

NI, levting p{e gy ) be the venuinder upon dividing

Jla) =max : O, ey G0 4,04 t’-;’)_,/'/,\,,'lll.,,;_:
ezl fla—1) } )
For @ sulficiently large flod=ol(e/0)) and f(a) 20 5o the caqredion can
be  wriften
wliCr 1)) = e GG — 13, L)+ 1
_1(-;-(<1.=:-—f,-), )AL L

(15)

This equuilon will be used as the basis Tor Algovithm 1.0 described in
the fourth scetion,

A slightly diff (1(‘1!{ development along the lines of (13)--(15) 15 also
possible. Tostead of 7)) we define J(e) by

(e \ ot

Fley=Fx)~ (a1, {13)
Jiey s periodie, just as /) s and we ean intvoduce (0 =J(NL-+. To
oblnin {he recursion for @ we substitate i {107 a8 before oblaining

Lo Jorlo+0s izlle—t, vzl (4)

|\/

Sy =maxd — {0 1)

where 1 =14~ (70, Noie that beeause of the assumed ordering
(11, 1720 for all 7 nuw,lllu.\}f'ss for sulficiently large & the second torim In
the maximization dominates the fivst so hat we ean obtain as before

i

alr(n/l =maxte(ra— 1), -1 izlle 10, xs
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L2ach of the specialized knapsaek funetions ean be defined by {73 with
an additional restricting condition plced on the variables Zy, -, »
in the mandmization.  The first specialization avises beense of the culling-
knifo limit, which was diseussed inoveference 1o 1 arises when only a
limited nwber £ of pieces may be cul from any giveo stoek plece,  The
additional resiriction 1o be placed on the vaviables is thevefore:

SUVZLER. (16}

The cufting-knife Hmitation (1G) places v bound on ihe sum ol the
cariables 7. Auother limitaton that can ocewr independently of {1
and also simaltaneousty with (16) i an individuad bowd b one ach yard-

able 7

Zish (i==1, -, m) (17}
This, for ex mlpi(' omni~. one 1o define the .'pv('i:ﬁimwl knapmack funciion
. 4 B
(h\(n\sul CDaxrzie™ by taking Besd, (e E e
.
Phe last spmn!l/m(m wo will diseuss )I ST i)mmd on the number
of variabies 7 that may be nonzere. 1N s that bound then this lasl

limitation ean be expressed:
SoHZIEN, U8)

whore (7 i Z>0 and =0 otherwise,

Whoenever ihe restrietions {HJ} fo (187 are inserted as additional ve-
civietions on the vaviables Zy, -« -, 7. in the equation (7, cither alone or
i any combinaiion, the resuliing function 1o longer m‘uhl es 12, For
exanple Tet GUA, o) be the vadue of the funetion defined by (7 when
(16) s added as worestriciion Tor w given Ko G{R, ag o and GUR, )
are attained by uwsing Ky and Ky pieees respeciively with KN Ka> K,
then obwviously it is possible for GUR, by <R, o) GUR, oo Auy

one of the other restrictions eperates similacly. ])lll i 1s possible 1o write
a Tunctionad equation for € nevertheless:

Ji‘ s L)f:(] i()l allf

GOR A, o) = max{GOR, o), GIR -1

wheve {is defined

A (20)

K, ) =maxil, i (UK, r) =

Consider now (he speciatized knapsack functon defined when condition
17} s inserted into (7). het it be Gy, - B, @) which ean be defined:
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G0, -, 0, ) =0, Tor all &,
Glby, - b, O, -, 0,00
st Gy o, b O, e, 0 wende ) Hnili;
vzl biaZzuz 0},

Consider lustly the w'p('('iz! ized knupsack funetion delined when cou-
dition (18) 15 inserted into (16). I GUA, ©) is the funetion so defived then
it satisfies

(), £) =0
GIN-FL ) e maxt OGN, o—ad - ully

For both the functions do[ilwd i (200 and (22) a funetion £ enn be de-
fined like the one defined in (200, Eouations conparable to (19) can be
derived but this will not be (lun(' hieve.

In some applications two or even all three of the conditions (16} to
(18) musl upply smubtanecously.  For example in the corrugated-box
cutling-stock problem diseussed in reference 5 all three conditions gen-
crally apply: ¥ is usually 2 but for a few special corrugators wheve it is |
or 3, A s gencrally 5 or G and the bounds b aee veeded to deal with speeiad
situations. Lot now Gy (K f\=" e} be fhe knapsack I'un('ii()n defined by
(7) with the vestrictions (16} 1o (18 wdded amd with Z:==0 for v =4 This
furction then satisfies:

Gaml, N, 2y =0 Torall K, N,and .,

vt Gy O, N =07 w1, ) dnibg; o (23)

G (K, N

L
ezl K, brazaz0],
where  n5 =11 12> 0 and =0 othenvise,

1. COMPUTPATION OF 'PHE KNAPSACK FUNCTIONS OF SECTION 2

To avvrrciares Lhe significanee of Theoreny b for the eonstruction of an
algorithm to compute F it s worthwhile 1o deseribe an algovithim fo com-
pule # buased on (8) alone,  Phe coneepts we develop in this diseussion will
then prove to be important in discussing algorithis for both one and two
dimensional knapsack funetions.

A pdgovithim brsed on (8) (o compute #() for a mnge o3 L, will
require two memory grids 27000 and Pl When the computation is
completed FEO Wil e Fley and FO0Y will be used fo determing how
Fla) can be achieved for any given o
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AMgorithm 1.4 (Busic Step-off)
[ Faitiabize 87500 = F,00) and Fioyerfor0seslh, Lot foE
I I YT
20 by £ 1 then lot Ve 500 - B
Wise go (0 ii.-‘i.
BT T S A ; @), then ot £7%¢ ?‘1 gy = 1) et Uy ay) = d, and
g6 Lo fLd tfie rwise go to [1 -
A0 10y <oy lh(*n let =1 and go o FL20 Otherwise go to 111
L TE 2y <L then et wys=au-H L and go 1o 1110 Otherwise stop.

The algorithm is extremely simple,  In the main parl of the slgorithm
two Tundamental operations {ake place. st a step-off? point y is cither
given initially i Foor is determived Tater in 111 The determination in
Mgorithm LA is of e ulmost simplicity, AU the momoent oy s wsed as o
step-off [)Uml one hus abrendy ealeulated #(e) Tor 02 e 5w, Secondly one
Ssteps-oftt from zy with o number of !unglhn @y deternined i this ease also
with the wimoest simplicity in T10and 114, At a step- oi'l' From s with o
fengih 2 one determnines whether the existing \‘1[1{(\ o '1" n) of the
fength wrtay is exceeded by the achievable \ultw o (n Y- ( in which
case FF b)) is veplaced by P4 ) and (e Fas) =y, the
w‘l( p-off lcnotE For any given =, (2} is (o be used (o rivlummo how

) is 1o be achioved as follows: the partition of 2 achicving F™(x) i
given i Yy e, ey witl gy e for 50, Natorally one
cotbd equally well have () record the step-off points by initializing it to be
|<[(\|1l|(liil\'{ i I and then, when updating has to be done in 113, sefting
o o Foroagain the partition achieving F¥(e) is wiven by
2y e with 2y =000 for jE 0

The first obvious change to be made in Algovidi LA is {o Hwit o
to being voly one of the lengths £y f, -+, L, This simple ehanee alone
results b oan algorithin that s an hnprovement upos the sigorithm de-
sevtbed inrefevence 1 for solving the knapsack probleme-—ealied there the
lond-problem.  But additional Hmitations on both 2, and xe will be intro-
duced with exch change justified by Theorem 4 and (ot her resuiting

L) oand go o to 1130 Other-

CEONONIICS,

This wpproach generalizes to the methods of vefevence 6. While (15)7
Hore li'-m\‘p‘n'oni than (T8, (13) has computadional advantiages,  Tn b()l.l
(E3) and (15Y alb velevence o variables other than remainders can boe
dropped, so that the following simple velation holds from (15)

S0 = w0, @G0+ 1) {15)

"

B ONELDIMEASION AL KNAPSACK FUNUTIONS THAT BO NOT SATISEY
THE DIVIDE-INCPWO INEQUALITY

Ix s =echion we will provide funetionad 'qu-iii(am for three specialized
onc-dimensionat knapsaek funetions that do nof satislv the basie divide-in-
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two mequadily (23 and eannot, lh('rvfm'v be computed by any of the equa-
tions developed n Seetion 2, fdueh of the \|)v<'1 tizations s studied be-
eatse 1 has avisen i}l significant applications of the cutting stock methods
of references 3 and L However we will no longer }u‘aiif'y the equations of
this section in the manner in which we ilhll[l(‘(l {(16) Deeause such justifi-

ation would be very similar to the proof of Hw()u\m 1.

Iy (10} the step-off p()inlh ave the poings 2 —/; while the fengths £ are
the step-off lengths,  Not all the l(“w‘lhw' {; need be used as step-off Tengths
from o slep-off point &y b\ onty those lengths & for which +200e).  In
particular, therefove, i () =m-+1, one need only step-off Prom s with
the “waste length’ [, =1 lor which 1l a=0. Buf stepping-off with such
alength mervely cusures (hat F7(x) remains monotlone increasing; Lo, one
vould have J7 (e 1) > 0 \‘.l-?__) without the pessibility of & waste leogth.
(e s juwii!'vd hu(t'()w in skipping over the point we41 in T112 as a

step-ofl point if F7 (a0 Tl by setting £ e ) = ) This

woexacily \\}I‘ll ‘\.lgz,(mi-i umn l% h(? ow does i TH12.  Note that now instead of
() recordig the step-off length it records instead the fndex of the step-olf
length used in veaching 2. Also that Folx) is compuied in the wmain part
of the algorithm rather than being assumed available Tor initinlization as
i Algoriihun LA The change in 113 from > in Algorichm LA to = in
Afgorithin L1 is neeessacy i ovder that after computation {7 s { as defined
in (97,

Reeadl thad #7%(2) aud o) refer merely 1o two reemory grids employoed
by the algoritin.

Algorithm 1.3 (Ordered Step-off)

I Hoeovder the lengths s Chat IL/G=E1 s 20,00, Tnitialize
F*() =0, for 0oL, U7(0) = 1 and a,=0.

FLOL Lot j==0"(w).
2, 0f .‘1‘;;--]-~£;§]) then et V= ") and go Lo 11,3, Otherwise
go to 114
300 V2T then et ]""::(/."g".{'g‘) w1 lob 0 =, and go

to TL4, Otherwise go 1o 1[4
Ao M <o ther et ==+ 1 and go to 112, Otherwise go 1o 111.1.
|1 O O N RFLRC g R T 2 +1 and go to i”H.B. Otherwise stop.
*(z }/["'" ) g0 {0 il l Otherwise et F¥ ) =P (a—1),

We \\Ih]l Lo .shcm iht ]f ‘m(f l:i: as a(.ll(-uial!(‘d by the algorichm ave #
and {as defined by (93 and (103, By Theorem 4 30 is suflicient 1o show
hat they satisfy

) e a1 4y P = B e ) AT {21)

ey smaxt0, F a1 iz T e —
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Forx=0 il is iumediate that 27 and & satisfy (20 and (23). Assum-
g this frue Tor v S we will prove it e for a1 Reeall, however,
Lhat the formalas (9 and (103, and {herefore, (243 and (23, allowed for
anextra lengti G,y 1 Tor which 1,y = 0.

Only i the steps [L3 and TIL2 can e 1) have been given any
vabue,  Neeessarlly it has been given a value since eYery poit @y is eon-
‘-&id{‘l(’(i i the test of TIL2. I it has been given a value | by Eii‘.!, then
P g4 1) = [, while if it hm\ heen given o value } oy 113, vy  SECr)
for some §, 15 ;émf., By the duction ussumption F(2) for <:tu is de-
finedd by {24). Consequently, all permissible vulues FH g =L 11
given in (25) for {a-H10 have been (ried as long as =, and for the
euse 7w -4, step 1812 s (qmmi( wt. Steps 103 and 1 7, lh(mforv,
cirry out the maximization of {23), aml 25) must define F¥(x) for »=
o1 And so must (24) define (&) for z=2,-+1

We have, therefore, that F7(e)=F(a) and Fle) =) for all
Oz S L, after the complelion of the algorithm.  We ean, therefore, revert
to fand # again, without the acdded asterisks,

Farlier fn this section, we sy how 1 was used to delermine how the
V:llu{\ F(e) was achioved for any given x. With vespect to the Adgorithm

LB, L ean play another vole. It abso provides o divecl measure of the
amount of computation completed by the algorithm, since, for each s top-
oft point 2y one steps-off with the Jengths ¢, g lla), )41, -0 i,
A1 I one counts the computation involved in 1112 tike step-ofl with
tee length L, o, then the totad number of step-offs s

Do 2 I, (26)

Al worst, Ha)=1 for all 2, 0Z2< L1 so that an shsolute upper bound
on the number of step-offs s Lalm-+1), However, that bound is never
zlli;linod when > 1 sinee Tor any point w=nl, where > 1, {{x)>1 bhe-
cause prZpr Todeed by Theoven: 5, for any » there exists an wy such hat
>y then () z o410 Consequently, for 1 sufliciently large the nue-
ber of siep-ofls can be very much less (han Lalm--1). Aciaadly, if 1 s
sufliciently targe, we know by Theorem 3 that for some ag, Y= for
all v,y <w £ L0 Vor such z, () need not be corputed by the algorithm
sinee Moy Fle-nl,) —I-—'nII,,, where s={(x—x:)/1,.]+ 1.

since Lis computed al the same time as ¥ by the algovichm 1133, an
van be (()mpumd hump !hv ealeulation and the caleulstion terminated
when r==2, in _['.['l'.'i. We will deseribe the changes needed in Algorithim

smia lh al Fleyzom for every z for which ¥ <a =
M. Then 2F4x would be o switable ay
Hc- nm(.ilffmilunn noee (\s:a::n'_\f i Algovithm 1B (o compute 2™ ave simple.
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Initially in T, 2™ is set to 0. Then F is replaced by
[T 1 1 < a™n and @y < L) o we=y-+1 and go to IIT".2. Otherwise
%iop
CIE )y < Lot 2 :z, ol A= maxily,
Otherwise go o 11173,
BRI 1"'*:(:1:::}>1'"*(:¢‘;g~~ 1 go o IL1 Otherwise Jer F¥{a)=
P (e 1 3, et ey =41 and go to 1111
We could thon call the changed algorithw 113, the termimating step-olf
adgorithin,

We now turn 1o the problem of computing e divectly using the equation
(15) vather than via the idlirect method of computing # first and using
{03 anc {E4). The algorithm requires two memory grids, one for @ of
length £, and one for I of length that will be determined during the caleu-
fation; the length however will not exceed &y as it s computed by the
modification to Algorithm LB, The major d'['l'(‘wn((m 1)(‘[\\(‘{’1i LB and
1.C s that in 1.0 2 will be taken nu)dnio fo for e, lhdl 15 ¢ (1 witl be
recorded at the point #(x/0, ) on the grid ¢ although I ) will be 1()(:()1‘(1()(1
at the pointx on the grid %, Further, the term (e —10 /0087 7001,
in (l) will require thal 11, be subfracted from 11 in those ¢ ARCS when
(et /04 =, Reendl gt = (470 and thal 11 =11, —
ff / ] 1I,..

[

st and go Lo 11173,

Algorithun 1.0 {Periodic Step-off)

. Reorder ihe lengths so that
e 2y =0, for 0Zw=<l,, F0)=1
max( ],

Il 1. fdt.t_)-‘v~l:5:(‘z'g).

95 e/l 1 <, then l(’ !":-Hf b ey 1,0 wad go to 113,

Otherwise lot Ve 11— 11, e For(aa /)y and go Lo E105

I V%go:;tgr(‘(i‘y{'—;zrg);1',,,)} l-ia(.u et @A) /L =V, let

FlFa =7 and go to T4 Otherwise go to L4
o T <an then let j=j-1 and go to 112, Otherwise go to LT

LEE 1 IE weca™ b, lot =21 and go to IIL2, Otherwise stop.

20 If l*(_:zzg} <mp let X s ot A=maxil; (20 (e and go o 1113,
Otherwizse 53;0 to T3,
B RSO ) lot 3 e=g i G- l‘)_/’!,,,)} awidd go to LA Othoer-
wise let Ve o (g — 1 /0,00 — 11, and go to 1114
4. 1t (,o*(l(l'-:ff,,,)) ¥ oo o ll.I_. Otherwise ot o (r{aa/l.) =V,
Jot s =m--1, and go to 1111,
[t iz worth remarking that the technigque employed Lo compute ¢ by
computations module [, enn also be cmploved (o compute Fowith less
memory than eithoer \ln(mlhm LA or LB one needs to kuow 07 Tor only

CZH LA Initialize
=) e A==

I, Llil(l (), Let @

T
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wosadl range of wo For now let A=rax{/; LEiZm). Then one cun
always gel by with at most X memory loeations for the 7 grick if one needs
Lo know x for at most some mnge @<e <ed-h. One simply treals x
modulo X when vecording #7(2). towever, one does still need a full range
of the grid £

The Algorithie 1O records the vidues of 7 on g grid #7702 of longth
lay while il can requive for § a grid of groater fength.  In relevencee § an
algorithim is deseribed that requives only a grid of length £, i hoth cases,

o give =ome indieation of the efficiency of Adgorithms LB and 1.C.
we append in Table T results of @ series of computations of konapsack fune-
tons, The functions were obtained ss follows, A eubting-stock problem
wis solved asa linear programming problen. AL each pivot step the
knapsnek function fo be computed w as computed by Algorithmn 1.13 andi w0
mlm.\s of the functions £ and £ printed out-—The cuttingstock probiem
chiosen was ALD of the test probloms of reforence 4. In thal PRper wo
deseribed Gwo devices used for speeding up the ealewlation of knapsack
funetions:  first whal we called the median method sud second the FOCOEN -
tion of identical prices. Both of these devices result in the selection af a
subsct of all the possible lengths 4, -+ £, for the ealeulation of 7. The
effect of these devices is indieated in the c()hmm “no. of lengths” in Table
Iy instead of (his number always heing 20, 9t fluetuates from pass (o pass,
tlenee the knapsack functions of the test series are all defined by a subsct
of 20 lengths virying in size om 182 {o 519, and by prices determined
from o linear progromming solulion 1o o vutiing slock peeblen. The
method of selection of Jengths !10\\"(-\*(‘1' abways inchided one or more of the
fonger lengths; the mininon of the longest le igths selected was 470 and
that minimum was realized only on pass 2, while from puss 9 on the mini-
i was 5420 The length £ over which the eadenlation was ensvied out
was 1777, thus not very large relutive (o (he maximun of (e lengths usedl
to define the knapsack functions

In the colummn “no. of trae step-olis” is listed

Nyms Lo 000 b2 ),

that is the total number of step-offs with lengths other than 4,5, To
()!)_mn the su (26 from this colwmn i s nee cessary therefove (o add 1777,
A mensure of the efficieney of Algoritho 1B, for o given knapsack function
eun be obtained by ealeulating ./-',' ------ (N4 1) /Ny where Ny Lalin41), the

number of sic -an! s that would Imw to be made were no step-ofl points

and no step-off lengths skipped over. A small # indicates an ofiicion
adculation. For the resulis of Table T s never less than 0.065 and
never more than 0049, For the later passes, say from pass namber 40 on
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TABILE §

U Ne.oof | Covfirmed o Nooof L Confirmed
N No. of ' ‘ L e No. of A L
Pass no. leneths tluch_ | ay it RETS m)ﬁ leneri hs Llllﬁw ; ay il
Bty step offs | known Eaa step olf's kaown
! O 5y : IR 32 ;
2 5 P2 rz80 47 20 R R %)
3 8 81 1010 a8 20
4 3 74 : ET I 10
3 ¥ 1:1 1577 : o 0 ;
G & 81 1328 51 0 ; 410
7 o] 130 3% & : 735
b 8 oh 1551 5] | 20 : 742
[ 1t L2 5 to : a3
o ¢] 147 20 1207
L1 1 233 ; 560 10
L 9 [ : 37004 30 [EREL
£3 b 8¢ L roph 55 13 1412
tg 3] -1 B : K io
5 i3 ; 338 6o 20
16 8 ) G 10
1 £y Oz el
18 10 et by 1y 12714
iy gV} [SES 10 ]
20 1o 1504 hy 20
‘ ‘
2 8 1200 [IC 20 1349
22 14} Oy 10 040
a3 1) i 300 st 20 1403
24 o (¢ Els] 1487
13 20 1) 1o 0.2
20 10 i 71 : 20 ; T4
20 72 . o 379 gob
10 73 4 ro : 7560
20 19 4 1 17y
30 I3} 75 L0 {20
31 iy 170, VI e 1304
32 1) YV 20 1510
33 20 M e =
34 0 P 20 1400
33 24} Soo 1 : P73
40 ro st 1o : 8q0 !
a7 1o §2 20 bo1838
ERT 1o 43 10 So1
300 10 h¥) 20 i 1032
10 1) 85 o Qoy
11 10 g B0 70 1957
20 Lpr2 ¥ [§s} Q72
10 1039 h5] 20 1543
20 907
20 arh
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{215 close to 008 whon the namber of fengths is 19 or 20 and close Lo 0,14
when the number of lengths is 10

The last colwnn “confirmed @ if known,” gives the value of @y ealeu-
fated by the modified Algorithm 1B when thae value can be confirmed by
cadeulating £(x) Tor @ not greater thau L= 1777, Despite 1the fact that L
s only about three times the Luvgest length, e coudd he caleuluted
numi)(,i ol instanves, The numher was roduced during the later pusses
when the variation i the densities (11, /"'f-') i hkoly fo be less. However
the table does confirm the importanee of ‘Theovem 5 Tov a elass ol prictical
knapsack funetions,

5. COMPUTATION OF THE KNAPSACK FUNCTIONS OF SECTION 3

Arrar o very thorough diseussion of Seetion 4 we ean be very bricl
about the computation of the functions of Seetion 3 by algovichims like
those of Section <. Basically the improvements of these algorithms ean
still be applied, but now instend of having a single memory grid for F¥
two or more must be defined. By way of illusiedion we will deseribe an
adgorithn: for computing GUA, 23 delined in (L) and (205, We nssumie in
thig ense that & is to be ¢ ompuied for K =feand0Ze =L Woe will asume
200410 differens memory grids 5K, 2) and ¢ (K, @), K=0, L
ali Emugh e practice this ean be reduced 1o 4 since ondy (K1, 4) and
HK =1, @) need be known to compute GOK, ) and IR, )

Algorivhim 1.3 (Cuiting Knife Step-off)

Lo Reorder the lengths so that wy/h Sy L=
(}‘*(I\f, =0 for 0203 und 1SR SR, Lot
and ry=0,

i1, LNJ""! (K, am).
200 e RS Lo then ot V=g (UK, 20 and go to 113, Otherwise
go Lo {4
3. 1' l"'>('.:(K'—E--!,z’yiv;at;;) then let GH(K 41, Lfa) = 17, let (K 41,
et jand go to 114 Otherwise go to 1.4,
4. Ei J<n then et f=7+1 and go to 112, Othorwise go o 11,
A D U § 41 L B )/(; 1\ 3) 20 10 Ii‘ Otherwise let GUR-H1, @) =
R o) and et D41, 2y) = O, ) and go to 112

2. II t»<[,, let e Ly F l and go (o lll Otherwise go to [T11.1.
AN )>( (1'\ wa— 1) 2o o H.l. Othorwise ot UK, ) ==

(‘; (‘l\, we— 1) et 0K ay) =ik 1 il go (o [T
4, WK <K, l(l 1’\ =K E lot ay=0 and go to [1.1.  Otherwise siop.
In reference 4 we tl(H(ll})(‘(l an Alo(mthm for computing F{L) alone
rather than ), 0Za g, The algorithm has the advantage that it re-
(uires very httle wemory, [t further has the advand age that it ean be
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readily modified to enleuliie any of the Turetions of Section 3 as was show
i reference - for the eutting knife Hmitation. It has the disadvantage,
however, of somelimes requiring long enleulaiions,  Neversheless, 16 has
proved practieal for the culting knife mitation,

A BIMPLE ALGCORUTHM FOR COMPUTING TWO-IMMENSIONAL
KNAPSACK FUNCTHONS

Trer ancorren LA (lvs‘('ribod b Bection -k, was based stiaply upon (8),
the one-cimensional forny of (5). We then showed how Theoren 4 coudd
be applied to modify the algorithm o the computationally more efficient
Algorithm LB We now want o discuss two-dimensional computations
based on (5), alone.  But belore doing =0 we would like o derive two
simple consequences of that cquation in order fo indieate how the two-
dimensional compuiations are reduced 1o a series of one-dimensional step-
off computations,

Cousider the bwe auxiliney functions £y and Py defined as follows:

Fula, 0) =0,
Pyl Y =maxi e, g— 00, Flag -+, 4); -

aZatay, Oy S,

Fa0, ) =0,

Falory ygd e mas} 6 o4, nd, Fle, g d-H0 Gy ) (28)

Y gl 0 gl

Lt Tollows immedintely Trom {535 that £7 also <adisdies

Fz, gy =maxtFole, i), 10, g, Falie, )i {297

In Section b we mwroduced the concepls of step-oll point and step-off
lengih,  "These eoncepts can now be simply generalized (o two-dimensions,
In (27) any point (e, y) B on step-off point and any 2, 0 <oy S e, a step-

o length,  Similarly in (28) any poind {2, y2) s wsiep-off point and any
g, O <=, aosteps UIE E(\Iagth.

Iy arder to make these ideas completely preeise, we will now deseribe
an wleorithmn for the calewdation of #{e, ), 0L, 02y, Like
Algorithim 1A i will be of utmost simplicity and will be later modified
mio a computationally more efficient algorithm. The algorithm will re-
quire three memory tmd s y) Y, and @ (e, ) although

fro-

quently in prac lice (e, gy and 0™ (e, g enn be o );n('(l ilo one. The
' {

)=

aridls I (r, Gy andw (o) gy ave wsed, ke 500 for £750), 1o record how the
vadue #7707 isachioved. When the computadion xs(()mpi tod #7504
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¥, gy while the racmory grids £ and w™ will have comptited fwo fuuctions
£and w which we now wish {o define,

The function {{x) defined in (9) is divectly dependent upon the par-
el order chosen for the lengths 4, 4y, -+, 4, the possible step-ofl
lengths in the one-dimensionad case.  In the two-dimensionsl ease the set
of possible step-off lengths s s funetion of the step-off point and the diree-
tion i which the slep-off is Lo tuke place, that s whether the stop-off 18 1o

take place along a line of constant y or constant x. Nevertheless, different
orderings of the step-off lengths ean be considercd; for example, n de-
creasing size or i inereasing price density; that is in inereasing sise of
Flay, g /ey Tor aostepoff Tength ar or of increasing size of Fla, )/ Tor o
step-off length g Fo simplify the presentation of the algorithe, we will
choose the order of decrensing size although it should be emphasized thal

other orders ean he considered.

L the vadue (e, y) Tor o point (), 1) has been achieved by stepping-off
with w length wy from w step-off poing (.z.g, g1, where <o g, oy =,
and FCe, yh= 0e,yg) 4 Fles,yd, we will ehoose Tor the value of 1 for (he
poinl (i, ) the smallest step-off length used in achieving Fle, ). Other-
wise it is e Formally, therefore, we define for @, g2 1,

f, o) = minfer, o 0y S, -
(307
i, (eny ) H 1 Loy 45
and shmilarly

wl, i) =minjgy, 7; O Sy -y,

A . ) . {413}
]"{\;g,‘} !j) s (\.!3) .ifl,) _{_[«'(;(-’ i f/i)}. N

L3 these Tupcetions that are computed as £ and »™ in (he Algoriting
2.4 to be introduced below,  We now twm (o a deseription of the algo-
rithm,

AL the moment y is used ns o step-olf point in the Algorithm 1A or
LB, F¥ ) =F(2), for 0 o, while for >, all that is known is thag
FEYZSF0), After 2y has been wsed as w stop-ofl point F7 (e[ e
Flag). The stualion in Algorithm 2.4 (ns well as 2.8) is o ittle more
complicatod.

Prior to {2y, 1y) being used as o step-off point the situation is us foliows:
Eey )=, g for all @ oand g, Ozege and 02 Sy, as well as <
e loand O0Sy<ge—1. Furthor (e, g1y =F Yok 1) for all
OSw<uy where #y s (.l('hm'r i {28). The value F708, ) for :i‘;>,<.c§L
Bothe maximuny of (e ) and some incompletely computed value
By, gd, as Fyds defined in €275, This situstion s idlusteated in [ig. 3.
During the step-offs from ey, ) long g, #7(epd
F o1, ) while during the step-offs along ws= T, gl 1Y heeonies

b, oge) becomes
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Faolisy et 1). Along the line y=y., one steps-ofl with all lengths @, 0<

ayZas and along the live @ =2y with all lengths vy, 0 <y <o
[n the Algorthm LA, a1 s the bl(, -off poing from which step-offs
are made alter xe has hoeu used.  In the Algorithm 2 A, (w1, we) fol-

lows (2o, g} as n ostep-ofl point whoen s H =L, nihmmw (1, ¥ Jrl) fol-
lows (g, 12).

We now will give n deseription of the Algorithm 2.A.  The algorithm

¥
A
w= XZ w= L
y=W
.(K’ P 4 (at least
[
yey il v AF B o)
( \L\- . £
¥EY
/ S s ys 2
/ //// /‘/ // e /// // Yy?wl
~ A o e /,/ e - P 2
/// e /'/, e /’/ ot e
// , /.// ¥ (3{1 Y) - /," e e
P S r .
e - e e e
- // ) // yd . /
3 7 -~ e rd
~ / - - -~ S N
7

Figure 3

has fowr major parts. In part [ initialization takes place.  In parts 11
and LT it is assumed that a step-off point Geg,ya) has been defined.  In part
11 \‘EL]) -ofts from (s, y2) Lake place along the line =y, while in part 111
step-ofts (ake place along the line p=u,, the former step-offs are taken frst.
Finally in )‘n{ [V o new step-off poing is determined in the order discussed
above,  Reeall that £y is defined in (6).

.«'ﬂgfm'iiinn, 2.4 (Busie Two-dimensional Step-off)

[obLet 5, )= oy, g tor 05237, snd 02y IV Lot /’k(!- w,) ={;
aned w” (L, wd =, fov ¢ b, -+, m, ot 0, 0) =w™(0, 0) =0
Fet = o= | and go o [[.i
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[E. I, Lot oag==1.
20 apban S L then let Ve
Otherwise go Lo [E1].

S IE VS E (b aw, ya) then let K7 Corba, ga) =1, let Flay s, o) =
a, nud let w (2, ye) =y vnd go o 114 I V= 15 (g, )

ikt

(g, y) 5 (o, gy and go Lo L3

then let ©F (b, z,' D= and go to L4, Otherwise go to 114
4. IF 2 <o then let op==a-F1 and go to l[..n“ Otherwise go to 1111

o Let gL
2. 1F ke =3V then 1(" Vo 0¥, )b 17 (e ) and go o THLS,
(O therw: S0g0 10 V.
', 1) ) lhvu F oy g == V) dot ™ G, gnbya) = g,

{2, v)

Figuve 4

, and go (o BB IV Y e, e then
cand go (o LILE ()Iii(‘t\\lh(‘ go Lo 1114

1w go to 1L Gtherwise go Lo TTL2
a1 oanel wa=1 and go to TL1 Otherwise

EE[H;, 1};] j)
bt e’ (g -
v, 1o i u<l h('u I(-i X
2 P <107 then fet g
stop.

When llw computation is comploted, F oand w'oean be wsed to deter-
mine how £, i) is achivved for any 2 and g The ‘haekirneking’ in this
case is o Hiftle move complicated than in the one-tlimensional case as de-
ceribeed i Section 2. [u the one-dimensionad ease, one must only defer-
mine o partition of @ line segment from 0 to e In the two-dimensional
ease one is deternining @ speeial ee structuee as illustrated in g, 4, n
which eneli of the nodes is tabeled with the dimensions of o rectangle.

el node of the tree has either no other nodes below it in the tree (a
dangling” node) or has exactly two nodes immedi: wely belew i, A noede
labelod (e, g d with nodes below it labeled Gy, g and G, i oreaus that the
rectingle (o, g) should be divided o two nu.mgl('h (i, oy aud (2, g)
50 that neeessavily o= abon Slndlarly (0o node beled (o, g0 has nodes
labelod Lo, g and (e, ) umediniely below it then the veetnngle (@) )
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should be divided nto two rectangles (o) w) and G, ) so hal neces-
savily g e

For given Tunetions ¥ and w™ we will assoeinie with every poind (@, y),
a2, o undgque free structure realizing the value FRCe y) just as in the
onc-dimensional cuse {7 assoviated with every x o waigue partition realizing
the value /™). A node labeled (&, ) will h(\ a dangling node i and
only i F(x, gy = and 'w::*(i.t' E ll (e, ) <o then the nedes helow
the node labeled (e, #) ave labeled (e, U) gy and {e—e, ), 1) other-

wise Lhey arve lal n!ml (x, Yoy and Lo, e, ).
¥
A

7T T ST o

/ ;o i

///f/////////

< 7 ///

I R, B, | R, (R Ry, R R,

>

Figove 5

Beeause of the mamer in whieh & and w™ have been computed the
palterns of euts for arectangle (&, 7)) determined by them takes o cha-
aeteristic form that can be illustnted with one speeial eaze.  Consider
the pattern of cuts tlusirated o Fig. & where the cross-hatehad aren is
waste. The fivst reetangle £y in the paltern reading from loft to vight has
the smallest width (height) of any veetangle in the paltem, and among
rectangles of the same width it will have the kevgest lengih, The next two
rectangles By and [2; are the next smaliest n widih and are i order of
decreasing length, and so on throughout the patiem.  Similuly, i the cuts
were in the opposite divection, the patiern of euts would e as Hlusivmied
mn Ie, 6,

These kinds of putterns of culs will be repented thronghout an entire
patfern. For example, il vectangle £, in the pattern of Fig, 5 is cut, then
Honust be eut in the manner of the pattern of Fig. 6, while if a rectangle of
Uig. 6 is cut, then 10 is ent in the manner of the patters of Fig, 5.

Flad the :\igﬁonlhm 2.4 computed Nunctions L and w different from those
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SO

AN

Y

Iigure 6

defined in (30) and {31) then the pattern correspending to the iree strue-
ture rvenlizing Mz, yy would have exhibited different properties. For
example, i [z, »} took as its value the oy for which Fle, g)/0s was as
furge as possible, then, Tor example, the order of the veckungles By Wy, -,
£ in T, 3 would differ. They would be primarity ordeved by width but
those of the same width would thon be ordered differently. Az we re-
marked eaclior, there may be advaninges Lo consideving differently defined
Cunetions £ and .

Figure ¢
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To EMPROVEMENTS FOR THE ALGORPEHA 2.4,

Wi want now to introduce into Algorithm 2.4 some of the improvemerts
added to Algorithim 1B, These wore of two kinds. Iirgt, some of the
points & could be skipped over s step-off points. Here some of the points
(s, i12) may be skipped over as step-off points for lengths along the line
g=y and some of the points (i, ) (perhaps the sume ones) may be
skipped over as step-off points for fengths wlong the line v=2..  Sccond, it
was recognized that w had only to be one of the lengths g, Ly, -+, £, und
i addition, for a given w, had only to be a length {; for which 42 ().
lu the two-dimensional cuse, we will find that in steppiug-ofl from a siep-
ol point (s, 1) along the line =1y, only some of the lengths @, 0<uy Sy,
will have to be used and that further they will satisfy @S 0w, 1), where {
will be redefined below; similarly for stepping-off along the line a=m,.
The restrictions will be made fully precise and the funetions { and w will be
redelined below,

As a fivst step we would like to introduce a minor change into the
definitions of ¢ andw, In the one-dimensional case, o special ‘waste’
length L =1 with 11, =0 was introduced. 14 had the effect that when
Play=Fle—1), then [{e)=m+1 We would now like (o modify  the
delinitions of £ and w so as {0 nlroduce o comparable olfeci.  The modifi-
cations necessavy in definitions (30) and (313 wre simple. The new
definitions read:

LEFCe, gd=Fe—1, y) then Ha, gy =0, {32)

Otherwise, 10e, y) = minfuy, 00 <o So~u, wlay, yi>10,
Fly ) = Iy ) I (o=, )

o, y)=F (e, y) -1 (e, y—yot.

Definition (32) has the following consequences: (o, ) =0 if and only if
Fla, g)=FCe—1, ). Also, il w={(x, ) and 2>0 the wr=I{xy, )
and wlws, ) > 00 In particalar, if =i, yioand x>0 then P, y) >
Floy—1 )y and Flay ) > Fle, y—1). The elfoct of dofinition {32) wil
be to limit step-off lengths along a line of constant i to lengths oy for which
wr== gy, >0 Definition (333 has a simitar effect for step-off Tengths
along a lne of constant .

These definitions can now be combined with an couuition arising from
(5) o provide a new definition of # analogous 1o the definition in the one-
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dimensional cuse provided by {‘.3}) :l-ml 1 ') i”m' oyl
P, gy =maxd e, ), Fle—1, g3, ey ), (g
S S AE T TV N (4 18 yi) Iy wyl);
Oy =y, ) =le—xy, g, O<ile, 1),
Oy =wla, y) Swla, gy, 0 <wlon, )t
We can new prove:
Tisoreai 7. The bnopsack function is defined by rqcm[a'mz r"%l) Jor i, yzl,
where L and w are defined by (32) and (33) and f{c, 0} = 0, ) =0,

{31 certamdy defines {‘l, 1y sinee the choiee of \gllum i then staply
F1 0 Assume that it defines #{e, gy for all o and g, 05020 anl
DZyZ . Wewill prove that it defines #(reb L e} ulso. 41 Flagd-5, o)
s oone of Fulee 1, geh, K ) or Bleebl, go— 13, then clearly it s
defined by O3y it i not, liu:i: for some oy, <<y a1,
Flaogd 1, md = Fley vel "{'*/f'f ey By, ), or for som ey, O<Zin S e i,
a1 god o= oL g+ Fivo 1 o). Let the former bhe  the
ease. The srgument for ihe lail.' i analogous,  Since Fleob I, o) >
Flant1, s~ 1) theve naust be an e lor whicl also w{ie, go) >0, Amony
such vy choose the smallest. 'l‘l'mn necesaarily oy = (oo Ly, o) sinee i
H g b=, o)y == 0 then Plast-1, gad = F (e, o), while {(eo-1— 20, Yo <y
would um{mdm the mssttmption that e was the smadlest possible step-off
tength., Hence, FLrd1, ) b delined Ly (310 Oue can prove ananlo-
gousty thal F{a, -+ 1) s also defined by (310 Consequentily the theorem
has boeen proved,

The changes {0 be brought to Algorithm 2.A are now evident. st
apoint L, e mny be skipped as aostep-off point along the Tine 7= g
when Ly, 723 =0, wd alorg the Tine we=rs when w(r, g =0, SBeeond,
for & given step- Uﬂ' point (xs, o) only those z need be used as step-oft
lengths for which O<ry =00, o) andwley, g2 >0, anud only those 1 need
be used as step-off fengihs for which 0 <nSwla, gab and o, ) >0

Algorithm 2.5’3 (Ordered Two-dimensional Step-off)

I Ty gy Py y) for {)<.a:<f, zuul Oy, Lot vy=ya=1,
=1 on({ W™ Y = e wndd go o V3L
1.
SLoihen o 1o 1130 Otherwise go Lo IV AL
L =00 and iy —:ﬁ':(,r;,y-g) then et V= F(r, yo-b
F¥ e, i J anid go lo (1.1 ()Eh(w 1se eo to 115,
4. b then leb £7% Cegdea, i) =17, {\i!(.ﬁiuy; -----

ryoand w’ (b, i12)

- l.zg, y;y_) ==y and go o 115, _I! (M=
5 Dtherwize go to FLDO.

then let £y 1 Loy e )=y nnd goe o D
5. 0 = J ooy o) then lel st 1 oand wo 1o 120 Othenwise go

to 1V .4
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I Idt!i yie= 1.
2000 b 2V then go to HLL Otherwise go (o 1V 1L
4. _I £ Ceay ) > 0 and gy = w Ces, 1) then ot 1= FE ) A ey 1)
wind go to HHEA Otherwise 80 Lo [TE.5.
4o IF V> (e), gitae) then et B ey gt i) = 0 et w™ oy, gy-b i) =
g and I ey b )-— gy oand gooro THLAD Tf Ve 5% godg)

then lel w (a), by =g and go o LA Otherwise go to 1113,
S0 e <w” u» ya) then et ==y 0 and go to 11120 Otherwise -
go o IV.1.
VoL < ]u-n let =1 and go 1o IV Otherwise go (o 1V.2.

20 T gy <TIV ilien let =gt 1, ot =t and go o [V.3, Otherwise

stop.

3010 yg)}/[":k(e: Lgad go to 1L Otherwise tel By, ) =

/f"\":(z; - e )y det iy, lj;')rs 0 and go 1o TV
4. iil Ly ) > 1 — 1} eo{o L1 ()m(\\\h(- Tot F%0y, ia) =
7, g ), Aot w (e, g =0 and go 1o IV,

The algorithm requires memory ap: we for & ow® nncl Fm order o be
implemented. [Fit were the ease that (e, f/;w :L..iJ gr=0 for all x and y
then wemory 1‘()(;ui1'<'mmH cowdd be reduced by wssigning hoth 5 and o™
to the same signed (z2) memory spuee. As 7 and w have boen defined
however, it does not follow that {{e, yielr, y)=0; for exunple it might
be thal 0, w) = and w{l, w)y=w. However ¢ aud w could be re-
defined (o give for example | l‘i‘»\"lb‘vb the provity for nonzero value over w
and 50 (0 pennit a reduction of the memory requirements for the algorithm.

Lo STAGKD TWOSDITENSIONAL KNAPSACK FUNCOUIONS
T ieroveswexts brought (o Algorithm 2.3 wre adso velevant for the
compuintion of knapsack funetions defined by what we ealled in reference
5 staged eutting. I slaged cutting of o rectangle {4, 1), say 2stage
eitbing, the rectangle is fivst cul down its length inte sirips and then these
sEFIps are ('ui across their width info rectangles as illustrated in g, 7.
The value of aosmall rectangle (), g) cut in this way is F0e, ) as defined in
{6); that is lln vadte H: of the Lu;:('m value rectangle {_/,,-w,—} for whieh

'l"orm:i.ily LI](\ value F:(x, ) obtained Tov w vectangle (o, ¢} v bestage
cutting ety be defined for any L
Fola, yy=max{0, 15; LSe and e Sy,
lor vz 0,
Fopial, y)e=masi Fo.Ce, o), Fooaliy, ) /'*‘:,‘_:1{_'.1'., f‘,")‘
sz, U< Saed. (33)
Foryz i,
Fola, py=maxtFy (o, ), Fodo, g -+ Fal, ye)
Yyt O St
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To indicate how the improvements hrought to Algorithn 2.13 could also
he used in the computation of the Tunetions (e, 1) we could proceed as we
did i Seetion 7; that s we could first deline Tunctions &e, ¢} and G, )
then modily Lh(\ definitions {135, However, al (his point we will simply
outline the ¢ hanges to be made in Algorithm 2.8 In order for it to be used
{o calenlate Fela, y) for any &, k21

In Algorithm 2.A or 2.8, each point {#y, ya), [ =2 _,gL aul F sV,
is eonsidered once [or use as a slep-off poing, Tt may be used as a step-
off point for step-offs both along the line y= 4 and al()no the line a
but having ouce heon so used it will never be considered for use again.
When caleulating 7z, ) by means of 1 modified Algorithm 2.A or 2.13,
a poing (, ys) will be considered & times for use as o step-off’ point, but at
the rth time it s being considered it may be used as o step-ofi poing for
step-offs onty along the lme g==y when # Iz odd, and only along the line
=z when v is even.  No other modifications wre neeessary in the algort-

Ty

thm,
G, CONCLUSHONS
In s paper we first approached knapsack functions abstractly in ferms
of u charselerization and then went on to develop efficient methods of
computing these functions, The methods wre ol modified  dynamie
programming algorithms.  We have also studied briefly in Seetions 3 and
5 knapsack functions of & more general kind than those chavaeterized
Soction 1. These topies ean he extended Turther in that direction by
pursuing some of the subjects mentioned in reference 5. For example, a
study of stock with defects, or more generally position-dependant values for
rectangles within (e stock, would have fed to two-dimensionad functions
not satistying the basic divide-in-two inequality, A study ol whal we
alled in reference 5 a k-group staged cutting also leads to more genera
inapsack funetions,  Aueh work remains (o be done in those direetions
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