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CHAPTER 12

The contents of this chapter are derived from the preliminary study
of Gomory and Hu, Because the ideas. are new and seem to be of
interest, they are reported here in their most preliminary form. Credits,
if any, should be given to Dr. Gomoery and the author, but the author is
wholly responsible for any errors in the chapter. For readers interested
in‘ functional analysis, 1t may be better to read Section 3 briefly before

reading Sections 1 and 2.

§1. Relative Minimum Cuts

In this chapter we shall introduce some new concepts which hava
not appesared in the literature. These concepts are important especially
for the approximation of a continuous media by a finite networ’f\; which
will be discussed in §3.

Throughout this chapter, we shall consider only undirected network g,
Two arcs are said to be neighboring arcs if they have an end node in
common. Two cuts (X;}.{_) and (Y,?) are said to be neighboring cuts
if every arc of (X, X) either also belongs to (Y,?} or is a neighboring
arc of an arc that belongs to (Y,NY~) and the same reiation ig true
for every arc of (Y,?).

Consider the network in Figure 12. 1 with the cuts represented by

dotted lines
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. We shall use ~ to indicate that two arcs are neighbors,

{X,E) and (Y,-{t:) are neighbors because

1, Alé’As:% are in both cuts

2. AIZ ~A23, ASZ ~A23 where AIZ’ASZ belong to (X,X) and

A23 belongs to (Y, V).

(¥, §) and (W, ‘.f"\;) are not neighbors because



12-3

A, of (Y,?') is not a neighbor of A which belongs to (W,W),

14

Similarly, the reader can verify that (Y, X;) and (Z,2Z) are neigbhors,

35
X, h}'(d) and (Z,E) are not neighbors, (X, ;{“) and (W, ~:/—\/’) are not neighbors,
and (Z,E) and (W, if_—‘\f) are not neighbofs‘

"In the following, we shall discuss cuts that separate NS and Nt.
A cut such as (W, ‘?\f) will not be of interest. Therefore, we shall use
the word "cut” to mean "cut separating Ns and Nt° "

A cut is called a relative minimum cut if its capacity is less than
or equal to the capacity of all of its neighboring cuts. For example, let
every arc in Fgure 2.1 have the same arc capacity, then (Z,—;Z:) is a
relative minimum cut, so is the cut which consists of the single arc A?S'
A minimum cut as defined in Chapter 8 is certainly a relative

© minimum cut but the converse is not true. For example, A is clearly

78
the minimum cut separating NS and Nt' (Z,E) is a relative minimum
cut but not a minimum cut. Therelfore, a minimum cut in our terminology
is really an absolutie minimum cutl in a sense. For a cut to be a minimum
. cut it is necessary but not sufficient that it be a relative minimum cut,
Consider all the cuis separating NS and Nt in a network. The
neighboring relation between cuts is analogous to the distance between

H

points in a plane, For & given point "a" there are points within distance

1

¢ to that given point "a”; these points are said to be in the ¢ ~neighborhood
of "a", Similarly, for a given cut there are cuts which are neighboring

cuts of the given cut. In order for a function f(x) to be an absolute

minimum of a point a, it is necessary that f(x)-f{a) >0 for |x-a| <e



12-4

say. Here, in order for a cut to be a minimum cut, it is necessary that
it be a relative minimum cut.

in calculus, or in functiona}._analysis, a local minimum is obtained,
1f a globle minimum of the function is desired, we have to compare all the
locél'minima. In network flow theory We are interested in minimum
cuts separating the source and the sink, Take the network in Figure 12.1

for example, (Z,_Z‘:) and A

8 are not neighboring cuts, and we want an

absolute minimum cut among all cuts separating NS and Nt' Thus the

labelling method for getting the maximal flow (hence locating the minimum

cut) is therefore a technigue which locates an absolute minimum which is

not implied by a local minimum condition, We shall explore more on this

aspect in later sections.
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§2. Node-constraint networks

In Chapter 8 of the book, we associated with every arc of the network
an arc -capacity which indicates the maximum amount of flow that can pass
through the arc, There is no limitation on the amount of flow that can
péés.a node except that flow must congerved at every node, Now we
shall let the nodes have capacity restrictions and the arcs have no capacity.
restrictions. We develop this model mostly for the use in the section 3,

We consider a network consisting of nodes Ni and arcs Aij
connecting Ni and Nj . EBach node Ni has associated with it a node
capacity Wi which indicates the maximum amount of flow that can pass
through the node, Let Xij be the flow Jfrom Ni to Nj in the arc Aij'
Since the flow is conserved al every node, the amount of flow passing a

node Nj is therefore }1:2; [Xij |, this is denoted by %, The maximal

flow problem for a node~constraint network is therefore

max v
subject to
~y = s
X, - DX, = G - j#s,t
i 1 ] jk v J::t’
>
Xij“‘o (1)
0_<_?XJ,_5WJ, for all i,
1
- x_,[ = X
2 1! ij j
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Note that we put absolute value signon Xij because some of the arc flow
are going into the node Nj and some of the arc filows are leaving the
node N]..,

A cut separating NS and Nt in the node-constraint network will

be a sct of nodes, the removal of which will disconnect the network inio

two_or more parts, one part containing Ns , another part containing Nt’
and no proper subset of which should have this property.

Two nodes are said to be neighbors if there is an arc connecting them.
Although the removal of the cut will separate the network into more than
two pérts in general, we can still use the notation (X, E) to denote a cut.
X then denotes all nodes in the part of the network containing Ns ancd
(X,_)Z) will be all the neighboring nodes of X . A cut with the sum of the node
capacities a minimum is called a minimum cut. Tust like the Max Flow
Min Cut Theorem in Chapter 1, we can prove an analogue theorem for the
node~constraint network, It is true that a node-consiraint network can be
converted into an arc-constraint network {see Ford and Fulkerson [ 1), but
- this greatly increascs the number of arcs. We shall deal with the node-
constraint network directly.

Max Flow Min Cut Theorem (Node-constraint case). For a node~
constraint network, the maximal flow value from Ns to Nt is equal to
the minimum cut capacity of all culs separating NS and Nt'

Proof: Aslsume that all node capacities Wi are positive integers and

let fst be any flow, not necessarily maximum, If the value of the flow is
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equal to the capacity of a cut, the theorem is proved. Otherwise, we shall

search for a chain along which the flow value can be increased. This is

done by defining & subset X such that flow c;an be sent to any node in X.
Based on the current flow, we s’r;xail define the set X recursively as

follows: (let w_ = min {w_, w)
1) 1 ]

Rule 0. NS e X

Rule 1. If Ni ¢« X and %, <Wi', X, <W,, Xj <w}_ then N}, e X

ij i’
Rule 2. If Ni e X Xij >0 then Nj e X
Rule 3, If N, e X X, <SW, X, <W,., X =w X >0
i i i i ij? 7y j kj
then Nk e X

Based on this recursive definition,‘ either Nt is in X orin X.
Case 1. Nt isin X. We have to show that the flow value can be
increased, Since Nt is in X, there must be a chain from Ns to Nt
along which one of the above three rules must bé true. If Rule ] and Rule 2
‘holds, then we can clearly send flow aiong the chain., If the third rule
hold, 1let ¢ = min (Wij - xij’xkj)° Then we can add ¢ to Xij and
. subiract ¢ from xkj . This is equivalent to sending flow to Nk and keeping
Nj saturated with flow, Since WJ, are integers, ¢ will be an integer.
As the maximal flow is bounded from above, this case can not be repeated
indifinitely.
Case 2. Nt in "XM We have to show that the value of the present flow is
equal to the cépécity of a cut. Let the neighboring nodes of X be called

y nodes. We have to show the following four things.



1. Thefe is no arc flow from a y node to a node in X.
2, There is no arc flow from X ~ y to vy.

3. There is no arc flow from one vy node to another.

4. All vy nodes are saturated,

Each. of the above can be pro{/ed as follows,
}. Therais no in > 0 with Ni e ¥ and Nj ¢ y because Rule 2 would then

labe] Nj to be in X,

in §~ Y, because Rule 3

2. There is no x,_, >0 with Nj ¢ y and N

k] k
would then label Nk to be in X.
3. There is no Xk >0 with Nj , Nk ¢ v, because Rule 3 would then label

Nj to he in X.

4, Let N, bein X and Nj be a v node and a neighbor of Ni
1

if Ni is saturated and all the arc flows out of Ni are to vy
nodes, then N, could not be in X.

If Ni is saturated and there is anN, ¢ X and X,

K k> 0, then the

node Nj ¢ vy would be labeled as an X node from Nk by Rule 3,

if Ni is not saturated and if 4 <Wij’ then NJ, will be in X

unless Nj is saturated, Therefore all vy nodes are saturated,

The value of the flow is therefore inj s Ni e X, N}, ¢ v, which is
equal to EWJ, (N}, ¢ y). Because y nodes are all the neighboring nodes

of X, itis a cut,This completes the theorem,
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We can clearly develop a labeling method, analogue to the one in
chapter 8 and based on the three rules, However, the third rule requires
that not only do we have to look at all neighboring nodes of a node but also
all neighboring nodes of the neighboring nodes. This greatly increases the
Camount of computation. The following is a labeling procedurs, which
uses only first and second rules plus minor modifications. Nodes will be
classified into five types:

L nodes: Labeled nodes

LS nodes: Labeled and scanned nodes

R nodes: Rejectied nodes

RS nodes: Rejected and scanned nodes

U nodes: Unlabeled nodes
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L _node: A node Ni is a L node if using the first and second rules, we

label it to be in X.

LS _node: A node Ni is @ LS node if itis a I node and we have looked

all neighboring nodes Nj of Ni"
_E___,-_ﬁod_g;« A node Nj is & R node if it is looked at and found to be at

its capacity, i, e, XJ, = Wj,
RS _node: A node NJ, is a RS node if it is a R node and we have looked
all neighboring R nodes Nk (of Nj) and found that there is no arc flow
ij > 0.
U_node; A node NJ, is a U node if it is not any of the aboye types.

The Jabeling procedure proceeds a; follows: We first label a node
to be in X only if il belongs to X due to the first and second rule, A
node is labeled a R node if it is saturated. If break through oceurs,
then we increase the flow, erase all labels,and start a new cycle. If a
non-break through occurs, then we look at all R nodes Nj one by one,
For a given R node N}, if there is no ij >0 with Nk a R node,

“then NJ, is labeled an RS node. 1If there is a R node Nk with ij >0,

then that R node Nk is changed into a L node and we search all
neighboring nodes of Nk to see if any more nodes can be labeled, If
there is no I, node and an R node and the non-breakthrough occurs, then
the present flow is already maximum. In this labeling procedure a node

NJ, may be first a R node because xj = W’j and second become a RS

node due to non-existence ofan R node Nk with ij > 0. letus assume



that ij >0 fora R node Nk‘ Later the R node Nk may become an

L. node and that node N}, will be changed into a L node also as Xjk >0,
Therefore, the longest sequence of changing labels that can happen to a

node is indicated below
R RS —L —13,

Therefore, a node together with its neighbors is looked at, at most twice

during this labeling method.
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§3, TFiows in a Continuous Media

Let us consider a special problem of calculus of variations,
Consider the rectangular region with‘four sides A, 8, B, T in Figure
12.3. A bounded continuous weighting function w{x,y) >0 isdefinedon the
rectangular reglon. We want to find a curve from the side A to the side

B such that the line integral

fw(x, y) do  is a minimum.

Figure 12.3
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This is a problem of calculus of variations and can be solved by
the usual technique if the weighting function wi(x,y) is sufficiently
smooth., As with all problems of calculus of variations, the minimum,
if obtained, is a local minimum which méy not lmply a global minimum.

‘Assume that the problem is an abstraction of a practical problem which
is to locate a cheapest path for an automobile to go from the side A to the
side B . The weighting function wi{x, vy} may indicate the amount of fuel
consumption at the point w(x, y). There are two reasons ‘that the curve with
the line integral fw(x, vyl d¢ a minimum is not what we really want., The
first reason is that the weighting function may be very small on the optimum
curve but may be very large near the curve., This means that if the automobile
should deviate slightly from its prescribed'optimum curve, it is very expensive,
Since no automobile can be controlled with 100% precision, it is better to
locate a strip with width € in which weighting function wix, y) is small,
The second reason is that the locus of an automobile unlike the locus of a
point is not a curve but a strip. Thus, in practice, we would rather get a strip
with width ¢ from A to B such that

ffw(x, y) dA is a minimum,

(Furthermore, we want the integral to be a global minimum compared with
the Integrals of other strips of width € from the side A to the side By, It
Is very easy to construct an example in which, for a given ¢, the strlp with

ffw(x, y) dA minimum does not contain the optlmum curve with fw(x, v) dA



minimum, However, {f we let € go to zero, then the optimum strip will approach
the optimum curve as the limit., We shall describe a technique which will give

a strip of width e with fjw(x, y) dd a global minimum, and if e goes to

zero, the strip will approach the optimunﬁ curve as a limit,

-Note that any continuous curve I from A to B will separate the
rectangular region into two parts, one part containing the side S and one
part containing the side T, and any curve from S to T will meet the curve
I' \ In anology to a network with a finite number of nodes, we may think of the
rectangular region as a network with the side S as the source and the éide
T as the sink. The weighting function w{x,y) can bé thought of as the capacity function
of the media at the point (x,y). Any curve from A to B corresponds to a
cut, and the line integral is the capacity 55 a cut. If we can define flows in
the continuous media and locate the minimum cut using maximum-flow minimum
cut theorem, then the minimum cut will be the curve with f;w{x, v)ydc a
globle minimum. The approach described below approximates the con-~
tinuous media by a finite network,

The finite network consists of many nodes, each node represents a small
square of the rectangular region. Fach node has a capacity which equals the
welght of the small square it represents. The node~capacity network will have
& set of nodes as its minimum cut. If the approximation is a good one, the
set of small squares corresponding to the nodes should resemble a strip of width ¢ .

Thus, we h..ave to keep three things in mind, first, the network with

prescribed connection between nodes, where a minimum cut is a subset of the
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nodes. Second, the rectangular region is partitioned into small sqguares
Theunion of the small squaresswhich are represented by the nodes of the
minimum cut,is & subregion. Third, the s.ubregion should approach a strip of
width ¢ which separates the rectangular region,

' The nodes and the small squares are in one o one correspondence,
For node-~capacity network there alwavys exists a minimum cut, and hence We
can always get a set of small squares which are represented by the nodes.
As the size of the squares goes to zero, the subreglon should approach a
sirip of width e .

Let us first try the most straight forward way of approximating the
continuous media and see what difficulties would arise. Let the rectangular
region in Figure 12,3 be divided into unifo.z‘m small squares of side h ., At
the center of every square we put a node with the capacity of the node
equal to the total weight of the square. (See §2 for the definition of a
network with node capacity and without arc capacily). Every node is connectad
by an arc to its neighboring nodes of distance h apart. Such a network is shown

in Figure 12,4,

o

Fig 12,4
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The boundry squares touching the side $ are represented by sources with
limited supply. The amount of supply of a source is the total welight of the
square. Similarily, the boundry squares near the side T become sinks with
limited demand. This many-source and many-sink network can be converted into
a oné---éouz‘ce and one sink network by the technique of §3, Chapter 8. A cut
of the network in Figure 12,4 will be a set of nodes the removal of which to-
gether with its incident arcs will disconnect the network into two parts, one
part containing all the sources and one part containing all the sinks. The set
of squares represented by the set of nodes should look like a strip with the
total weight @ minimum, It seems plausible that as h approaches zero, the strip
will approach the optimum curve ag the limit, Unfortunately, the network des-
cribed above can not do the job. |

The first difficuity of the approach is if one connecis the
set of nodes in the minimum cut, the curve will always consist of horizontal
straight lines, vertical straight lines and lines with 45° angles with the
horizontal or vertical lines. One such set of nodes is marked with % in
Figure 12.4, Consequently, the sirip which is the union of the sguares
represented by the nodes will consist of horizontal strip, vertical strip, and
45° strip. Thie is not desireable, as we need a smooth sirip which will
approach a smooth optimum curve as h goes to zero,

The second difficulty is that the total welght of the set of nodes may

not be equal to the strip which the set of nodes should represent,
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If the set of nodes in the minimum cut all e in a horizontal line
say, then the weight of the set of nodes is equal to the weight of the
horizontal strip of width h . (See Figure L2, 5a) If the set of nodes in
the minimum cut should all lie in a 45° line‘say, then the total welight of
the s-et' of nodes does not equal to the weight of the sirlp of width h

inclined at 45° . This is shown in Figure 12, 5h,

T

12.5 (a) 12.5 (b)

In order to overcome the difficulties just mentioned, we shall con-
struct a different network as follows. The rectangular region is again
divided unlformly into small squares of side h . At the center of each
équal‘e, we put a node with {ts capacity equal to the total welght of the
square. Now we connect any two nodes with an arc if the distance between
the two nodes is equal to or less than r (r >> h). This network is called

a_r-connected network, The minimum cut of this network is then a set of

nodes which looks like the lattice points in a strip with width r , and the

total weight of the set of nodes is equal to the total welght of the strip.
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Furthermore, if h goes to zero, r goes to zero, and h/r goes
to zero, then the limit of the strip will be the curve with fw(x, y) do
minimum,

In this r-connecting network, remoying a set of nodes in a horlzontal
row will not disconnect the network into two parts, since there can be two nodes

one above and one below the horizontal row, which are connected. Inordertoblock

X

" > rows of nodes, for example,

the flow from § to T, we have to remove <
The labelling method for a node-capacity constraint network will pick out the
set of nodes of the minimum cut, Since it is a cui, the network should be
separated into two parts  once the minimum cut is removed. Since it is a
minimum cut, no proper subset of nodes should have the separating properties,

Since the small squares are in onelto one correspondence with the
nodes, the subregion,which is the union of small squares, should have the
analogous properties of a minimum cut, namely, it separates the rectangular
region into two parts and any single small square of the subregion if removed
from the subregion will destroy the separating properiy of the subregion, Now
the region containing 8 as well as the region containing T both are unjons of
squares. The two regions are considered to be separated if there exist no two
small squares, one in each region, with the distance between the two centers of
the squares less than or equal to 1 .

The question now is; if h«s 0, r-- 0, h/r -+ 0, what should the

subregion approach as a limit? This question ig studied in more detall in

the appendix. Briefly, the subregion will approach a strip of width r from
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A to B.
Since r 1s comparatively larger than h, there are many more squares
completely inside the sirip of width r than squares which are partially in
the sirip, The squares completely insidérthe strip are called the interior
squares, and the sguares partially in the st'rip are called the boundary
squares. For the weighting function to satisfy condition (1) in the appendix.
the total welght of the interior squares is always of an order of magnitude greater
than that of the total welght of the boundary squares, and the total weight of

the subreglon or that of the nodes In the minimum cut approaches the weight

of the strip as h/t «+ 0,



12-20

APPENDIX

In this appendix, we discuss some properties of the continuous
minimum cui; a full length paper be Gomory and Hu [ ] will appear
elsewhere, First, we shall restrict ourselves to points in the two
dimensional projective plane RZ' Two poinis a and b in a set P are
said to be r~connected if there ig a finite sequence of points po,pl,,,., pn

with p, ¢ P and the distance p(pi,p ) sr, (i=0,...,n-L; Py = 8,b = b).

i+l n
See for example Newman [ ]. On the other hand, two points a and b

in 8 set P are said to be r-separated if they are not r-connected. We

are interested in a set C whose removal from the plane R2 will r-separate

two points in R? - C. More precisely, we will say that a set C C R2

L H

r-separates "a" and "b" if
(i) C is closed and bounded,
(i) a,b/f C.

(iii) "a” and "b" are not r~connected in RZM C.

With these definitions, any sufficiently large set will r-separate
"a" and "b". However, if we require C to be irreducible, i. e, no
proper subset of C will also r-separate "a" and "b", then C is
highly structured, In the following, we shall use C to denote an
irreducible r~separating set. Note that an irreducible r—-separating set

is analogous to a cut in the continuous media and "a" and "b" are

analogous to the source and the sink. We shall state the theorems and
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lemmas about the lrreducible r-separating set.  The proofs are to appear
in Gomory and Hu [ ], We shall use the following notations,

C: drreducible r-separating set, which is closed by definition

A: points r-connected to ”.a”, Which is an open set.

- Bt points r-connected to "b", which is an open set.

D: RZ, ~ A=~ B~ C, which is an open set.

Theorem 1. Every r-separating set contains an irreducible r~separating set.
Theorem 2. Let p be apointof C, then p{p,A) <r and plp,B) <r.

ILemmaT I. Iet plpz and lq2 be two line segments of length <r that

intersect at some point p. In other words, plpz and qlqé are the
diagonal lines of a quadrangle. Then there is a vertex of the quadrangle
(pl, P,;qy OF qz) that has its two adjaéent sides both less than or eqal
to r.

Let p yeee s P be a sequence of points such that p (pi , pi-}'l) <r,

1P

then the sequence of line segments p]p2 R p2p3 ... dare said to form a
r~connecting chain. An r-connecting chain is said to be simple if every

Cvertex pi belongstoonly twoline segments pi“ip}, and pipj_i_} (except

pl and pn) and every other point is contained in one line segment.

Lemma 2. If there exists an r~connecting chain, there exists a simple
r-connecting chain,

Theorem 3. If G is an irreducible r-separating set, then RZ. -G = AUB.
In otherwords, D is empty., (Note that this Theorem is very much like

the Jordan Curve Theorem which states that a simple closed curve separates
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R, into two simply connected open scts. Here, an irreducible r-separaling

2

sct r-separates RZ into two r-connected open scts A and B,)
Since A or B may consist of many simply-connccted open sets,
we shall call cach simply-connected set, a component of A or B,
Theorem 4. Each component of A or B is uniformly locally connected
and the boundary of each component of A or B is a simple Jordan Curve.
- Therefore, the boundary of C is a union of simple Jordan Curves,
The stfucture of C can, however, be worked out in much greater detail,
Roughly speaking it can be shown that C splits into sections of two
typese. The first type are the tube-like sections of width r, like C1 and
CZ in Fige Al. The second are convex polyhedra with an even number of
sides, all sides being of length exactly r. See P in Fig. Al. These
polyhedra are, intuitively speaking, the areas in which the strip overlaps
itself in such & ay as to maintain its irreducibility. It can be shown
that any C is the union of sections of these two types.
If the weighting function wi{x,y) is arbitrary, then any irreducible
r-separating set can be a minimum-weight separvating set, simply by
defining w(x,y) = ¢ in the irreducible set and wi{x,y) large elsewhere.

Note in Fig. Al E)ZpA < r, thus both Al and AZ are r-connected

to Ma'' and A = Al Ua The set of points B including '"b" consists

20
of points enclosed by the strip.

The strip in Fig. Al can be a minimum-weight strip, provided the

weighting function is large in A and B and small in the strip.
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R, into two simply connected open sets. Here, an irreducible r-separating

P

set r-separates RZ into two r-connected open sets A and B, )
Since A or B may consist of many simply-connected open sels,

we shall call each simply-connected set, a component of A or B.

Thoor@m 1. Fach component of A or B is on’uniformly locally connected

and the boundary of each component of A or B is a simple Jordan Curve,

7 Thereforc, the boundary of C is a umon of a 51mp10 Iordan Curve

!C/ A S SN Ay £ O S L e o CH Y I
Roughly specikmg, C COHSlStS of tubo ‘like” sections hookod together by

{f\ J/(\\ -‘T
conve po].yhedra wuh 4n even number &f sides all of length r. For

example, the diamond-shaped polyhedra shown in dotted lines in/ f&g. Al
J/

/

\

%

-

/-

,

/aro produced by the c,mp over?dppmg u oli’ Novu*ihc] 258, the rmsepalmmg

. setis J'.J.’I‘Od{UC]'.b].- -if the weighting function w(x v) is arbmary, then

any irreducible r-separating set can be a minimum-weight separating sct,
simply by defining wix,v) = ¢ in the irreducible set and wlx, y) large
elsewhere,

Note in Fig. Al p2p4 <r, thus both !—\l and A? are r—connectoed
to "a" and A= Al UA?. The set of points B including "b" consists
of points enclosed by the strip.

The strip in Fig. Al can be a minimum-~weight strip, provided the

weighting function is large in A and B and small in the strip.
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Another irreducible separating strip is shown in Fig, A
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- Thus whether the strip in Fig. Al or Fig. A2 is the minimum strip

to p,p

depends on whether the total weight of the strip from plp4 3Py

in Fig. Al or the total weight on the area in pl p4 p3 pil in Fig. A2 is
smaller,
. -
Let the area of the strip from pipfl- to p3p4 in Fig, Al be Ql and

let the arca of plpépg‘p:i' in Fig. A2 be Q;f, then the ratio Q:/Q;< is
bounded from above since it takes certain area to bend the strip from plp4
to p3p4. Let this upper bound be kl. In general, the arca of the
irreducible strip overlapping itself is always larger than the irreducibie
strip not overlapping itself, although the total weight of the former may
not be larger thaﬁ that of the Jatter., For certain welghting functions, say
a constant, any minimum weight separating strip will not overlap itself,
Therefore, we are interested in finding out the restriction on the weighting
function, such that the minimumn welght separating sirip will not overlap
itself,

Let Q‘1 and QZ be the two areas that have nonempty intersections.
Let V;(Ql) and v";f(Qz) denote the total weights on the area Ql and
QZ’ regpectively, If Qz/Ql < kl implies \"’CT(QZ)SV-\:’ (Ql}’ then no minimum
weight strip will overlap itself. In order that w (QZ) <w (QI)’ it is necessary
to require wx,y) > ¢, where ¢ is a positive constant, Otherwise,
w{x,y) = 0 in Ql and wix,y) #0 in Qz will violate the inequality

W {QZ) < w (Ql). Furthermore, it is necessary that the total weight on any

area be bounded from above so that w (QZ) cannot be infinity. The following
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is a set of sufficient conditions that will assure non-overlapping of the
minimum weight strip.
(1) wix,y)>c, ¢ is a positive constant,

(i1) The weighting function satisfies the Lipschitz condition with
constant K.

(iii) The constant K satisfies K <b6c/r, where ¢ is the positive
constant in (i) and r is the width of the minimum separating
strip. (Note that if r -~ 0, K can be arbitrarily large).

In Fig. A3, we show the enlarged picture of the portion of an overlapping

sirip superposed together with the nonoverlapping one,

Fig. A3

The lighted shaded area is QZ and the heavy shaded area is Qi".

The Jower hound on the total weight of Q; is obtained by letting
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¢ b
w(x, v) = ¢ throughout Q} . The upper bound on the total weight on QZ
is obtained by letting the weighting function grow as large as possible

o P
from the intersection point of Ql and Qz. Note that the area in Ql is

2
-

of order O(r") and the arca of Q2 is of order 0(1‘2) . The total weight

of 'Q'i is O(rz) and the total weight of QZ is O(rz) + O(r3).

The idea of a separétmg strip can be gencralized to the case where
we want to separaie two sets of points instead of two points. In the
rectangular region in §12. 1, we want to separate the line S and the line T.
This is equivalent to the r~separating in R2 if we define w(x,y) to be
zero outside the rectangular region,

If we trust our intuition in three~dimensional space, the corresponding
r-separating set in R3 is a surface of ti}ickness r and this leads us to
Plateau's problem [ ] .

Plateau's problem [ ] is to find the surface of least area spanned
in & given closed Jordan curve v. Related problems are to find minimal
surfaces of least area when the whole boundary or part of it is not pre-

- scribed but left free on a given manifold. If we define a weighting

function at every point of the space, we can ask the minimum-weight
surface spanned in a given closed jordan curve v. The weight of a surface
is defined to be the integral of the function w on the surface.

We shall first consider the problem of minimum~weight surface with
fre.e boundary. Qonsj.der a surface P which is topologically eqivalent

to a sphere. The inside open region is denoted by R where the open
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region plus the boundary surface P is denoted by E On {he surface P,
we have two special subsurfaces 3."‘8 and I‘t, If & weighting function is
defined on R and say zero clsewhere; then we can ask for the minimum
weight surface separating I‘S and I‘t, If P~ I“SH I‘t is a curve vy and
the weighting function is a constant in E, the problem of finding a
separating surface of minimum-weight becomes Plateau's problem. In‘the
approximation by a finite network, we first find a minimum weight surface

with thickness r and then let r go to zero.



