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Faces of an Integer Polyhedron®

In [5] a connection was given between the integer and non-
infeger solutions to the linear programing problem

magimize 2 == cx

1
W Ax = b, = 0.

In (1) x is an m - n vector, b is an integer m-vector, ¢ an m - n
vector, and A an m X {m -- n} integer matrix containing an m X m
identity matrix. A is assumed to be rearranged and partitioned
into an m X n optimal basis matrix B for the noninieger problem
and a collection of nonbasic columns forming the matrix N with
A= (B,N). An alternative form of (1) that is useful here for
geometric interpretation is to revert to inequalities, writing A
a (A", 1}, Then (1) becomes

maximizez = ¢'x’

{
(1a) A% < b

where x° and ¢’ are n-vectors.

Under suitable conditions, given in [5], the integer solution to
{1} could be obtained from the noninteger one hy solving the
optimization problem

"T'his work was supported in part by the Office of Naval Research under
contract Nonr 3775-(00) NR 0470490.

2Reprinted from the Proceedings of the National Academy of Sciences Vol. 57,
No. 1, pp. 16-18. January, 1967.
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subject te the conditions

iwnt

(2) 2. Biti= g

e

where the i are required to bhe nonnegative integers. The ¢f
{which are not important here} are the relative cost coeflicients
associated with the columns of N, and g, is the element of the
factor module g = M)/ M (B) corresponding to the ith column
of N. Here M (I} is the module of all integer m-vectors, and M{5}
the module generated over the integers by the columns of B.

The connection between integer and noninteger solulions es-
tablished by (2} held only under certain conditions. One way to
develop this approach. inte 2 general integer programing algo-
rithm weuld be to develop form (2) new inmequalities or “cutting
planes’ for a method similar to that of {6]. The geometrical in-
terpretation of the solutions to (2) suggests that this is possible
and this approach is outlined here.

To see this, consider the cone ' in the space of the variables
x' of (la) formed by using only the inegualities corresponding
to the nonbasic variables or equivalently, I’ is the cone obtained
i in {la) the nonnegativity condition for the basic variables is
dropped. Within 7 is the polyhedron P which is the convex
hull or the integer points of . P is an intevesting object of
study in itself. In addition, its faces clearly provide the strongest
inequalities or cutting planes for the general integer programing
problem that can be deduced locally, ie. without using the non-
local information availsble from the nownnegativity condition
on the basic variables.

Bince the variables ¢ of (2) determine a2 corresponding x satis-
fying the equations of (1} by {—x = (B (b Ni},t}) and hence
also determines the % of {la}, Inequalities on the & yield inegual-
ities on the x', and in this sense one can talk ahout an ineguality
on the [ being 2 f{ace of P”.

Faces to P can be characierized by the following easily proved
theorem which allows thelr computation by linear programing.

Tarowsm 1. The inequality ) wit; 2wy Is a face of P’ if and
only if the =; are a basic feastble solution of the system of inequaliiies,
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(3) T = 7y
made up from all veclors T == (4, -, 4,), solisfying the equations
of (2).

A number of yemarks can be made about the feasibility of this
computation.

First. Although there are an infinity of T satistying (2) and
hence an infinity of inequalities, it is easy to reduce this to a finite
number by considering only the irreducible 7', ie., those 7' not
containing as a vector 7V = (&, -, 4} for which }::ﬁfg,-= 0. Or
alternatively one can work only with these 7' that satisfy (2) for
some nonnegative c¢f.

Second. The trivial faces of P7, those that are simply faces
of the original problem (1), can be discarded by choosing w, = 0.

Third. The multiplicity of rows in (3) can be dealt with by a
row-generating method similar to the methods of [1], 3], 4],
and [7]. Because of this, an n X n basis matrix is the most that
is required at any time. The needed row at each simplex step can
be generated (at worst) by solving a problem approzimately
equivalent to (2), essentially a shortest path problem over the
group (.

Fourth, 'There is a simple way of getting & first feasible solution
to (3), and hence a face of P”, by solving a single problem like
{2) with an additional side calculation that less than doubles the
work. (For an estimate of the work involved in solving (2), see
I6].) This calculation will not be described here.

Fifth. Daplication, ie. many columns of N mapping into the
same group element, can easily be taken care of and c,imply re-
duces the size of the problem to he dealt with.

In addition to providing a method of computing faces of P
by linear programing, equations (3) lead to the proof of the fol-
lowing theorems which involve considering the tree of shortest
paths over the group &

Let g, .-+, 4, be the group elements corresponding to the col-
umns of N, Choose from among the g, a basis (we can assume il
i gy, -0+, 8) so that G =g,® g, ---@ g,, the direct sum. The
remaining g; and the element g, corresponding to b can then be
represented as p-vectors with respect to this basis; sog, = 30y, o
and the following theorem, whose proof is not given here, holds.

THEOREM 2. If for some basis g, ---,g, the representation of
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8os Bo=D_ve:8: has a component s for which
Yo,s % max Yhss
h=p

then the «; given by
T= Yo Fe= 1, W= Yask > p, and m=1
otherwise give a face of P~

The condition of the theorem is always met whenever, for some
component §, vy, is exactly one less that the order of g,. In par-
ticular, we have the

CororLLary. If g is the direct sum of cyclic groups of order 2,
then any basis of g satisfies the conditions of Theorem 2.

It is easily shown that all 4 consisting of columns with at
most {wo nonzerc entries that are restricted to be 1 or — 1, yieid
groups (¢ that are direct sums of cyclic groups of order 2. This
connects with the work of Edmonds [2].

In the next theorem we refer directly to the shortest path tree.
In a graph, if any unambigucus method of breaking ties among
paths is used sc that there is a unique shortest path between two
points, the shortest paths from one point to all the others will
form a spanning tree. However, different tie-breaking methods
produce different trees. If the elements of g are taken as nodes
of a graph, and if the g, i = 1,..-,n, are taken as directed arcs
connecting each g’ to the point g’ - g;, we bhave a graph and hence
for any choice of =;, I =1, .--,n, a shortest path tree.

In what follows, 0" denotes a right-hand side in (1} and g’ is
the group element f0' under the natural mapping f which sends
M{I} onto (7. We can now state Theorem 3.

TuroreEm 3. If R is a shortest path iree for the =, forming a
face of P, and if g = [V is separated from O in R by g,, then the
= are also a face for the polvhedron P” resulting from the right-hand
side b’.

The #§ corresponding to &' can be obtained by adding the tree
distance from g, to g’ to the original .

Finally we state a theorem that allows the computation of
faces on a once-and-for-all basis, independent of the particular
columns present in the matrix M.

Let the faces I'; be all faces of the higher-dimensional integer
polyhedron P* obtained form (2) by letting the index ¢ in (2)
range over all group elements.
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(4) Fi= (o, myimgs, < vy mp_)-

THEOREM 4. The faces F], obtained by deleting from (4) all =
whose corresponding group element is not a column of N, include
all fuces of the original polyhedron P”.
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