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ABSTRACY

This paper first deseribes a theory and algorithms for asvmptotic integer programs,
Next, a class of polvhedra is introduced.  The vertices of these polvhedra provide
solutions to the asymptotic integer programming problem; their faces are entling
planes for the generalinteger programming problem and, to some extent, the polyvhedrn
coincide with the convex hull of the integer points satisfying a Hnear programming
problem. These polyhedra are next shown to be cress sections of more syvinmetric
higher dimensional polvhedra whose propertics are then stadied. Seme algorithms

for integer progrmmming, based on a knowledge of the polviedya, are ontlined.
i prog d i PO

INTRODUCTION

It s well known that a great variety of combinatorial problems can
be writien as integer programming problems, that is, as svstems of
ineqgualities:

X ointeger, M

together with a lincar function ¢’ 2" to be maximized. In (13, 47 is an

+
I3

m x a Integer matrix, ¥° an integer #-vector, and & an integer wi-vector.
* This work was supported in part by the Office of Naval Hesearch nnder contract
Nonr 3775-(00), NR 047040,
* Part of this paper was written while the author was a visiting member of the
Courant Institute of Mathematics, Now York University.
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Alternatively, the integer programming problem can be written as

NN ¢ & {2
subject to

Ax == b x integor.

'

In this formulation, A s an w % w4+ 2 integer matyix, x is an (i 4 m)
integer vector (cluding the slacks of the previous formulation), and
bois an integer m-vector.  For simplicity in what follows, we assume
that /A containg an s ¥ o wnil matrix.

One difficnlty with the integer programming approach to combina-
torial problems is that the fermulation of (1) or (2} often provides neither
an clfective algorithm nor insight into the form or other propertics of
the solution.  This contrasts with the ordinary lincar programming
problem, which is (1) or {2) without the integer restriction.  There the
simplex method provides what is empiricallv known te be an effective
compuiational method, and there is also information abont the form of
solution.  For example, we know that there are at most s positive com-
ponents i x.

The differences between lincar and integer programming are not
easily removed, for to be able to use the simplex method on (13 we would
first have to obtain the faces of the polyvhedron P which is the convex
hull of the lattice points (infeger points) satisfving (1), With /2 or, more
precisely, the faces of 7 available, the problem would become an ordinary
linear programming problem over P, although of an as vet wnknown size
and degree of degeneracy,

However, and this is the essential point, the dependence of 77 on A

or A’ can be complicated indeed.  Although the algorithms of 47 and

[53] obtain faces or vertices of P (rom the inequalities of (1}, they are
mnpredictable in length and have so far shed little light on the structure
of the polyhedron I

Stnee any algorithm for the integer programming problem, whoether
related to linear programming, branch and bound, exhaustive search,
or whatever, must end up finding a vertex of 77, information on P seems
relevant to any approach to the integer programming problem. Yot
information about iz very difflcult to obtain.

in this paper we attack the problem by introducing a lamily of poly-
hedra closely related to PP but having simpler and more accessible prop-

erties.

Lineay Agebra and s Applications 200969, 4515358
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These polvhedra are obtained by replacing the cohunns of the lncar
programuning problom by elements of a finite Abelian group and examining
the solutions. The polvhedra so obtaned are related to the onginal integer
programming problem in two wavs, First, the vertices of the polyhedra
give the complete list of solutions to the asymptotic integer progranumning
problem-—the problem that results when & becomes large.  Second, the
[aces of the polyvbedra give inegualitics that are in o certain sense (he
strongest pessible that can be used for a “eutting plane” 47 approach
to the original problem.  Third, under conditions that will e explained,
the new polyhedra actually coincide with that part of P which is near
one vertex of the linear programming polyhodron,

It will be shown that many different pelvhedra of this sert can he
obtained by intersecting various subspaces with a single familv of higher
dimensional polvhedra. Thus we shall see that many scemingly different
combinatorial problems can actuaily correspond to different cross sections
of the same large polvhoedron.

The paper is divided inlo three mam parts: Sections B, 2, and 3.

section 1A mtroduces the group cquations for a first version of the
new polvhedra, the coraer polvhedrs, and gives a geometrical interpreta-
tion. Scotion 113 introduces asymptotic integer programming and connoects
it with the comer polyvhedra, Results are then given showing the periodicity
of asvmptotic integer solutions, as well as results on their form, domain
of applicability, and methods of calenlation. Appendix 1, which relates
to this part of the paper, gives a numerical exampie of an asvmptotic
integer programming problem.

Section 2 s devoled to the comer polvhedra, Section 2 connects
the faces of the corner polvhedra with catting plane methods for the
general integer programming problem. It then gives a theorem showing
that all faces of the corner polvhedra can be computed by Hnear pro-
gramming.  Appendin 3 gives g dyvnamic programming caleulation for
procducing one face. Scotion 2B develops special properties of the faces
of the commer polvhedra. Seetion 20 introduces the family of higher
dimenstonal polyvhedra, the master polvhedra P{%, g4, of which the various
corner polvhedra are cross scctions and explains the connection between
the (%, #,) and corner polyhedra.

Section 3 s devoted to the P77, g0, Section 34 deals with the effcet
of group automorphisms. We sce heve that there is one master polyhedron
P(F o) for cach awtomorphism class of cach [inite Abelian group.
Section 3B develops properties ol faces of the P{%, g). In particular it

Linear Algebra aid Its Applisations 2{1060), 451-558
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includes the proof of a theorem which connects the faces of the master
polvhedra with the vertices of a special, highly structured lincar pro-
granuning problem. This theorem, which ig useful in many wavs, is then
used to compute the irst 34 master polyvhedra, which are tabulated in
Appendix 5. I s apparent from these tables that laces can be obtained
by more special methods. One such method, for the polvhedra belonging
to cvelic groups, is given in Scetion 3C. Comections belween faces and
subgroups are given in Section 31, These theorems enable us to produce
special faces for any group. Scction 31 discusses group characters. 1t is

shown that the characters enable us to produce cutting planes while
deing a lincar programming calculation but withont knowing what group
is involved. Thev explain precisely the relation between the inegualitics

of 47 and the present families of inequalifics.  Section 3F deseribes
special properties of the groups o and Py and their associated master
polvhedra. The number of vortices is obtained as # - oo, Section 3G
summarizes some of (he more obvious algorithmic possibilities and some

divections Tor further research.

This paper® loflows up the PN ALS notes 177 and uowhich many

of the results of Scctions 1 and 2 were first outlined. The gronp notion
introduced in (77 has since heen developed in interesting dircctions by
Glover (31 and White {121, Some of the ideas of Section 1 can be {found
m primitive form in Gilmore and Gomory

and some of the results

of Section 2 were anticipated in a very interesting unpublished paper by
Tayler (107 which he bas recently Brought fo my attention.

Iweuld ke to thank Alan Konheim for his contributions to Scetion 315,
Alan Hoffman for many useful remarks and suggestions, and Carol Shanesy
for carrying out the programming and computation of the fuces, vertices,

and incidence matrices of the polyhedra.
3. CORNER POLVHEDRA AND ASYMPTOFIC INTHGER PROGRAMMING

A Egualions for Corner Polvhedre
In 2} let 3 be any nonsingular submatrix formed lrom i columns
of A Without loss of generality we can assume that I consists of the

[irst s columns: so

# Most of the results of this papor were presented jn a series of seminars sponsored
by the American Mathematical Society at Stanford University in July 1967 and
at the International Sywposium on Mathematical Programming at Princeton

University in August 1§67,

Linear Agebia and Hs Applications 2(1069), 451558
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A e (I3, N,
where B is om0 me, and N ods e »on. In terms of /3 and N we can write
(2) as
By, o Ny b, {da)

where x, 18 an sa-vector and xooan se-vector. Once x. ds chosen, i,
A1 - Nxy) is uniguely determined by (2a). I v = {x,, 20 18 to

satisfy all the conditions of (2), a nonnegative integer a must be chosen
stuch that the resalting v ix both:

(1) integer and

(i} nonnegative,

Fra la. 7% 35 shaded region,

These are the conditions that give a feasible solution to the integer
programming problem.  However, in what lollows we shall examine
instead the problem that resuits when condition (1) 1s maintained bui
condition (1) s dropped, ie.,

By + Nxgah, xy220, (ry, x,) integer. (21

Linear Algebra and s Applicatinns 2(1968;, 453]1-5a8
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Whenever 72 s a feasible basis the conditions (2b) have a geometrical
interprefation which motivates muoch of what follows. The basis 13 can
be thought of as determining a vertex « of the lnear programming polv-

hedron 77 (see Fig. La). Inside P is the integer programming polyhedron

P10 we relax the cenditions vy 22 0 as we have done in (Zh}, the new
iinear programming problem becomes the one corresponding to an un-
bounded polyhedral cone we will vefer to as € and the integer programming
problem, given by conditions (2b), corresponds to the polvhedron 7%, which
is the convex hull of the integer points in € s P¥, the striped area In
g, la, which we refer to as the corner polvhedron. As we will see, and
as g, Fa suggests, P* s often closely connected to 7.

We now turn to the conditions on v that ensure an integral, hut

not necessarily nonnegative .

Let f be a fixed homomorphsm sending
-vectors, onto @ == M(IVA(B). M{B} is the module generated over

A7), the space of all integer

the integers by the columns of 73, t.o., the lattice in sespace of all integer
combinations of these columns, and 4 is the {finite) factor group in which
all clements of M{B) ave treated as zero {are mappod by [ into the wero,
0, ol %y An fcan be calenlated explicitiy from B by standard methods '
See, Jor example, Van der Waerden [11°

Applving / to {2a),

HRxp) i (N ) = b,

HBxp) = 0 and onlyv il ds integer, so
JNxy) o fh {3

is a necessary and sulficient condition on vy to produce integer X
IT 7 maps the columm N, of A Into the element gool Zoand sends b

into gy, then (3) gives

v

© This is done for a numerical example in Appendix L,

Linear Agebra and s Applications 2010691, 4531553



POLYTIEDRAY AND COMBINATORIAL PROBLIMS 457

0 and

S0 the gronp equation (4) together with the conditions 1, !
X, ;; Integer ensures nonnegative integer x, and integer x,.
We next introduce variables that have advantages in dealing with
the group equation (4),  With these variables there will be at most one
variable for cach group element,
Lot A7 be the set of nonzero group clements /¥, ¢ = 1, ...

v ’

i

SN, 00 Let o e <. 2. Introdace »" variables g}, one for

iy

! H A
each ge 47 let T be the s'-vector with compenents Hg),  There is

then a natural correspondence, which in general is manv-one, between
points in y-space that sobve (2a} and points in Tespace. The correspondence
7 is

Folvg, xyd oo {vy) 7,

where 7 s given by

Or course, il there is no duplication, Lo, different columns are mapped
by /anto dilferent nonzero g, then 77 has exactly the same components
as Ay

The points v satislving (2h), or equivalently the group cquation (4,
correspond under /7 to those nonnegative integer points of F-space which

satisiy the gronp equation

(5)

The vertex v = (v, = Bth oo=e 0) corresponds to xy = 0 and to the

i

origin in #'-dimensional Tespace. The portion of aspace, in which the

0, corresponds to the first (or nonnegative)

nonbasic variables remain
orthant in T-space (g 1b), Alternatively, in torms of the inequalities
of (1) and the original sm-vector o, the nonnegative orthant of Tespace
corresponds to the cone ¢ in TFig. o, If 7 is a nomnegative integer n-
vector and also solves (3, it is shown in Fig. 1b as one of the circled
integer points. v s an integer point of C in Fig. 1a i, and only if, the
xoof which it is the nonbasic part covresponds to one of these cireled
points in Tespace.

The corner polvhedron s the convex hull, in x-space, of the nonnegative
integer solutions to (2b).  We shall refer to this as P (B, N, 0. The
convex hull, in T-space, of the nonnegative integer solutions to (5) will

Linear Algebra and Ms Applications 2IG60), 451558



455 .o GOMORY

be the polvhedron P{# .47 g The corner polvhedron in a'-space is
PAB N B PR N DY and {947, g, are the objects pictured in
1hgs. Fa and th.

Free. 1l

These polvhedra are, of course, essentially the same, and we shali
work throughout with (%, .47, g3, The following casilv verified remarks
give the connection between P50, Noby and P 47 g0,

H

Revarke 1o vy, vy ds aovertes of PSS N 600 and onlv if

(1) L= {xy, vo) s a vertex of PUF A7 g, and
() whenever /N, we JA 55 g then ether v
A

S L

wme

(i) whenever N, w0, )

In ather words, to produce one of the a-space vertices corresponding

to vertex ¢, use the component value /g) as exactly one of its corresponding

nenbasic v, ,, and wse the compenent value O in the others, Doing this

for each g} and sctting &, = G if /N, = 0 produces v, For xp nse

K \

Ko BoHh o Ny ),

Liwear Algebva and [s Applicalions 201068}, 4515338
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Turning pow to faces, we can denote the Tespace nequality
i -
In w-space we denote an mequality by (o, 2y, 7). Using xy =
3-1h o Ny} gives an oquivalent ineguality on the nonhbasic variables
8 : :

7y by e, mmp), where sis a4 nl-vector and m, a scalar,

alone, that is, an incquality of the form {0, Ty, Tyl

Remark 2. A0, Ay, ) is an (‘i! - 1)-dimensional face of P (B, N, &)
if, and oniv il {zt, ), where (/N ) - F, 1s an (s - 1h-dimensional face
of (7.4 ).

Thus, to obtain a lace of P N, 6) Trom a face of PN, g) we
merelv write the component \aim- algy in all the corresponding plates

n .

H. Asyvmplotic Tnteger Programaiiing

VWe will say that an integer point #{g) of /{7, A7, gg) s breducible
il for anv set of integers s(g) and #(g) the conditions 0 = s{g) =5 {g),
0 =0 () =5 iy, and 3 o sle) - g o 2:;’(‘\’) g imply #lgd e s(gg for

all ge ot
We shall see that the integer points of P(%, A7, gg) that oceur
problems of linear maximization and minimization are points with the

property of irredueibility.

Tuzorey 1. T with noaaegalive integer congponents L), es drvedicible,

then the Hg) salisfy

where V9 d4s the monber of demenls dn lhe grouf,

Prooj.  Let tw (f{g)) with O

are f(g) o1 different possible entrics ineach component, there are

I j o ie)) possible different vectors £ satisfyving these inequalitics.

He) and integer. Since there

., A

If ¢ is 11‘1'0du(.‘iblu. the sum ::: - gy g o= gty must be a different

group element g{t') for each different ¢ However, there are onlv (%

different group elements; hence the inequality.

It is a standard result abont these groups that, il @ = M{[)M{H},
then [ == idet B Thus (% can be replaced by idet 5 n the above.

finear Algebra and [t A pplicalioans 2(1968). 4$51-558
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Tarorey 20 Huery wertex of PG, A7 o) s drveducible,

Proaf.  Suppose there is avertex v = (H{g)

there are integers #(g) and s(g),
'x\

e 4

for some g, and

En == ::,: el g
i, 7

and
Lo 2 HG g g e Foslge b Y e g
oz, A s AT L3
< 2 e s e

= A), the vectors vy = ({{g) - g} i
have nonnegative  integer

Sinee ig) —
s{g)) proan
¥

components and solve (5); hence they are in P9, 47 g0 But o =
{v; & 21/2, 80 ¢ is not a verfex,

It ds mot true in general that the vertices are the only irreducible
integer poinls of (%, 4" g). Generally, there are many irreducible
points that are not vertices. However, for the special case of groups ¥
that are direet sums of cvclie groups of order 2 or of groups of order 3,
all the irreducible points are in fact vertices. This is shown in Seciion 35

We now return to the original integer programming problem (2} to
connect 1t with P 47 o)

Let BB be chosen as an optimal basis of the linear progranuning problem,
Le., (2) without the integer vestriction. Let # == (&, ) be an oplimal
selution to the infeger programming problem {2). Since £ satisfes

2 1 H ; ?--:
B, 4+ Niy ==,
the cost ¢+ v can he expressed entirely in terms of the Ayt

s pdd M b - NEGY 4 eg®y

€0 X s pdy b0y
s B3l 0 R

Liiear Algebra and Its Applications 2(1960), 451-558
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where e, % ==« oy o €8 IND Since B s the optimal linear programming
basis, ¢,73 10, which we will denote by 2, {5), is the value of the linear

programming solution, axd the components o  of ¢.® are the relative

prices of linear programuning, and arve all 2= 0. Denoting the value ¢ &

ol the optimal integer solution by z,(b), (6} becomes

3.’(’"’} ’,(b) . (-.\.*,i7_\._ (7}

Tt F§ o Tand ket e¥ bethe #'-vector with components e¥(g) = min,,
L AL U R P 7o
6o Lloarly, dy ey fe*.

1ot us consider the problem of minimizing ¢ over P{%, 47 g4 or,

cquivalentiy,

min

ik

gy

e, A7

i ;{:n s

where #(g) 2= 0 and integer. s o feasible, i.e., not necessarily minimal,

solution to the conditions of (8}, Let 2* be a minimizing vertex solution
to (8). Let &% be a vertes of PUB, N, b) corresponding to %, and using

only least cost columns,  That s, v, = O only il o = ¢®/N ).

satisfics the conditiens (2by and the value ¢ +% can be computed from

coxF o e, B

Jut

anel, since £ minimizes (8},

=i

ERIE {m

Uz 4, ¥ Isa feasible selution to the imteger programming problem,

Ifa,® =
By {9) it i also maximizing, so we have the following theorem:

Tueorey 3. 17 1% s 2 verex of P(%, 7, go) snisizing (8), then
of PAB N B, &% s (3010 - Na®), 2%
o CR(IN ), ds an optimal solution
2= ().

aily corresponding varfex
wille ¥ = 4% and x, ;¢
to the integer prograzoming problem (2) provided B-'{h - Nxy¥)

i Algebra awd Hs A pplications H1069), 451
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We now state some conditions that ensure the nonuegativity of
3 AT
BoHh e N %),

The points v in sespace for which 2 is a leasible basis form a cone
given by the condition BTy 2= 0. We denote this cone by £, The cone
of points in A, at 2 enclidean distance of d or more from the frontier of
Ryowe denote by Ku(d). So K, — K,(0).

We can now state the following theorem:

Treores 40 If be K00 (10 1)), where D) == idet 13 and L is
! E\uas } : i X
the {euchidean) leagth of the longesi nonbasic colismn, thea the x*% of Theorem

3 is an optimal infeger solution {n (2).

Proof. Forthe Mg) of 1%, > - {1 pam D0 Lxpanding

shows

=0

Ny ) 22 0

Do, when e K (D - 1), (0 Nay®) e Ky os0 BYb o
and Theorem 3 applies.  This proves Theorem 4

Now £ 1s the same for all right-hand sides b which are equivalent
mod 73, since the group equation is unchanged, We can, therefore, Jut
together the preceding theorems in the fellowing statement:

Tuwcwes 5. Tf be K (0, (0 1)), theit there 1s an optimal solution
to (2) of the jorm (B-7(h - Na#(0), v *(0) where the n-veclor x,* s
o E G B DY, for any B
* gnininizes o

pertadic in the columns B, of B, i.e.,

XE as parl of Hhe veclor ¥ s (x,
the group problem:

min > ¥ {g)ie), > g g =g,
b w47
and v, = O only df ¢F oo o#IN )

Linear Algebia and Ns Applications 2(1069), 431-358
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Some remarks help in understanding this theorem. FFirst of all, let
s consider the cones and the domain of applicability of the solufion. As
a preliminary, consider {he ordinary {nopinteger) linear programming
problem with fixed 4 and ¢ but with varving right-hand side 2. We
get the picture Hlustraled in Fig. 2a. The space of possible right-hand

1. 2an

i, 2b.

side m-vectors & splits up into cones corresponding to the different optimal
bases B, By, ..., ete. 1 B is optimal for right-hand side b, and " is
= 0, then 13 1s also optimal

(1 is the necessary and sufficient condition

another right-hand side such that B3 is

for & and, in fact, B~

Y2

Finear Algebra and Its Applicerions 2{1969), 451538
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that y is in the come N Theorem 5 shows that each conc has a band
along the edge of lixed-widih 1 (D — 1) depending on the cone, and
any point wal lying on these bands is definitely a vight-hand side where
the solution obtained from the group applies. See Fig. 2h. Within the
dornain of applicability, the solutions have a periodic character.  More

precisely, the solution can be written as the sum of two terms:

Y s G (B, v DY) e (3D 0) e (e B NGB, w00,

where the [irst is (he linear programming solution and the second is a
periodic correction. Two right-hand sides & and & Iving in the same
position relative to the latlice of columns of B will correspond to the
same group element, and their solations will differ ondv by the linear
progranuming torm BN E - B0,

The solution to the group minimization problem need be computed
only once for cach of the possible g, f.e., for one period.  There are D
possible g When this has been done (and it can be done by o single
dynamic programming calculation as explained below}, the solution to
the integer programming problem has been oblained for ol right-hand
sides i the domain of applicability

Exvery & for which the linear progrannming problem can e solved at
all belongs to some K and so has a vepresentation b - WU n

torms of the columns I3, of Bwith 4, 22 0. Unlesssome 2, = 0, the multiple

kb will, for large enough &, e in K0, (D~ 1. Henee, except for
the vectors & Iving on a lower than m-dimensional surface, the iiteger
programining problem Ay e k) for £ large cnough alwaxs lics in the
domain of applicability.  Hence the name asvmptotic theorem,

Let us remark that, for a vector b in the domain of applicability,
the yestriction on the form of the solution to the group equation, which

savs that the components g} must satisfv

carries over to the corresponding vertex © of P2, N, b, The reason is
that cach nonzero v, is numerically equal to some {{g). Hence there

are optimal integer programming solations x o {2} with

(50]

FAppendix L eontaing s nuimerical exa wple of an asyimptotic integer programoing

problem,

fawear Hgebra wed Tis A pplications 219697, 451338
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When D= | we have strip widih /
all x,,.; == 0. This is the unimodnlar ca

(L0 1) == 0 and so, from (10,
As I increas

FERELEY

w5, we gradually

move away frem this linear programming form {(all x,., == 0}, and 1he

strip widths become larger. At all times the number of positive nonbasic
variables m the selution x s, again Irom (1), Hmited by log, 1.

Thus we sec that there 1s o gradual transition aw v from t}uf finear

programming form of sehution to\\’:n'd the most general integer program-
ming form as £ increases.

Turning now to the actual computation of , we sze that the group
mininuzation problem can be formulated as a dynamic programming
problem with 72 states, one for cach clement of .

For any set % C A7 and element he %, we define B R as

S = min (e, ey g

O or Hgh
in the mimimizing solution. In the Tirst ease, G978 o {57 — ¢}, B

i the sceond case, S5, L) o e L HLY o 21 so in every case

a simple recursion relation for, if ¢ ¢ %) then cither tg

IR I RIS G B/ Nl (1 B 1 7N R 9
s
Altheugh this s not quite a simple denamic programming recursion, if
is very close, and the dynamic programming approach is easilv ac ;qm:d
to the situation. The calewlation s given in detail in Appendin 2. The
arithmetic work dnvolved i proportienal to s/,
Tt is often uselnl, both for the group mishnization preblem and for

Sections 2 and 3, to introduce the graph (%, 47, ) which consists of:

() a vertex ¥ (g for ench ga @,

(i} directed ares eflg, g -+ ') rom ¥ (g} Lo V(g -+ g7 for all g @

and all g e 470,
(i) anare dength a{y) assigned to cach are ele, ¢ -+ ¢y Tor all

The graph for a cyvelic group of four elements U, 1 8g) &y with gy == 20,
and gy == Bgy, 0 shown in Plg, 3.0 7 = fon gy} and =z = {4, 3}

The minimization problem is exactly the problem of finding the shortest
path from ¥7(0} to ihe vertex ¥ {g,) correspending to the right-hand side
element g, when x is taken to he o*

Loy Algebio and Hs A pplications 201009, 451558
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Anvool the standard shortest-path methods can be applied to this
perfectly ordinary graph H{%, 47 7)) and provide methods for linding
the shortest path to g, or for finding the shortest path from 0 to g for all
¢ and, henee, giving #{g) for ail o

MG Hig)  Fige) Yiga)

Finally, let us turn to the actual width of the bands in which the
'm:l:-;(j') ])'
and this formula can casily be converted into a calealation that shows

solution does nof apply. Theorem 4 shows that this width is -

@@ D]
R e e @ @

@ & ] &
a & @ @ @
° ® & @
¢ o\ & @
° ¢ @ @

A0
Frao b Wy is shown for 2o (3 3 ‘;). For circled dots (hy, &), the asvmplotic

satution applies.  Vor dots with crosses inside circles, it fails,

whether or not a given & is in K, (D — 1}, However, numerical
examples and the actual vertices of the polyhedra (%, 47, g,) computed
so [ar indicate that this width, aithough it can be attained for just the right

Livear Algebre aud s A pplications 241968, 451553
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ete., is usually o gross

combination of g,, and of the column attaining [ .,

overestimate in the sense that most of the points in the band are points
where the asymptotic solution does in fact apply. Sec, for example, g, 4
which gives the arcas of applicability of the example in Appendix 1.
This lack of precision in the bound is not surprising, as the bound s hased
on irreducibilitv rather than on properties peenliar to the vertices them-

selves.
2. THE CORNER POLYHEDRA

AL Properives and Iaces
We now turn o the study of the polyhedra P(%, 47, 2} thomselves,
independent of group minimization problems.  These polvhedra have

the fellowing useful properties:

(it their vertices provide solutions to the asymptotic problem and
all extreme pont selutions to the asvmptotic problem correspond to
these vertices.

{5y their faces provide valid inequalitics Tor the original integer
programming problem;

(iiy)  for some right-hand sides 4, the P8, N6 actually comeide

with portions of the sought-alter pobvhiedron 2.

Property {1} has already essentially emerged from cur discussion. Tao
state it more precisely: if ¢ is some objective Tunction for which f s
optimal {the condition is ¢,(FTAN 22 o)), then the asymplotic solution
x to {2) is obtained from some vertex of P (B, N, B and, henee, from a
vertex of (%, 8, g, Also, if wis any vertex of P{#, .47, g,), there is
a e, with optimal basis B, whoese asvmplotic solution is obtained (rom
that vertex.

Property (i) follows from the fact that the original conves huil [
of feasible integer solutions to (2) is cortainly contained in /7 {5, N, #)
and, therelore, all its points lie on one side of the faces of P {3, N, b).
These faces, as we gbserved carlier, are almost the same as, and are
asily obtained (rom, the faces of (%, .47, o).

Property (ii5) can be stated more preciselv. Consider a vertex @ of
PAB, N, by T v satislies the inequalilies xp; 22 0,6t will akso be a vertex
of o I be KD - 1 0, it Tollows Trom Theorem 5 that all vertices
of P05, N, b satisfy x,; 200 Hence all vertices ol P5E, N, b we
vertices of 2. Similarly, all bounded faces of P (B, N, ), being determined
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by a set of lineariy independent vertices, ave also faces of P So, oxcept
for its unbonnded (aces, P {53, &, b) coincides with a portion of 2 for
problems with b K (0 - 1, )

Tt is easily scen that the part of 2 which coincides with P (72, N, b)

consists of (1) all vertices of P which maximize some linear roabjective
function ¢ whoese Hinear programming maximum is af the lnear program-
ming vertox defermined by the basis 73: {i) the faces of 72 determined by

these vertic

Turning now to PUE A7, g0, we see at once that 36 is cither empiy
or n'-dimensional. For, i g, dees not lie in 7., the subgroup generated
by .47, then no solution to the group equations is possible. On the other

hand, il g, & @, then

with the 2g) taken O =0 £(g) <7 slgd. s{e) is the order of the clement g,

o

I owe

tey, s(g) g e 00 These ig) provide one point 7 of (%, 4, o)
wse () fo dmmt( the unit vector with i{g) == [ and all other components 0,
then clearly &4 s{g)u{g) is also a solution to {3} for cach of the # possible
ge A7 so (W 47 o)) s w'-dimeusional.

OFf course, if P, .47 g0 §s empty, so is 2072, N, b and (he original
integer programming problem has no solution.

We next consider faces. By o face of P(#, 4, L) wow 13! ahwivs

mean an {127 - Di-dimensional face or, more preciselv, an (G I)-dimen-
: i : ¥,

stonal hyperplane () with all peints of (%, 47 g} on one side and (i)

generated by the points of P07, A7 o) Iving on it.  (Here generated

means that all peints of the hyporplane are weighted smins of the generating
points with total weight 1))
Tvery face corvesponds to some incquality, and we denote the cocfli-

cients in an meguality such as

o a{g)ile) {11}
g, A
by (7, ), where sz is s'vector different from 0 and 2, a scalay 0. For

(7, 7y} to provide a Tace, the vectors £ safisfving (11} and the couatity
seb ey st meet the conditions ontlined in i) and (i) above.

Now let us call the set of nonnegative integer solutions to (5) the set
T Since P, A7, g0} is the convex hull of the points of 17 we can easily
prove thal {L1) provides a face of P{#, .47, g} il and only if

Linsar Ageliva aid s A ppl
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(" for every (el ad Ty, @il

(ii)" there are £¢ T which generate the hyvperplane of - .

The first lact about faces 1s;

Turorex 6. If (7, 0) is a face of PG4 g, then 7ig)
0,

geA and =

Proof. T o) solves () so that Hg) e T, then so does gy -+ n{g)s(e)
when the n{gd are anyv nonuegative integers. (o, o) is a lace, wo must,

therclore, have

RIS
o

for anv choice whatsoover of the w{g). But, if 2{¢’) were <2 0 for seme
g’ then for sfg’) sufliciently Targe Hg) - nl2ds{) world not sabisfv the
incquality. So o{g) 2 0 for all g0 Nigo, since the Hg) and =(g) ave =4,
and cqguality must be obtained for some ) i (7, ,) 1s a Tace, 1t lollows

thatl gy 2 0

Next owe have a theorem which comnects the faces of P{¥ 47, 24

with a linear programming problom:

Tueoresm 7. The enequalily wh 2wy o 0 provides a face of P, A7, gg)

if, aned onlv I, mois a basic feasihle sobidion of the systew of inequalities
il ey, ali el
This svstem involves one inequaiity for each £ 7. A basic feasible

solution is oue which satisfies all the inequalities and produces cquality

on a set of rows of vank ',

Proof. It {m, =y} provides a face, then, by (i, = ¢ 22 my lor all te 7,

and, by (it)’, there are 2 £ & 7 which satislv s - & == 5, and generate the
hvperplane sw- & s @ Sinee the £ generate the hyperplane and since
sy o 0, the hyperplane dees not pass through the origin, the £ must
b li}wm'l\' independent. Therelore s is a basic solution.

Now, s is a basic [easible solution to the system of Incgualitics, we

haves - & oy all fe T and, henee, ()7 s satislied. Since s is basie, there

Finear Algebra ared s Applications 201969], £31-5358
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are a' mdependent rows which are satisfied as cqualities; we may take
these rows as the vectors £ Since they are Imearly independent, they

must generate the entive hypoerplane - 7 2= a2y, so (i1) is satisfied and
{7, ) 38 a face

There are a number of remarks to be made about this theorem:

(1) We can perfectly swell fix 2, at 1 in Theorem 7. since positive
multiples of (&, @) vield the same face.

(i) Althongh there is an infinity of fe 7, all { with Ha) = s{g) are
superfluouns.  Hence the number of inequalities is trivially reducible to
the finite number [ (1 -4 s{g).

(i) The karge finite nmmber of rows remaining in s

7ty could he
dealt with in a computation by using row generating methods Jike those
of [6F and (91 Basically, one uses either the primal or the dual simplex
method but produces rows only when necded,

In the primal method, after selecting a pivot cohimn, one needs to
know the row which represents the inequality that is violated first if the
variable of the pivot columi is inereased. This leads to an extremalization
problem over all possible rows. The row selected is the pivot row for the
pivot step, and this is repeated,

In the dual method, we look for the row whose meguality is most
violated and sclect it for cach pivol step.

In our case these extremalization problems over all rows become
extremalization probloms over all £¢ 7 or over all solutions to the group
equations; so any of the shortest-path or dynamic programming methods
for group minbmization apply.

(ivl  To get started with a primal mothod, a primal feasible solution
15 desivable. That is, one face of P, 47, g} is wanted, Now {at least)
one face can be obtained by variants of the dynamic PProgramming or
shortest-path schemes for group maximization. The idea of the variant
s this: choose the @(g) so that the shortest-path problem, say, has ties
o its solution, i.c., more than one shortest path. By changing the z(e)
to produce more ties, one eventually produces a @ (or which there are
i’ - 1 independent shortest paths (independent solutions ), cach costing
7, (i, o f o= 7o), and all other paths arc longer, i.e., for ail other ¢,
-t 2z This caleulation is given in Appendix 3.
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I Faces: Special Properties
Let us turn now to some more of the properties of faces of %, A7, g).
In Theorem 7 we discussed only faces (m, 7)) with =y - 0 Since any
face can be given by an inequality (s, 7,0 with oy 22 0, there still remains

the possibility sy ==

Turorem 8. The only possible faces (m, 7y} of PUG, A7, g,) with oy = 0
are e w' hvperplanes oo 0{g) or, equavalently, g) - 0.

Prooaf. Suppose (mz, 0) is a face of P{#, A7, g0, Smee the origin lies
on this hyperplane, it is a ' - L-dimensional subspace, and, as it is
generated by cloments f& 77, there must be a set of o' - 1 Hnearly -
dependent t e T on the hyperplane. bo, for each of ﬁw%e‘ AN SR N M
L, owe have 78«2 0. Since the z{o) are 2 0, we have 7{g) == 0 unless
éf(‘g") == O for all veclors £, B3l if Flgy = 0, all 7, {for more than one element
g, the rank of the #" — 1 vectors Fwvould e’ - 2 or less, a contradiction.
Sds w0, and

So the only possibility aside from ={g) = 0,
sefg) w0 0, g b which vields the face of the theorem.

We have shown that the conditions (4 2= 0 give the onlv possible
faces with right-hand side s, = 0. 1t is also an_\ to sav when these

condlitions aclually do give faces.

TaroreM 9 ({4 =0 6 a face of P(F, A7, g0 of, and only if, the
element gy les in the sff.bgmwﬁ G . of P generated by the clements of

AT
A f T gy §‘ r theie ) = =0 ds a face. Here p is lhe
.,"4 i
smallest positive fnleger defining the coset plho+ % (. i which gy fes.

Proof, I e.é& % ., then there are no solutions fo the group
H S0 M,’, N b

bl

equations with #/) = O; hence LA} =0 05 not a Tace. 1 gy D O
"

then we must have a representation

g()

and the unit vectors s(giu{g) added to ¢ for all ge.4” — h Torm an
(2" - 1)-dimensional arrav of sclutions to ) == 0; hence ) 2= 0 s a
face.
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Now, il g, d W . since % o splits @ . mio cesets and, if
b L 4 R A

PUF A7 ) 18 not emipty, g is 1u one of these coseta, The coset must be

ol the form ph @ 0 and we can choose for ench coset the sinallest
AT

ble po Again, this gives one solution to the cauality /(1) = A, and

p()"-
the others follow by adding unit vectors w(e), go A7 - /z. Since there
is no representation for g, with (k) < f, the ine qualitv ({4 2 p s satisfied
for all te 7.

tn what follows it is particularle wseful to remember the shoriest-
path nlerpretation based on the graph 0% 47 7). Tn this graph a
shortest path 2 from ¥ (m to 7). which contains ) ares corresponding
Lo g, gives a solution £ == ({g}, g ¢ 47 fo the group minimization problem.
The objective fanction is w7 o 2(g), g ¢ .7 There are, of course, many

different paths corresponding o the same solation f{g} in which the cor

responding arcs are faken in different orders

buxinin b Sappose I ds a shortest path froi ¥ (0) [o 7 {ug) and o
he corresponding solulicn.  Then, I 1 s anv nonncgabive dileger wector

weth $(g) = Hey, and :*“:: Cf e f i ey path starling el Y (g)

and corzespouding fo the vector Ugy s a shortest path from o oo Ve e B

Proof. 1as clear from the definitions that any path corresponding

Lo &7 and stareing at 7 '(¢) must go from ¥7{0) to ¥ o g T thare were

a shorter path 77 from #7(g) to ¥ (g - A, then the corresponding £

wonld have (7o« o7 and, sinee ™ A T A B A )]
s { : " : ;

would give a path from 77{0) to g, which would be shorter than the shortest
& 1 o1

path since (7 5 [0 1o« £ This s o contradiction,

Lexvia 20 7 (), 7y = 0,0 0s @ Joce of PG, A oo aind oo
thei there is a shortest path froimn 770 o ¥ (o) with (g} = 00 This
that there is a shortest path from 77(0) fo 1 (g,) passing throagh o o,

Proof. Since {og) s oa e with z, o 00 there exist o lnearly
mdependent £ with fa ooy For all other ¢ satislving {5), /-7

Each of these £ vields shortest paths, I all £{g) == 0, {or some g, thet
would be Hnearle dependent; so at least one has £40) = 1.
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Trvowey 10 [f {7, 7, =0 ds a face, slg) is the lenglh of lhe
shortest patle from (0 Lo F(g).

Praof. By Lemma 2, there is a shortest path to ¥7{g,) with #g) =
Using his solution as ¢ and w{g) as I, by Lemma 1 the one are path
corresponding to a(g} s a shortest path. The fength of the path is s{g}.

Cororiary 1. If g, aad po 4 and g on gy v gy with g A7, then

aelgh = algy) - a(g)

Proof. Hg) == 1, t{gy} == 1 provide a path to #7(g} of length afg) -+
st{ge), but m(g) is the length of the shortest path to ¥{g).

Cororary 20 T oy and goo A7, and g, b gy e gy, Hhen s{g))

algy) v Aty

Proaf. By Lemma 2, there is o shovtest path Trom #7(0) to ¥ (g,)
with (g} = 0. Let the corresponding sohition bhe £ Then both wfg,)
and { - wr{zyy ave veclors £ satisfying Lemma 1, and henee they correspond

to shortest paths from 7 ({1) o (e, and from 7 {01 Lo F gy (g =0 gy o 84,

respectively; so

abul) el
and therefore, by Theovem T,
g +elge)

Leaving for the moment the properties of the a{g) associated with a
fixed lace of a fixed polvhedron P{%, A7, g}, we ask instead the following
question. \\-'lwn does a Tace persist froms one polvhedron to the next,

. [ {or, o) provides a face of P, 47, g}, does b also provide
a face of I’(fr A7 Ry 7
[t 15 easily seen that persistence of a face in this sense is too strong

1.0., when,

a demand. Tor, il (m, 5, is to be a face for both polvhedra, there would
have to be at least 77 shortest paths from ¥ ((—J) Lo F(g,) and & more from
¥ ‘((T)) to ¥, all of the same length, and this seoms 1o be a very special
situnation.  However, 1 we allow parallel displacement of a {ace, we see
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that persistence of a lace in this sense 18 common and ccowrs under the

following simple suflicient condition

Tueores Vb Consider the graph MG, A" 2y with are fenglhs m{g)
hased on a face (7. m2y), y = 0, of PIG, A7, go). Lel VB De any of the
eertices that can be veached by a shoriesi path passting threwgh ¥ (g,), Then
for cach such 770 theve is a coustant mo{le) siek that (m, 7,000} provides o
face jor P(G, A7 1),

Preof. Lot H0) be the vector corresponding to the shortest path from
Flagy to 70y, Then,ilthe !, i w1, 0L 5 give the o’ Hinearly independent
shorlest paths from '1"'((1} to #{g,), the w' vectors £ 4 i(h) provide #’
paths from /((“J} to ¥(A). Becanse of our assumption about the existence
ol a shortest path through 7 gy) to YT, these are all shortest paths.
What must be shown is that these vectors are stil) lincariy independent,
Now suppose there is a dependence with weights @, We can assume
the w; sum o 1; so, using the weights to form a zero vector, we would
have

e {j:: w iy e 0
But m- ¢~ oy Denee

P N

Butz, 2> 0 and all components of 7z and of A} arc nomegative; therelore
this is a contradiction. Thus these paths are linearly independent and
(o) ds a lace of P(F, 47 5 with m{h) the shortest-path dislance

from V"(fl) to 7.

We now turn away from the P(%, 4, gob o itroduce the larger
polyhedra P{%, g1, which are investigated in more detail in the next

section.

Co The Polvhedra P, )
We define (7, Lok as @ 7 O, b The set 7 15 taken to be all
of % except 0 and, adopting for % . 0 the symbol %, we therelore

define P77, g0h as the convex huli of the nonnegative® integer vectors

= oy o

vectors satisfying (12} The solution #{g) -« O is excluded.

o we define 2% (08 ag the convex hudl of e nonzero nonnegative

Linear Algebra and s Applieations 2010691, 451358
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Fan B oo e #—o] dimensional space [ satislyving
. .
o g e o (12)
P/

The retation between P(#, g,) and PL%, 47, go) is given by the following
theorent. 10 we let F(4) be the a'-dimensional subspace in {1 - 1}-
dimensional space in which #g) - 0, g & .47, we can identily our previous
a'-dimensional space with this subspace and consider P(9, .47, g4) as
Iving in this space.  All vectors £ in our previous w'-dimensional space
are exlended by adding components #(g) == 0 for all g4 .47 Then we

have the theorem.
TurorEy 12, P(%, 47 gy s P97, g0 O (A7

The theorem asserts that the various possible (%, A7, g,) arc obtained
from the master polvhedron P(%, gg) by setting some variables to zero.
Since P{#, A7, g,) is the convex hull of certain lattice points in (%, gg) 0
E(A47), the content of the theorem is that P{%, .47, gy) is in fact the whole
intersection.  OF course, n general, the intersection of F{%, g)) with
some subspace would be completely different from the convex hull of
the lattice points in that ntersection.  (There could be no lattice points
in £he intersection, for example.) They coincide here because the intersee-
tion Hies entirely on one side of P{%, go). This is the only property used

in the following proof.

Proof.  Clearly, any nonnegative integer te P{9, A7, gy} dies in (A7)

)
and, since it satisfies > [,.ﬁ(,g’) cg o gy, it satisfies (12} and so ik in

PG, gt Thevefore P9, 47, g0 © P, god NE(A

Now suppose a point pe P, g0 NIEAT) Slncn itoisin P9, g0,
i s a convex combination of integer points e P(%, g,) which satisfy
(12}. Selecting those £ with positive, Le., nonzero, weight 2, only, we have
fres A Since fe E{AT), s gth component Hloy must w0 for
gd A So cach e A7), Sinee £ satisfies (12) and Ties in F(A7), it also
satisfies the group cquation defining P(%, A7, gg) and so s in P{%, .47, ).
Fhus p is a convex combination of points of P(-’” A g Sope P{Y, A7 g)
and, therclore, PIG, A7, g3 D P(%, g,} N ELA7), which concludes the proof.

\With respect to vertices and faces the connection between P{#, g4}
and P{@, A7, ) is quite direct and is sammarized as follows:

fans EGGY), 4a1-5358
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Tawowe: 130 (i) An dnequality (2, 7,) with @ an 0 vector provides
an (i’ o Updimensional face of (4, A7, o) ol and only i there ds a (D 0 11
disensional face (7', 7,0 of PU7, o) with gy e mlg) all go 4

() Ewery vertex of P9, .47, g} is a verlex of PG, e A vertex
Lot of P9, g) 05 a wertex of P(W. A7, g) i and only @f te (A7)

PG (5 PU g 1100, (0, (25, (3, (5)Y, 130

Ty e Ty Wy Ty Ay Fy Ay Ty s Ty
[ A T O O | (R T T
200 0% 2 1 03 24 03 103
IS - S I T4 I I T
|- T T

10 0 0 6 I C S R )
O 1 0 000 [ I PR YR
a0 100 0 (T R I
00 o0 1 0 o0

B0 0 6 1 o0 (EIE T B S B

VERTICES

PUE (3

Uy dy 5 141, {
{3,0,0.0, 6 {

{1, 1,0,0,0 {1, 140, 0
(0,0, 1,00 {

(1, 0,02,

0,20 08 (0,20, 1)
10,0,0,1, 11
{0, 0,04, % {0, 0,03

Essentiallv, (i) states that every face of (%, .47, Zo) 18 obtained by
taking some face of P(%, g0 and simply onttting the components of
a7 1 this is done Tor all faces of P(#, gy}, all faces of P, A7, g,)
will be obtained plus some valid but superflucus imegualities. To prove
(1) we merely note that, in view of Theorem 12, P{@, A7, g} is the set of

points satisfving

Livear Algebra and Hs Applications GG, 45)..558
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oy = (), 1%

and
ket e N

for all (or, gy that ave faces of P gt Now, il a polyhedron is given by
a fnite set of inequalitics, cach face corresponds to some one of these
inequalities; so cach face of P{%, 47 g0 corresponds to some {01,

For (i1} we merely note that, 104 s a vertex of P{%, g0 with all f{g) == 0,
g A7 then it s in ]f{,:l yand certainly, as a vertex of P{F g0, it s a
vertex of 7"(:’6’, AT g I Ewere & vertex of P{%, 47 g,) and wot a vertex
of P( %, gy, 1 would have to be a positive convex combination of points
(& ol lmt, just as in the prool of Theorem 12, these points must
lie in (’f} A7, gl i’his would contradict the assumpbion that s a
vertex of P&, A7 g4

Table T illnstrates the relationships {f) and (11} Tor the polvhedra
PUG. (8)) and PGy, {00, (1), (2), (3), (6)), (0

:
Thus the faces and vertices of PU%, a0t contain the faces and vertices

b

of P{%, .47 g for all possible A7 and so contain mformation about
many dilferent problems.
We turn next Lo the study of the P{% g0

TOPROPERTIES oF THE (% g

Ao dedbonior pliisis

In dealing with P(%, ogb there s much o be gained lrom the use of
symmelry as exprossed in the group automorphisros, Inowhatl follows
we shall see that, i dealing with P{%, ), one face leads to other faces,
ome vertex leads to other vertices, and knowledge about P97, g} leads

knowledge aboutl other polvhedra P{%, 5L

We start by describing the effect of an automorphism on o face of
T, oy

Turorss Y If (o) 15 o face of PG o)) wilh componends 7o
! [l : i Lt 3
and o G Wi any wdoator plisae of % Lh
ey = (b led ds o Jace of DU dlegh

ein (7, my) with conifponenis

Proof.  We make use of the graph H{%, @7 7)) which we now vefler
to as H(%, 2. In H(% a), let P be anv path from 77 (()) to ¥z, to.,

any veclor (s [(g), g 07 satisfving

P

T
]l
"
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Y Y 47 e i
- Ha & 1)
U

Appiving the antomorphism ¢ gives

:}; !(;f)"',)(‘ff} - ‘J"(:i'()} :t: f((/’ l")
el ws (7

so the vector £o fg) = fd ) gives a path P to #(pleg)). Now we
introduce new arc lengths :,{g) w= (i), The length of P oin terms
ol the #{y) is

2 FDUe) == 30 alp gl Ne) = X algily) - UPY;
el el sl

therefore under the antomorphism ¢ the path Fin H{% =) goes into
a path Pin H(%, 7 of equal length.  Thus, as ¢ has an inverse ¢—1,
this sets up a one-to-one length preserving correspondence bofween paths
m f{%, 2) and paths i (%, 7). In particuiar, shortest paths go into
shortest paths. Also, since { is merely a rearrangement of the componenis
oF £, set of lincarlv independent £ go into a set of lincarlv independent 7
If ¢ are the independent set of shortest paths in H{%, =), the I' are an
independent set in H{#%, 5); thus 7 satisfies the conditions for a face,

since the faces completely determine the polvhedra, this means that
the polyhedra P(%, g0} and P(%, d(g,)) are identical after the rearrange-
m{énl ol coordinates imhu ed by 11 ¢ leaves gy fixed, this is a svmmetry

P gy) U ey -
can be obtained by smlpiy rearvanging the coordinates, once P{%, g, is

gy this means that the polyhedron P(%, )

obtained. Tor example, il % is cvelie of prime order, there is an auto-
morplism ¢ mapping g, onto cvery nonzere h, so there is essentialiy
only one polvhiedron P2(%, g3 to be oblained.  All of the various other
P&, 1 have the same number of verfices, faces, ete., which can be
explicitly exhibited, once P(#, g,) has been obtained, simply by applyving
the automorphism ¢ that sends g, onto /.

I gencral, then, there is essentially only one polvhedron P(¥, g01
for cach automorphism class in @,

For vertices we have the folowing corollary:

Cororrary. [j{ .= -,( £)is a verlex of P(G, go), then { = Hg) = (g
s a vertex of P{%, (g,
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Vortices, however, have an additional property: they can be produced

by taking subsets,

Tugores 15, Let e i{g) be @ veriex of P(%, gy). Let s == s(g) wilh
)

s{g) =

gy for all ge @ Then, if

e 3 ste) g

o

s 7s a vertex of PUF, R

shortest path from ¥7{0) to #7(g,), then s 1s a shortest path from ¥7(0) to
#y. Temma 1 can be applied to any = used as an ebjective function

Proof.  lenuna 1, specialized to our situation, shows that, if £ s a

in this minimization problen, not only to faces 7; thus any 7 minimized
over P, g at Lis am minimized over {F, ) al s Since £ s a vertex,
there are certainly 1) - | independent vectors m minimized at £ sinece

these are minimized at s, it must be a vortex also,

COROLIARY. Lot & and s be as in Theorem V5. If ithere 1is a ¢
suehr that (j,/g, s g, thes § e ey o= g(</,""g) is a wverlex of U, g0

This corollary mercly combines Theorems B4 and 15, but it allows
additional vertices to be produced for the same polvhedron even when
no autemorphisms leave g flixed, For example, consider the cyelic group
of order 11, Denoting it by %,,, and the generator by 1, we findd from
Appendix 5 that P{%, (10}) has o vertex § == Bty by dy v O AT,
s 1. According to Theorem 15, cach £ given by:

o6 by G 1, iR
300 0 3
200 0 )
200 Q 2
o 0 8
10 0O 1
o1 i 7

is o vertexs of the polyhedron (%, {#)) whose b appears in the last column,
Applying the corollary and the antomorphisms by multiplying through

L
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by 7, by 6, by 5, by 4, by 10, and by 3, respectively (7 x 3¢ = 21g
TOy; 6 o5 Be o= B4y w0 0oL L) etel), we obiain six vertices of P, 109,

namely,

TN all other components 0,
few 2, 4y 1, Wl other components 0,
fo o 2, all other compenents 0,
by b, f, all other components 0,
Ly == 1, ail other components O,
fg = 1, all other components (4,

of which four are distinet

3. Faces

We turn pext to the properties of the sz{g) making up the laces of
(%, gob. We have two types of Taces: those given by incqualitics (s, )
with oy = 0 and those with a, == 0. First, for those with m, = 0, we have
the simple result:

Fuwowen 16,0 The condition t{i) 2= 0, jor a fixed hc %, vields a face

of PUG, go) antess % ds cvelic of order

Proof. Appiving Theorem 9, we need onlv show that o, lies in the

subgroup of clements genorated by %0 o h to establish the theorem.
First, il 7 is of anv order s{f other than 2, then @ —  contains — &

and, benee, contains 4 in the group it generates. 17/ is of order 2 but

S hoso it s

’

@ contains some other element 7, b — & must be o4 G and -
some other clement 2 ¢ @7 Thus @7 contains 27 and B with A7 e b s i,
and thus generates . This leaves only the case 90 = f, i of order 2,
H @ s evelic of order 2 and gg s /15 the generator, then 1- () = 0 is
never attained as an cquality, Instead, 1408 == 1 is a face becanse of
the solution ({4 - 1.

Next, turning to the faces {7, 7)), 7, = 0, we have:

Farowes 7. J7 (mom,) o5 a face of PIF, g0), w, 40,

(1) algy - olgy - g) samy, all gew,

Linear Algehre and Ns Applicalions 201069}, 43155
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b, all pgte @

BN

'

and
saaiEn L P
(ii1}* *E{gl;) W g

Preof.  {) and (1) are direct applications of Theorem 10, Corollaries
1 and 2, to the case .47« @7 However, (i} has more significance now,
for 1t means that the cocificients wlz) oceur in pairs and, if =g} is known,
then (i, sav, &y, s normalized to 1) se is its complement a{g, — £, (i)
follows from the application of Theorem 10 with the g of the theorem
replaced by gy Siice o is the length of the shortest path {rom 7’"{(,))
to gy, Theorem 10 asserts that mlg) =z,

Theorem 7 is mainly a resfatement of previous lemmas with wides
uselnlness i the case of P# g, However, with its aid we can now

replace Theorem 6 with the following strong result:

Treores 18, (o, @), @, = 0, s @ foce of the polviedron J%, g4,
Lo 0, i and only 4 it s o basic Jeastbie solulion Lo the systeii of eqiralions
amnd inequalifics:

@) gy g ey, gETT, L g _
(13)

) baly zale s ) g e ?

_7(51) f] oo 0

Inr contrast with Theorem 7 we can casilv write down conditions {13)
explicitly, and we have a Mghly structured matrix with at most three
nonzero entries in cach row and veflecting the group structure of % very
closelv.

Il the equalities are used to eliminate variables, we will have roughly
D12 variables and, climinating duplications among the incqualities after
the cauations are taken into aummt, about DJ%/6 inequalities aside {rom
the nonnegativitv conditions on the variables,

H gy = 0, (1) and 0 bold and (i) is dropped.

PO gy e 0, then mlgy ooy ds omitted and the wodificd (heorems holds.

Lisiear Algebra and Hs Applicativas 2(1969), 45155
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Proal®  We show first that any basic leasibie solution to (13 is
a face.

[{ s is a basic feasible sclution of (13), it satisfies equations whose
rows are of vank [ - 1. It certainly satisfies the first of equations (13},
a{gy) = g, and the second, z(g) -+ =
and these provide a hncarly independent set of rows. This set can then

gy =, Tor all ge @ ook g,

be augmented by ather equations wntil a set of 1 - | mdependent

equations, which inchudes the ones just listed, is obtained. These additional

cquations can be of two forms: either

{1) g} oy sy b B e 0, o gy, A0
or
(i) alg) - 0,

1T an equation is of form {1), it is added to the equation aly - h) -
Ay {e -+ )

=, Lo form the new, and siill independent, equation
algh e alh) ey oo (g R R

it of tepe (15, muliiply by the order of g, s{g), and add the equation

srfeg)h == oy to obtain
staialg) - wlgg) = 7,

which is, of course, still independent.
IF at this point we consider all the rows, we see that the entiies $#{g)

of row {1 are nonpegative integers satisiving

L,
ﬁ, ia(‘!\’)g =5 o,
plF

and that & sy Since the € are Iincarlv independent, this is a set of

i e (13 Dlevectors belonging to 7 and generating o0 £ =0 7, thus
(7, 7o) 1s @ face. Now we need only show that every face is a basic feasible
solution of (13).

By Theorem 7, any face (m, =y} satisfies (13}, Since the solutions
to (13} form a bounded polyhedron, (z,m,) 18 cither (i) a basic feasible
solution to (13) {vertex) or (i) a nontrivial convex combination {sw with

* This prood has been considerably shortened as a result of a suggestion from
Ilis Johnson,

1y

{anear Agelra and Hs A4 pplications 21969}, 45135



POLYHEDIRA AND COMBINATORIAL PROBLEMS 483

nonnegative weights adding 1o 1} of basic feasible solutions (7, ).
But, since (z7, ) and the {7, m,) are faces, they are basic feasible solutions
{vertices) of the system of inequalitics appearing in the statement of
Theorem 7. Since one vertex of that svstem cannot be a convex combina-
tion of others, () cannot be a convex combination of the (7, ).
Thus possibility (i1} is eliminated and (i) bolds.  This ends the proof.

All faces of the 36 polvhedra Hsted in Appendix 3 bave been computed
using this theorem. A computer code of Balinskr and Wolle [13] was
used to list all basic {easible solutions to the system (33}, This list provided
all vertices of the polyhedron given by {13). Generally, many {degenoratc]
bases gave the same vertex.

The faces listed in Appendix 5 show obvious symmetries and patterns
depending on the group structure. This suggests the possibility of con-
structing al least some of the faces of (¥, g,) without the use of Theorem
18, We shall see that this s the case and that many of the faces of P{%, g
can be produced essentially by formula.

We start with evelic groups and then move on to some theorems
that cuable us to produce faces of noneyelic groups lrom laces of their

cvelic subgroups.

. Somc Faces for Cvelic Growps

We ghall see that it is quite casy fo construct a family of faces for
any cyelic group @ and right-hand side g, We lirst consider the case
20 7 O

Let us examine the graph H{%, ) for a cyclic group. We designate
a generator by g, and represent the other clements as multiples. Lot
gy wigy. In Fig. 5 we put in only a few of the arcs of the graph. Lol

. G - s (e -
mg, (D"E}g‘ (D-E)gI

{% be the order of the group. We can form 1) 1 independoent
paths 7, by using the group clement pgy once and then completing the

Linear Algebra and s Applications 210689, 451554
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path to g, by Herating g, il p - wm, or werating - gy o (I Dy A
# = omic This set of paths is clearly independent. Now, if we set gz, (poy)

P powsan all the T, 4
same result for the remaining paths we set z,,(pg) -
for p o

Now it s casily seen that the length of any path in this H{w w0

51, have a total length 1. To achieve the
(13 e PTG g,

from 0 to gy is at least 1, for in anyv path the ocourrence of any clement
Pay can be ceplaced by pg’s or the appropriate number of . gys, 00 o,
without changing the path length, It lollows that the T, are minimal
paths, and so this assignment of z values gives a face with A
We can produce a face this wav for cach possible right-hand side
gy, I we are interested in a particular vight-hand side, RAN gy gy,
then, using automorphisms, we can convert the other faees that are
in the same antomorphism class into faces of P{#, v For example,
taking # to be the evelic group of order 7, we have for P{%., (6)) the Tace

' 208 405 |
(]'.‘“,'_3,.1..,..('),¥,], :
N ST I S T I

(5t 1) with s = 6

or
[IBF A S ¥ ST F S = S W
Vil b2y b By B G
i which the fractions a{gy) = [, etc., have bheen converted into integers.

Simitarly, for the other g, the a2{e) arc:

wlesh 7 w0 mldzy (50 aie) B
P (5 2 i i 8 Hi) ; 10
PLG (41 3 i ] 12 5 ¢ 12
P, (30 | 8 12 q i 3 12
P (0 i 10 8 6 i 2 Y
PG i 5 4 3 2 | G

Now to produce faces for P{%_ (6)) we apply the antomorphisin
0

sending gy into Ggy {(multiplication by 4, obtaining Trom the topr row
of the table the new face of P(%., (8)):

Ay e Bl i By 2 2y 4 Gl 4 108 2 10,

Lincar Algebra and s Applications 201969y, 451558
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similariv, from the next row, multipiving the group clements by & vields
as a face of P{Z. (01}

Of, oy b Bl e BE b B 4 12T
! 2 b 1 i

Appiving multiplication by 2 to the next row merely produces this
fast face once again, and the remaining faces obtained by applying
antomorphisms are duplicates of those already obtained.

It is easily proved that the general situation is thist Il s, ', and
m are in the same autemorphism class (which simplv means, for cvelic
groups, that the godls (w, I, /D), and (w7, D) ave equal), then
the face obtained by using the face (z,., 1) of P{# g} and applying
the automorphism ¢, ¢lur'e)) == (ng)) vields the same face of P{%, gyl
» and applving @', " g} =

122

mz, if, and only 3f, m7g

as using @,
'y

Thus, in general, this procedure produces, lor a right-hand side g,

about half as many different laces as there are clements in the auto-

morphism class of g,

So lar we have discussed the case go o0 0 10, = O, PG, {0} consists

ol the convex hull of the nontrivial solutions to the group equation, and
it is casily vevified that the vadues m{img,) o« @/03 allow, almost exactiy
as above, 1) - b independent nontrivial minimal paths Trom 0 to 0 1
H{#%, 7)., Hence thisa is a face. The sutomorphism sitnation is, hiowever,
a little different.  Every automorphism of % sends 0 into O and, henee,
sends (z, 1) inte another lace of the same polvhedron %, (4}, Since
a(g) =

Thue, in the case g, -+ 0, we get as many different faces from this one

o it Tollows that all of these faces ave different.

a{e’) whenover g

construction as there are automorphisms of @ Taking again the evelic

group of order 7, wo construct the lace
oo 8 AL i B e B 7
”1 by b Bl by e Bl e Bl e T

of P{#,, 0) and then have by automorphisms (multiphang by 2,35, 4, 5,
)]

and 6} 1he faces

AT TR

Linear AMgebra qid Hs Applications 2(10691 451 558
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Bl -1 Gty - 2

6, b 5

These are faces of (%, (0)), and, in fact, a comparison with the list of
faces in Appendis 5 shows that these are all the [aces.

We turn next to the problem of connecting faces of Jarser or wmore
complicated groups with the faces of smaller ones,

Do Lifting up Faces

Tuwrowey V0. Lel ofi be a hosnowmorplisin of G onto 9 with bernel
S and wilh gy ¢
face of P(G, g4} when w{g) is given by ale) = ' (fg).  (We take ’r’((ul) = )
so w(g) =0, ye F)

Then, of (s, me) is a face of POF gy, (o, ) is a

Praof. We proceed to coustruct /) — 1 independent minimal paths
in %, 2} from 0 Lo g,

First we note that the value of such a mivimal path i iy, Tov, if

there weve @ path of value 7y <7 sy with g occwrring (g} thnes, we would

have
e TR Corl o) e S . s
Ty = 5Ty v 2,,, Heahaelg) o= };, :; Hoy e ()
e ’é’ Fdd gV

= O ) )

AeFL gadri)

E\

then the path in H{#, 2"y from 0 to Iy = gy with components #(h)

o ey HE) would have cost m, < sy, and this is a contradiction,

Next we see that (here are many paths in H{% ) which actually
altain the value 7y and bence are minimal. To obtain them we select
clements from cach coset to Imitate a path iv J(#, A,). 11 the total of
these elements is not g, we add in an clement of K {which has cost 0)
to make the path go to Za

More precisely, let ¢ be any lunction from 3 into @ which seclects
coscl yepresentatives, Le, dhp{l) == . Any such ¢ provides a unique
representation of cach eloment g in the form

gy kL e

Linear Algebra and Jis Applications 21060), 451
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Then for each path ©{h) in H {3, ) we obtain 77 paths in H{%, g) by

16r) == 0, g By -+ b with Aot O and & o4k,

Llg) = il il g pliy - B with fof 0 and & =k,

gl = 1, i g owe b)) 4 k7 with o= 0 and & - l}; idg) o
T

Llg) == 0, oo e () R with feoes 0 and # - :‘:: Llgy e
wd.

[f we call this path 7 (z), we obtain, nsing the 30 - 1 iadependent

minimal paths in JH{# gy, (7 — 1).%7 minimal ]m{hs in H{%, gy, These

paths can be eu*ranwsd as rows with a component for cach ge @7

[{ we put together rows 77 {r) with the same £ but different 7, we obtain
‘ blocks of rows, cach block containing #7701 rows. Next woe pul
together the colwnns with g %7 and then cach set of columns with
ga M) =k for cach b We then obtain an (VT d o

i

matrin (see Fig. 6)

A ¢l T e ¢ FIrks
T i § i
11";2 | ] | f i | C © ©
"E“:| I Pt bt
R O A
'1":| ! it s
gg i | O O ! t | ; ; |
Ve, 6

The columns belonging to cach £ consist of blocks which are replicas
of the mdependent minimal paths in H{3#, 27, No clement g appears
i more than one block since the representation of g involves a unigue
£ The matrix is of maximal rank because the b ocks are all of maximal

{Anear Algebva and Hs Applications 21969}, 451358
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rank. Now, il we augment this matrix (see Fig, 7) In adding {or cach
ke a vow whose only nonzero entry is the integer plk) in the columm
belonging te the group elemoent &, we have a matrix which is (77 -1y =
Y 1) and of vank 1 10 T we choose the Al to be the order of &,

Y2 Flotek ¢ oMk $H g
T t Pt t o

T, |1 I o o

so thal p(k) - & = 0. we need only add any row from the upper part of
the matrix to cach row of the newlyv added section to have a matrix of
71 ndependent minimal paths,

This establishes the theorem,

Asimpie example of this tvpe of face is gver by P, (30, 1 we take
. . [{§] Ex
A0 g0 to be the even clements, wo gef a mapping onto Gy, with the face
a6 & = 2

of P07, (1)) given by 2"(0) o 0, 7 (hy3 o 1,y o 1 Carrving this back,

we pet the face

O | VA TR

24 Bl
of P{%s, (5);. Similuby mapping onto %, with O and 3gy as the kernel,
we carry back the Tace (e m,im) (1,20 2) inte the face

)

5=

fy i By o Oy oo 1y 5 2

Linear Hgebro aad s Appiications 2010601, $51.55%
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of P{%,, (3. Many examples of Taces of this kind can be seen in the

Appendix; in fact, as we shall see shortly, any nontrivial face contamning
a zero component can be obtamed this way,

The groups @, and @a,, m Appendin 5 are also particularly good
exampies of this construction as aff their faces are ebtained by mapping
onto %, and by using its one pontrivial face (z;my) = {1, 1} over and
aver again in dilferent mappings to produce differont faces of P(%, ., 241,
ote.

It should be borne in mind, however, that the faces corresponding
to a fised # and 7 and different mappings o are not ahvavs distinet.

Finally, when dealing with groups @ that are direct sims of more than

one cyvelic group, this theorem allows wx to use owr knowledge aboul

X

the eyelic components, 'I'“nr. i w37, 05 0, oy cannot be both i 977, and
2 1 o 250 1

in A7, s, Jet us say goe 7 Thon
the factor group s 7. l 11115 <_:\'<=1"_\' face of &, extends to a face of @, ctc.

o can serve as the kernel ¥ and

Theorem 19 has a converse which shows that every (nontrivial) face
of P(#%, g0 having a mero compenent is a face of this tvpe.

Twroriy 200 Lol (), mg) be a sondsivial jace of P{U%, ggp 17 aly) = 0
for summe g 7 0O, fhen there ds @ grouf H, honeosi plisse fs, and jace (2, )
of PUA7 Tegd swch ilal 0 e %, aud alg) o mlihg)

Prooi.  Let us suppose that m{g) == 4 1 a(g) is zero Tor two clements

o and ¢ (not necessartly distinet), then

el

0w mfg)

thercfore z{g -+ 27+ 05 thus the clements for which afg) = 0 form a
group. I we call this group A and use it fo split @ into cosets, we Hnd,
for anv two clements g and ¢’ belonging to the same coset, that, since

ky, ke, then a{e)) {a) 4w {h) e

o e g afg). Smce we can also

"), we conclude that clements in the same cosct have the

have z{g)
same x{gy. 10 we vow take the homomorphism o mapping g onto %2977,
we can assign unambiguously the values se'(h) == afg), whoere g = o T8
wo let @ boe the group %, we have provided the 37, 4, and 7" of the
theorem.  What remains s to show that (&', 7,) Is a face of P, gl
Lt is easily scen that the minimal path leagth from O to Ay in S0, i)
is o7, e rge For, 31 there were a pathoin H{, B) of cost o
would give rise, by the same method used in the prool of Theorem 19,

a1y, this path

e

Linegr Algebra aud s Afplicalions 2(10969), 43155
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to paths in A7, gi) of the same longth; soa s 22 a, However, there

ave M1 independent paths actually attaining the value . I*m' if
we take the mapping of (- T)-dimensional fspace to (IH] - D-dimen-

sy Hg), o 03, this mapping is clearly linear, and onto, and hence

sends the (2 1} independent minimal paths which form a hasis [or

fspace onto a basis {or vspace from which /7 I independent paths
] i 1

sional Tspace induced by b (e, the vector (o) goes into z(h) =

can be sclected, These paths go from 0 to ,’zn and have cost oy, =0 they
are minimal and (7', 7,) 1 o Tace of PL# 1),

We fwn next to & method of face construction that is applicable

when gg e 7 Agam it is particularhy wseful in allowing us to carry faces
of cvclic groups into laces of more complex ones,
In stating the next theorem we reler to special faces of a polyvhedron

P, ) where 37 s evelie, B3e a special face we mean either the {ace

I
alphy e Lo 2y - b
.’! / ][ i
or one of the faces obtained {rom it by an automorphism.

We can now assert the {olowing theorem:

Turoren 28 Lel o be a homomorphism sending 9 ondo K, a cvelic
growp of order 7= 2 wllle oy ) the kernel. Then the tntegualily (s, 1)

La
defined by

gy = gl g kK
alg) v sy (el A

1w face of P{%, go). Here (muy, 1) 4s any face of PLA, po) and ey, 1) is a
specral face of P, (0).

For example, il we take the group %, , as consisting of pairs of integers
{1y, #15) with addition modulo 3, and et gy = (€, 2}, then the mapping
e {ny, ) oo (1, O} is an appropriate f, and the kernel 7 s the subgroup
of elements of the form {0, ny).  Since [§, 11 1) is a face of (%, (2))
awdl {4, ;1) is a special face of P(%,, (0)), the theorem asserts that the
valuesz({ng, ny)) given by

Linear Algebva and [z Applicatione 21869), 451558
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Hy = 2 I ‘,, 3
Hy ! ] IX %
iy e ) X :
iy 0y [ 2

form a face of F{9,,, (0, 2)).

Proof. We prove the theorem by showing that = is a basic [easible
solution to the system of equations and inequalities given in Theorem 18.
We start by showing that azr is a leasible solution. Clearly s{g) 2= O

To show a(e) - a{g, -~ g} = z{gy), we have two cases:

o

1. ee. . Thenle, — o) & ¥ sosm =z, and therefore the condition is
& &0 & E 1
satisficd.

2 044 Then (g, - o) é

Zo F w0 ooy and therefore the condition

18 satisfied.

Next we must show z(g) - m{e’t 2aly 4 g Again, i g and g are

in.#7 it follows that g -+ g7 is i‘oo, an this case 15 taken care of by s == @y

irg, o, and g <, the argument is the same.
Il g, o' d.# hut (g 4o e ../a”', we have

wo(gh 4 (g} e () b e
Sinee e - g} ey,

ENCE A O

[ oo but g/ ¢ .47, we have

—

g1 b e}

() -+ alg) =

g kgl must g

alg ') e me(ifi(e b ")) e ey

therelore

This covers all cases.

Linear Algebra and Hs Applications 2(1969). 451--558
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Now, to show that & is basic, we must produce a submatrix of rank
boand with all

Y- L inclading all the equations. x(gd -+ alg, — ¢
mequalities satisfied as equalities. We split the matriy A7 into two parts:
the columns corresponding to clements in % and the remaining ones:

0,

My consists of rows for the relations a(g) - algy - b ) for the go
and for the set of relations satisfied by s, to form a basis for the svstem
(131 appliecd to P(47, g}

=
=
e

My has 7 1 rows and is of vank #71.
What remains is to create an U;, nl ihv ])1 oper form and rank, We

do this separately for the cases #77 odd and # even. In what follows
ve reler to a gencrator of #° as hyoand to Hu: wero element in 7 as by,

We recali thatl the special faces of P (():}} are produced by antomorphism

from the face (&', 1) with 7 "(sh) ;
sk} (g sk when g is some avtomorphism of )

Fa . Thus we can assume that

Case L w7 odd. Pirst we partition A7, into two parts. The {irst
one consists of the columns belonging to clements g for which ¢ B e i

with 0«0 s < The second p‘ni containg the columns whose

COrres ponchuﬂ g is such that ¢~ 1/w § L
Stnee gy @A, gy o g) hlE) s By so gt (g == &) - b Tl(e)

Hence, il ¢ belongs to one part of the p:-ullll(m, &gy - g belongs Lo
the other,

We proceed to fl out M, by putting in the rows corresponding to
the Y% - 77 equations:

Fla) boafg) - 1.

Liwear Algebva and Ns Applicotions 21960, 451558
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The corresponding row 1n Mg has a | in the g column, a Lin the ¢ column,
and s zere clsewhere.  (We are not describing the constant terms as
part of M,) We have already shown that these equations are satisfied

by .
Next we putl in rows corresponding to the 090 ) equations:

[y

for all g with by e fi

=y i
We do not, as vef, know thal our & satislies anvihing exeept the
condition a{e} -+ w{§ — g} — 7{g)

5

0. Tt will be necessary o show
cquality il our M s to be accepted as a basis,

The appearance of A1, at this pointis roughly:

Part 1 Part 2
i
| |
| J i(’f o
| 1
(14
I | 3
2 }
In the bottom hall, most rows have three entries: two s and a — i,
with one | and one — 1 under a pair of 1's belonging to a row in the

upper hall. {The row representingr{e)d -+ a{d) - 1 lorthat 2.} Occasionally
g and ¢ - g can coincide fo produce aorow with a 2 and a - L. Note
that we are implicith using the odd parity of 2#° here, {ov, since g
(@) g0,

e e g g e

L@ @) = (ol o= s g = - g, so 2{fg) This is impossible,

for 2 does not divide 7, Therelore (g g) ¢ 0; and thus the clement

Livear Abgebva and Mg Applications 2(1969), 451 -358
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(¢ g is notin 7 and docs appear to he associated with a column of
M,, not of M.

Next we show that  satisfics the relations represented by the lower
hall of 44, as equalities. For o particular g, with o hfrg s Jog, s e
we have

gy b aeld - g) e mlhy) v g o)

al(d ey (g

o
g

o g (fn) ea ()

with s <7 L7

@) == () () e (570

Since

wod{ 1)

3ut, siucv §

2and O <y 0 the ondy possibility
1808 -0 ¥ .\", vhich mi.l,})iisina the desired equality.

\\ hat remains now is to show that M, is nonsingular. We proceed
o I}"i()(ilr:\_' My by row operations. \\c3 first medily the row with entries
atg, £ g and § by adding to it the row (from the top half} with entries
al g and g. This, of course, does not affect the rank of the matrix, but
M onow has the form

a ] {

Linear AHlgebra and Ts Applications 2{1069), 451-558
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where the s are 2's exeept when g and § - g have coincided; so the 2
is replaced by 3. Now, in the bottom hall, if there 15 a 1 in the second
partition, we add I times the vow having a -1 in that colunny in the
upper half, and we oblain all zevos in the lower right partition:

b i :
b1 0
iy :

Now b is at least 211 the (one) other vow entivis | or - 1 and 2 is at least

1 {actualiy 3) if it ds the only enfry in its row. This lower left matrix is
nonsinguiar, by the diagenal dominance eriterion,™ so the entire matrix

is. Therefores is a basic solution, for the rank of My ts @ L and that
of 3, ds 0 -1 So M has rank % 1

Thusais feasible, and it satishies enough of the inequalities of Theorem
18 o form a basie solution. Therefore 15 a hasic feasible solution and,

henee, a face.

This proves the theorem for 127 odd, We now take up the case 147

oven g o 2,

Case 27 47 cven. The matrix M, s constructed as before;  the
construction of A, is slightly more comphieated. We partition the A,
mafrix into sets of columns corresponding to the cosets of ¥ A7, is the
part corresponding to 7 itsell. In the apper portion of M, we write

the relations

Since H s cyelic of order divisible by 2, 2¢ == g, 15 now possible for

some of the g e "a02)0y ;0 so the upper portion of A7, has the Torm

A matrin is nensingular H the abselute vatue of the diagonal clement exceeds

the sum of the absolute values of the other row clements,

FLinear Algebra and s Applications 2{1969), 4514
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IN

[$)

where the columns belonging to the coset K corresponding to oA
are divided inlo sections K| and K, containing g's with distinct com-
plements ¢ and a middle scction containing the # clements g {or which
2g o go. As before, columns to the left of the center coset ¥ contain
cloments with Bl e f, w0 G200 (b W 02 o B /210 We
obtain in this way S0 070 2) o 4 Ay rows. In the cosets,
other than the middle ope, K, we write the same relations as before,
Lo for cach ¢ corresponding to o column to the lelt of the middle

coset, we write the row corresponding to
and, by othe same reasoning as before, the relation

i fulfilled by our m. However, the reasoning {ails and the relation s also

false for @ in the middie coset; {or, whenever ge K| so does g Therclore

b g and ale) e mp(he) o0 mlhe) e (@) Bt since (g ) B8 in #
g

stley ey (g which certainbv can be o0 0,

At this pomt we have constructed, then, an additional JL47 {77 - 2)
rows. 0T - A rows are peeded to make M, square, \l this point

M, has the appearance shown in Tig, 8

By row operations (adding multiples of rows of the upper block U
to vows of the lower block L) we can (,‘.h(ln”‘(? the matrix, as before, into
2 on the lower left dingonal and only zeros in the

one having entries -
fower right Block. We can also elimm:l te entries in the lower part of the

colmmng Iving in K, and K,

Linear Algeliva aid {ts A pplicalions 2{F064), 431558
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K
Iy f\";l f\“’g K “ Ky

T

1 1
1 ]
1 x
! S
l l:
i )':
J I
! 1
1 1
2
b
;
I :
i 1 ! ]
; 1! 1
] j }
i : 1 ]
] o : i
| : L !
! ] i

o, S

We now adioin the needed additional JUR - /) relations to make
M,y square. We add to al,: JGK: - f) rows; their intersection with
Ky is aosquare matris; and we center - I's on the main diagonal of this

squarc. Then in the vow of cach - 1 we entor two -+ s in the left section
of the matrix.

The cholee of the two 4 1's, that is, the choice of the actual relations
1o be added, reguives some discussion. The appearance of the matrix
at this pomt 1s as given i gl

Returning to the choice of relations, we note that 1t 1y possible 1o
choose the columns eriginally entered in K| and K, with a certain degree

oy can go into ather Ky or Ky it s only necessary

o

of {reedom, a cohunn ¢f
that s complementary column @) go into the other partition. We can
exploit this Treedom {o make sure that (a) cach ¢fg) & K, has al least as
many b 1's in s Ierows (the only possible entries are O and - 1) ag

Lisiear Hgebra and s Applications 201069), 451--5358
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]"_',
Ry N, K, K, g
i i
| P
1 i
1 |
i 1
1 1
] ]
1 I
i |
| I
i P
2.
,
2
= e CANEIE Bt
.
A
: h i
o i 0 0 n 0 3]
b i
b
s : i
B
| 1
1 ] |
I“1e, 3

docs the corresponding o{g); {b) the ¢(g) having no -+ 1's in their L-rows
are the right-most colwmns in K. Thus K| splits into two parts, Ky
and K7, with the O-columns of 1L in A"

After the matrix has been put into the form shown in Fig. 9, Lhis
choice has (he following consequences for the part of &, Iyving in the
Lerows: {a) implies that, if there are nonzero entries, there are at least
as many -+ s as - 1's in cach column; (b) means there is a Block of
('s above the last -~ I's added below 1.0 The situation is illustrated in
Fig. 10, which also explains the obvious notation A and 47",

We now choose the new relations as follows: 1 ¢(g) ¢ K" and so has
nonzere entries in L, then it contains a -+ 1 in L. Say this is in row
s(g). The only other nonzero entry in s(g) is &, In the new row #(g), the

onc containing a1 in ¢fg), enter a -1 under the diagonal b entry of

Linear Algebra and s Applications 21969}, 451558
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Ky R, R\
& 1
I i
ol
2 1
[ 2 ! 0
b i
f 1
i :
b -1
17 H 1 1
i 1 1
(RIS IR
row 5. Sav this - Lis in columm ofgy). Eater asecond -+ T in row (g,
column o(g,), with g & gy == 2. U ¢o(gy) coincides with efgy), enter a
230 row ¥(g). Bince g, g o gy, g certainly lies in the left side of the

matrix and, since g, and g e in different cosets, g, & .7

#{g) now represents a new relation,

In the above, we have used the fact that 2 2= 2 to give us at least
one coset = to the lelt of A

If the column ofgy e Ky and so bas no nonzero eniries, then we
choose any g, and g, from the left-hand cosets and such that g, 4 gy = 2.
This always can be done.

We must next show that those new rows are satisficd as equabitios,

e, that z{g,) = z(gy) — 7{g) == 0. But sg)) = mlfe) = 2’ (g} »

s, Lo Similarly slgy) == wdiey) = 7 (e, s sy i oand
a(g) s mylhe) v (b W) e s 0 40 Since by b D e s, sy
s mod{ 21, which with the inequalitics on s; and 5, 1implies sy - s,

This cstablishes the desived equality.

It remains now to show that the square matrix consisting of (K, UK} N
(1. U A%, Fig. 10,is nonsingular. IFrom this the nonsingularity of (/, UK, N
(LU AU A" Tollows and gives the nonsmgularity of M,

Il ge K, add a (negative) muliple of the row s{g) to r{g) fo make

the -+ 1 i column gy} vanish. The new #{g) now contains only the
other 4 L and the term in columun ¢{g) itsell, which is now strictly = - 1

because a negative multiple of - 1 has been added to it. Doing this for
all g e K, produces disgonal dominance in these rows and hence in all
rows of (K, UK NILUAY which is, therclore, nonsingular.

This proves the noosingularity of A7, and se ends the prool

Linear Algebra and s Afplicalions 201969). 451558
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o, Characlers and Tuegrealilies

The methods described so far have enabled us to produce some faces

ol P&, g0 rapidhy and withont making ase of the general method of
Theoremy 18, I we wsed these methods to provide inequalities Tor a

cutting plane method, we could:

(i) for a s;i\(n problem calewlate by standard methods the facror

group M}/
which group (rl.(‘.mcnis correspord fo the various nenbasic columng and

(R o % o owr parficular current basis B oand find ol

to the right-hand side;

(i) knowing what group % 1s involved, what g, b5, and what group
clements are in the set 47, produce mequalities by (a) creating some
faces for P{#, g), (DY deleting the variables corresponding to group
clements not in A7

We note that this procedure invobves computing M{N) M {1} o find
whaere the egualitics

out what # is involved. Thisis in contrast to |
of the cutling plane method deseribed were obtained withent ever exam-
ining the group and the fractional parts of cortain matrix rows were used
directly as inequalitics. Remembering this, 1t is reasonable to ask if it
is now passible to produce other nequalities withont computing the
group.

In Tact, it is possible to produce whole new families of mequalities
without compuiing . To see this we fivst diseuss certain propertics of
the lractional parts of the matrix, We connect this with group charactors,
and then with inequalities,

By a group character is often meant o mapping o l'mm. the group

to the wnit cirele in the complex plane such that, il yfe) = 2 =

Pl filga) = Jo s oxplifly), then iy, b ogo) == Iy e \P( {fhy - Oy

Ly Dy Tias easity verified that {0 mnst be | and, since for anv group
Ir/ff

e, /3 :
elemenl 7 - g - 0, we have, i £ - ey, that & e (e
so the {mi} ¢ ever nsed are the @ith roots oi wnity.

) e 1

Now the multiplicative group of the 1% th roots of unity, the additive

group of the fractions »/13 modalo b (i integer), and the integers « modualo

ot

9 are alt three isomorphic groups {eyvclic of order (197, so it is possible
to define characters as mappings g, - g) == gt -+ dlo), where the
values g}, instead of being on the unit (mE yoare noone of the last bwo
groups.  The usual theorems still hold, ie., the characters on % form a

Liwear Algebra wid Hs Applications 201969), 131558
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group with (ff, i yi{g) defined as fy{g) -+ Pueled, and this group of all
characters on @ is isomorphic to 7.

We shall see that actual numerical characters are readily available
to ns from the transformed matrix A, or even from a knowledge of [
It is convenient in discussing this to wse a diagram m which various

relevanl mappings occur:

L OMBLN) L MU BN
" (B A

Bt ds the matrix sending o into the ll'z'msforrne:d matris (/. B
which is used in linear programming. We use 377 again to indicate the
wwomorphic mapping of the module 3 {1, N) onto the madule W (1, 7IN)
which is induced by B0l k) osends M8, N) = (]} onto the factor
group MUIVMBY oo 9.k, s the mapping of {7, B N} onto
AT, BNV,

131 sendds M{73) onto M), so the factor groups M (S, MIAM(BY and
M, BN b

we denete by b The mappings &y and &y send the moduales into their

are isomorphic.  This isomorphism, induced by B

factor groups. YWe have asswmed throughout that M {2, N) contains a
unit matrix; =0 M{2, N} = A{J) and the factor group is %

The diagram above shows that there is an isomorphic correspondence
b belween @ and the group generated by the colnmns of 3718 modulo
AF(I), e, all components arve being treated as elements modulo 1. The
eronp clement g o % corresponding to a column in (7, 3IN) is deter-
mined by the lactional parts of its components alone. In particular,
this is true of the columms of BN itself

We turn next (o the gronp characters.

We deline the mapping # (s/0), where mois any integer and /) -
et B s %, to be that group clement in the eyclicgroup %, 0, 1/1),
A, D 10, for which the numerical value £
1. Fhus, Tor example, il 7, s the 7th row of 21 and ¢ 1s any integer

il module

colummn, F{r;- ¢} is a mapping of integer columns ¢ into %, since the
clements of B-1 and hence of r, and »,- ¢ are all of the form /7).

Algebra and Tts Applications 21068, 431554
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Now, for any row 7, we define the function o), g ¢ 7, by
L)

where ke == g. Toshow that thisisin fact a function of # and independent
i g g I

of the choice of ¢, we note that, i ke = g == o', then ke ey = E} e 7,
so that 2,0 Yo - ¢) = e M, BONY AT, therefore B - o)
: 0 mod 1.

must be an allinteger vector and so, In particular, #,{c — ¢
Henee #F(r, - ‘) we F(y, e ) for any ¢ with b’
that dfylg o) o= ) - didey)s thus oy is in fact a group character.

Tt s ensily vertficd

We have shov.-"n that z/;- i'f. B <*I1;1a':1:‘i‘v.r. Tt 38 @ routine m:ﬂ'i,(!:‘ Lo verify

that the mappings o = Prraf, a integer, are also characters and

that the entire character gc)up is obtained this way,

In fact, although we do not need this at the moment, it is casy to show
that the columns of 3% faken module 1, generate @, while the rows
of B=1 taken modulo 1 and used to define the mappings o, generate the
{isomorphic} characier group.

fn dealing with o linear programming problem we need only pick
the ath row of B3 N) w (7, W) and take the [actional parts
of the entries to oblain the o, character values for those group clemoents
that correspond to the various columns,

Now we connect inequalitics and characters,

Let % be a group of order 1D, and # he cyvelie of the same order, 1.
Let {m,zg) be a face of PO Jy). Deline my(g) for a fived character 4
of @ by

Note that here our character is interpreted as a mapping into .7 a cvelic
group isemorphic to the group of fractions wifs,

H tgy gives o path in (%, =) fvom O to o, ie,
SH 8 | o So

.
¥ wte) - g
SO/ AN
-
then \,‘} Hai{e) = file,) since b is a character: so. as usual, fhe
Pt h .~, n ' ' :

mapping far)m the path in @ produces a path in #°. The cost of the path,
either in (%, z,) or in H{#", 7), is the same and is given by

alflg) ).

,rgﬂ

Linear Adgebra apd Hs Applications 2(1969), 431-558



POLYIHTEDRA AND COMBINATORIAL PRODBLEMS 503

Since gois a face of PLA7 L), the & components satisly the ineqguality
a{f)) sy

AR

i ff) .

This, then, is an meqoality that must be satisfied by any fg) in P9, &)
Hence it ean he used as a cutting plane. Note that we do sl assume
hlggh = My

By varying the character o, 12 - | incqualities are produced from
each face of 777, 1), These inecqualitics are generaliy not faces, although
that can happen.

In particular, ket us consider the face of PO, (1) — 1} obtained by
using a special face with the components se{sf) == s/ and with sy«
{17 — 13D, Then the family of inegualitics obtained is exactly the family

of “fractional cotting planes” of |
We illustrate the use of characters lo produce inequalitics by a numerical
fincar progranuning example in Appendiy
One relationship among the various ineguatities produced = worth

noting:

Tupores 220 Let 17 be any (1 - Dyeweclor wilhe nonnegatrve {bal ol
secessarily tnteger) componenls givein by Uley for all g9 Then, if T

satisfies for o fived o and g,

> a2

’/J ’

Jor all Jaces {(m.my) of DA yjusy), €0 alse salisfies the inequalities

> Aol 2z il
ae g

oblained wsing the = froin all Jaces {7, ) of the polyhedra PLAH Rg) for
all by e A
One meaning of this theorem is that, as far as cutting planes are
concerned, we can limit cursebves to using character inequalities devived
T 1}‘1{303 w0, mflgg) o 00 and the fnequality i rivial,

Finear Meehra and Ils Applicalions 2(1069). 431553
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rom faces of PUA, ihg,), i these faces ave ol available. I thev are not
all available, there is usually something to be gained by using the in-
equalities derived from other POE B

Proof. The prool of the theorem is quite divect. Sinee 77 satisfies
the inequalities listed in the theovem, the vector with components 7{4),

" e,

Aemrt

satisfies 2: AR

(/) i 2 convex combination of vertices v0 of {47, eyt and thev are, of

ay fov all faces (7, 5my) of PLAT gy, Consequently
course, integer vectors representing paths to i, in the graph M4, a).
Now, ustug for ;o any face of PO, hg), we have Tor any path to g, and

henee for the ),

b i ().

and, sinee 7 s o couvex combination of the 17

T At ),

which tmplies

o i) el
o

This was the desived resiit.

oo Sosie Special (raips

En this section we diseuss groups of whose elements are all of ovder 2
or alt of ovder 3. The onb snch finite Abelian groups are 4, 9, ,, Gona
ete, and @y, %, %, etes We shall see that in these groups the notions

of frreducible solution and ol vertex eoineide and (hat these groups have
speeial properties that enabie us to count the vertices of the polvhedra
P{%, g0t Tor all these %
Ini the theorem below we mention sets of independent group clements.
. ey A Te i 3 o3 STy ) . Yeer o .._
Aset of group elements gy, .. L, g s said to be independent if :‘; s e 0

implics sz, - 0 all 4.

fom i

Livear Algelra and Hs Applications 201969, 4351555
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Treowes 230 1] all eleinents of % ave of order 2 or &ll of vrder 3, then
(g, a solution Lo the group equation, Is dvreducible 0f, and onlv 47, i Is a
verlex, Furthermwore, if gy 2O, the deiaents g for which ({g) = O in such o
vertex solidion are alwavs a sel of udependent growp elements and, henee,

parl of a group basis.
The proof conststs mainly of the following lomma:

Lexeving Fov oo 2 ov p o= B, 8 1 and s ave tileyers salisfving

and

{7 fmodd py

This can e vertlied by siinply ooking at all cases. Generally, Tor a
given p, { and s, there s more than one pair (8, (7} satisfving the conditions.
Ome solution pairis (F7 = (0, &) forall cases exeept f o0 3,0 | s 00 2,
i owhich case (£,07) o {1 0L

We twrn now to the prool of the theorem.  OF course, a vertex is
irvechucible: so it is necessary only o prove that Tor these cireumstances
an drreducible point is a vertex.

Let ¥
the set of group clements for which £z} = 00 Suppose there is a nondrivial

) be anirreducible solution to the group cquation and let T be

relation s{g} among the ga 7T, e,

) with

! TOUAR

= gl mod p.

Lingar Algebra aid s Applicafions 21960), 431558
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Sumiming gives

bl
RS £ e
& st S10s
Fi e

50 2w ) cg e e () - o0 which contradicts the irreducibiline of
fgh. So the ge 1 must be an independent set,

Now suppose that #(g) is some other distinet selution to the group
cquation with w(g) == 0, ¢¢ 7 Choose s{g} 1o be

s(ey ey o ulg)

and

Then s{z) satislics

and so the 7 are not independent, a contradiction. 1t follows that #{g)
T,

But f{g) is then the wnique solution minimizing the m{e) given by

s the only group equation solntion with components zerg on all ¢

= '\.

afg) == 0, g T and z{gy o 1, gd T So ig) is a vertex.

We next proceed to count the vertices of these special groups.
A vector Hg) will be a vertex Tor some J{% g, g, 7 0,0l and only
i the g for which &g} = O are independent, and if, also, Hay = 5. Here

]

s 2 for the groups % cte, and s == 3 for the groups 7.

37

Now the number of distinet independent p-clement subsets is, for

the group with s clements:

|
5 R R A I I
!
For each such set there are {s - 1) different vertices (of P(%., o) with
% S0

varions gb that have {(g) = 0 on the sef and zero elsewhere. Since every
vertex is associated uniguely with some p-clement set, p o= 0, we have,

for the number of vertices, w(s), of all P(# ., g}

B N foen PR T
L v {5 TP . ’ SRCIE SR
('E“\") :};’I e I I (5” S'"} ————— ::a R e I I H
Pt /- g6 hoot g0

Separating the term p o+ non the sum gives

. | 3 o f (.S' ypgh i ,,’Jj ! ! ‘
b 2 e i '1) (1 - _q),

it
S Pl
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50

Since Ilgi, PO 1T 7 s readily shown to decrease from (]

toward a hmit K, > 0 as oo o

I DL
p{s") ~ K, (s ys .

where ~ means that the ratio of the two sides approaches T, This Tormula
gives the total number of vertices of all polvhedra %, g} lor a fixed
Fioee s and summed over all gy o4 00 However, for the groups we ase
discussing, there is always an antomorphism from g, to g,° 54 0. Hence,
all 77— 1 of these polyvhedra have the same number of vertices; so the
muamber of vertices of P{%, g}, when @ - @ is given by

sy ~ A,

Ay ST bop st

Since s% e g , s grows very vapidhv. Tn terms of 1,

?‘U)) . ”lu_:z‘\.fﬁii "_’J[I)‘:;.
where D+ 0 as 1) o

The mumber of vertices far exceeds the number of known faces in
the case 8 = 2. To see this, choose any independent basis for the group
% . including g, as one of the basis elements. Any mapping ¢ of these
clements onto the clements of %, in which @{g,) = {1} defines a homo-
morphism of all #_, onto %, [or which Theoram 19 applies and hence

results ina face of %, b The faces obtained from the varicus possible

Jinear Algebra apd Hs Applications 201869, 451558
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mappings finvolve ondy | and G as coelficients and, as differont me appings

must differ on some hn:\;xs clement, these faces are distinet., There are

25 such mappings and hence 2° 7 such faces, In the case 5 o 2, we

can infer from the work of Edmond: that these are all the faces for

many ol the subpolvhedra j”(.’/f“ o 7 &yl This st of known faces grows
atl the rate of 722 in contrast with the mach more s rapid 1D G e vertices

in this one case.

G Conclusion, Algoriifons, ee.

One of the most interesting arvcas for further work is the investigation
of properties ol the polyhedra {7, g,), especially such points as the
rates of growth of the number of vertices, f;u“.(:a and degree of degeneracy,
The relation between (%, g} and P07, g,), when #°

9 containing g, is cortainiv uot com Jl(:tci\' covered b the theorems
& %o A \ A

is o subgroup of

given here. For example, in all cases looked at so far every face of P, g
15, suttably restricted, a face of P, g1

Cortainly the shnple faces of Section 8C are not the onlv ones that
can he produced by formulas. A\ glance at Appendix 5 suggests that
there ave many more. Better methods for obtaining vertices are important
and are necded.

In the area of algorithms there s a great varicty of possibilitics. One
approach would be the cutting plane methods. First the group is ealeulated
as a direct s o[‘ cvelic groups, then, using the simple faces of the eyelic
components and Theovems 19 and 20, Taees are produced. Or Theorems
19 and 200 can h(* used to produce more faces oven within the evelie
components, Ov, if the group is such that some camponents are tabulated,
the tabulated faces can be used. Or, i the entive Y%, o is tabnlated,
s Wving in P, A7 w0 for the

it should be possible to select the verticos
particalar 47 wo ave dealing with and, then using incldence matrices
select only Taces of /7%, g} incident to at least 247 of these \'(\,rf'it‘cfs,
Aside from methods which require determination of % as a diret
sutit of cvelic components, there are methods which make use of {he group
A

characters. Hence it is only necessary to know the value of D v (@)
det B Then Taces of the (%, vi), %, cyelic of arder D, can be obtained
through the combining of simple faces, tabulation, and Theorems 19

and 2 These arce then used with the characters which are already

available from the simplex calenlations, as explained above, to produce

inequaditics. There ave other possibilities in which the prime decomposition
Hh’

D1 PP plavs o oo,
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Along different hnes, guite different methods based on the use of
vertices rather than faces would seem extremelv desirable. There are
also primal methods like that i 1140 and alldinteger methods like that in
‘0 to be econsidered as well as methods for the mixed-integer problem.

In most of these algorvithms the numerical problems to be encountered
can be expected {o reguire separate siudy,

The various possibilities are numerous, and toe little is known about
their relative merit to make an extensive catalog of possibilities worthwhile,
What seems clear at this point is that further tabulation of the (%, g,
would be helpful both for algorithins and for o further understanding
of the properties of the polvhedra

APPENDIN

Asvigplotee Tuteger Programuing: A Nuwserical Ilyanple
We illustrate the asvmptotic caleulation by o numerical example,

I we solve the linenr programming problem

max g e 2y, choay R 3y e 1
Ty by, b 2,
Sy e by e g by v,
g () ;oo ] A,

we find that the basic variables are &, and v, so that the basis matrix

L A A AR L . (-1‘1
B s (3 _ !) RIS (:’; ] foo 1) and bois ‘-“5'7.).
We can ebtain the group MM (B} by reducing B3 to the standard
elementary divisor form by vow and column operations. These operations
are confined fo permuting rows and columns and to adding infeger
multiples of rows to other vows and integer multiples of columns to
columns, (See, for example, Van der Waerden (110 Carrving this

reduction out on our 2, we obtain successively

(o 2 ((; 2y /6 2 ((s f_)‘) (I 0
3 1) 3 z)‘ (o i) o177 0 {s)'

: / g i




310 12, 5, GOAMORY

The vow and cohumn operations can be summarized by unimodular

matrices /2 and @ which will have the property

0 2 Y
i ) () ( ) .
84/ A6
0 .1 L4
7 s : 24) and () i (,'l 3) :

The row operations correspond to unimodular changes of basis in the

Here

space of all column vectors, the colnmn operations to changes in the basis
ol the lattice generated by the columns of B, This lattice, with respect

: : . e 0
to the new space basis, now consists of afl multiples of 0 anncd -
; ]

Multiplying A and 5 by 2, we bring all these columns over to the new

space basis:

(u , I'(i 4 21 0 (% SR I Y P

PN N

A 1 3) A4 PO 1) 8 g 0 1 3)
(u 1)(4_1 fo AT

My .

Phey s ( 135)

To obtain the corvesponding clements ol % we regard all the elements
of the B-lattice as zere. Thus for cach vector the corresponding group
cloment s obtained by replwcing the first component by an integer
equivalent mod L and the sccond by an integer equivalent mod 6. There-

fore

R T R Y R W R R R G

The group 18, of course, cvchic of ovder 6. We can refer to the clement

8] &
(‘a> as {a).

Livear Alechra and s cpplicatioes 2(10680, 431358



POLYHEDRA AND COMBINATORIAL PROBLEMS 811

Reviewing, we see that the ay column corresponds to group clement
(3), the ay to (0}, the x5 to (0}, the xg, or first slack, to (1), and the x,,
or second slack, to (2). The right-hand side corresponds to (3).

The lizear programming solution, which actually appears in Appendix
4, provides us with costs for each column and hence for the group clements.
These costs are:

Group Cost
Flement
{0 0
B
n Ly
1
(2) @
3
(3 §
() N
{3 N

We now solve the shortest-path problem in H(%, A7, g} = H{% {{1),
(2), (3)}, (8)). Using any method (that of Appendix 2 is an example),
we find as solution

Shortest IPath

from (0} to  Cost Path
a0 1 e
() ( £, s}
(3 S A
@
(4) o =2
(5} SRS NN

Ay B0 - Nagh and xy == (g, 2y, x5, %, x,). Using the correspond-
ence ¥ -y and a4y, we find for x, using the table above and 1he

. i L J— 1 b;[l et e .
fact that (1 2) ([’).,) determines g,

Liuear Algebra and Iis Applicalions 2(1969), 451--558
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=t
b

={0,0,0,0,00 30 (3,2)- (b, by = (0) mod 6§,
Xy {00,100 60 {1, 2) - (D, By) == {1 mod 6,

o (000,01 30 (1L2Y (D), da) = (2 mod 6,

v s (000001 Ty b (1,2 - (g, by} = (3) mod 6,
T 40,0,0,0,2y 40 {1, 2) - {by, by == (4) mod 6,

A= {00,013 i (12) (b, by = (B mod 6.

X . 81
For example, for onr right-hand side (47> (1, 2} {41, 47) . {(135) =
o 2
i Lok
{33 mod 6. Thevelore xge = (0,0, 0,1, 1), and Nx,, ({) Bis (‘: "),
’ w4
L it

R0 ¥, 18 given by

(xl- ’ [(41 (1)1 (42
e LT
‘xg) }‘47) H 20)
Since vy and v, are both Z= 0, the solution is applicable. Tn fact, as 19g. 4
shows, the solution i applicable for almost all {5, b,) Tor which 73 is the
optimal basis.

It shoukd be noted that the calculations given here are almost the
most laborious pessible,  Generallv it is much easier to obtain the group
by working with the fractional parts of B~1if B-1is already availabic.
Many other economies ave possible. The method of computation described

here was chosen mainly {or ease of exposition.

APPENTNN 2
A Growp Mintinization Calcudation
To solve for nonnegative (g}, the problem

min > a{gi{g) - P,
wi g
subject to Z_:q Het = gy we can proceed as follows:

fipear Algebra and Hs A pplicalivas 2019693, 451355



POLYHITDIRA AND COMBINATORIAL PROBLIAS A13

Farst, as a preliminary, we reduce % to a divect swm of # cvelic groups
@, of orders ¢, Lach clement of the group can now be represented as

an ¥ vector,
g (a0 ),

with components x; added module g,

With these preliminaries completed, the steps deseribed, whicl involve
the addition of group elements or the ability to check through a list of
group clements, can casily be carried out.

The calculation s dynamic programming with some  additional
modifications to take care of the group structure.

We define d, for any set of group clements SC 77 by

o () == min S (e - i),

REN

PR A IR
gos

and define ¢ for the nuil set Sy by by (g) =0 M, g 500, gf)(g)} == €, where

“max sr{e).

e

Then, assuning ¢ {g) already computed, we deseribe a computation
for ¢y, where 87 SU G, §o 47 S,
Tirst we compute de for the group elements 0, ¢, 27, ... S g e

0 by (,{,h_,(;)) w4 Al

oSGy = min A s - g} 4 a(@), dolso, r e s )

Next we choose an & Tor which {4 has not been computed and
proceed to get do fov o, b g - 24,000 e, by the following steps:

First we introduce 4, by

o mindm{g) ool ol 4 5@

Clearly o, conld be computed for all integer s = 0. These o, are closchy
related to the sought-alter ¢o. Since b= min{a(d) -+ &, |, $. (W)}

since »-g == 0, we have o, =0y I follows from the recursion that

Linear Algebra aid Hs Applications 201908), 451538
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f, and that, 0 o 5 o oy for some B, then oy o= fy, Tor all

On the other hand, 36 o, o, =0l then oy, <0y, <0 (i - pd)o so
hno i, (@) Now we cannot have

J’rr - l/},
for == 0,1,2, . 7 1, because this implies o, | o= f, -+ v mlg),
which contradicts o, | T i, o Thus there is alwavs a p, O =] p

# - 1, for which 1/;;., L z/;,,
Let p be the first such p; then ob, e iy, all po=po 1 we set

pelh 1 p8) = =P

W

wae obtain values lor ¢y for all ddements A -+ s¢, and the ¢ are readily
seen to satisly the relation

cho (I sg) e mIind e (l - (s 1)EY e m( @), ol - 5@ T

8y, it follows that ¢k - Ha)
pgy. These facts are enough to establish & as the S()thi—

Since it is castly shown that oy = Gk
hyllt 4

alter minimizing (anction.

The caiculation is repeated until there are no more A for which ¢
has not been computed, This gives .. The whole process is then
repeated until 87

The cnnaput‘n{:ion vields the solutions {{g) by backtracking in the usual
manner of dvnamic programming. I is only necessary to record, when
b () 18 0 )lzllmc whether or not ¢ was used in the solution. Even
for backtracking, it s unnceessary to keep the values of oy once ¢y

is compted.

APPENDIN 3

A Face Calewlation
To caleulate o face of P{#,.47, g,) we start by setting (f) (L{ """

M o= 1, g4 0, and </) = 0, Then, if the coelficients 7(;’) have
A n
atready been computed for ge S, we compute ={g), §¢ 5, as follows:

H

Finear Algebra end Hs Applicalions 201968, 451--35¢
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() Find the values of a, i1 any, Tor which éle, — mg) = L. I
there are none, set s{g) == 0. If there are Vzihws iy, '1‘ a Lo, g, st

ag) by

(@) = max
fon by

(i1} Use this value ol ={g} to compuic ¢ {e), g€ #, as in Appendix 2
{or by any other method).

Repeat this process untd m{g) has been obtaimed for all ge. 47

The inequality

is a face of P(%F, .47, g,).
To see this, let us suppose that the first » clements resalt in m{g) = 0
and the next, sav element @, vesults in sfd@) = {1 — (g, — mg)}jm = 0.

We can casily verily that ¢ g, — ng) == @, lh(l(‘[{)l(‘ the zero length
path leading to g, ~ #:f followed by md’s is a path of length 1 to g,, and
that any other paths are as long. » -+ 1 independent paths are obtained
by adding to this onc the joops s(g) s o= (0, where g s any one of the
sarlier clements, all baving (g -0, Moving on {0 the 7 -+ 2 cloment

owe see two o cases.
(i} Fh'Y e 0,

Tn this case we can use 7 m a leop and formy a new path.
(il iy - 0.

In this case the maximizing s, provides a path s, from gy - m " to

gy This path is of length 1; all others involving 2 are of length 2= 1
because of the choice of =(A) which tmplics ma(d) = 1 — dfg, — mh'y,
and so fgg - mi') 1, all & All paths not using & at all are

already known to be of length 2 1) so this is a shortest path and, since

ol

it used A, it is independent of previous paths.
We can go on in this way until (47 clements are used and 47
shortest paths formed.  Thus the z{g} are a face.

Lisiear Algebra and s Applications 2{1969), 451538
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APPENDIN 4

Characlers and Tnegualities: A Niumerical Fxaniple

We dllustrate the use of characters to produce inequalities by an
example.

The Hnecar programming problem of Appendix 1, written in a matrix
form that includes the objective function becomes: maximize z sithject {o

X
. 3

/1 2 1 1 3 oo 0 4
Ya

t 0 2 1 €, 2 1 0 (3
¥y

¢ 3 ! ! ] [V . 47
.'.5
Xg
Xy

The optimal basis consists of the st columns, and the optimal transformedd

malriy is

R
R & 1 X i
[ O O .%h 5 2 Iii' = 2 If}()i—
. \ 3 3 i 3
(UCRN I ) 20i
3 13 " -+
R
< . 4 o . A
L A A S A LA 43
.'?\'G
Xy

The optimal basis has determinant 8,

Each row of this matrix gives us a mappig into the cvelic group of
order 6. These mappings, oy, iy, iy, are characters and are specifically,
using the fractional parts as deseribed in Section 35

Lisear Algebia and s Applications 2{1960), 451358
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POLYHEDRA AND COMBINATORIAL PROBLIEAMS

Colnn

Name E; iy Ea Ay &y 4 ay & RUMLS
W clement o, (01 () {0 {3y (0} {0 (5) (4 m
._’{,"_\ clemaont z,t'.!z 0y {0y (G 3) Yy (0) {3 {h (3
@y clement oy oy (v 0y (3 1y [y (4 (2) {m

Since iy sends the right-hand side column into (3}, swe use the faces of
P(%,, (3)) from Appendix 8. According fo Scction 312, each face mr gives
> alf) =a,  Note that, although we have not determined what g
of @ M(DM(B) correspends to cach column, this is not necessary,

as we do know the values s, rom the laces of P{%,, (3)), using i, we

abtain:

From face 10 1x, + ixg

- P - e e
From face 20 a4 lag =

From face 31 Jay b lag b 2a, 2 30

From face 40 3x, 4 21,

Using o, and P(%,, (31, we obtain:

From face b Ly,
From face 20 3y,
I'rom face 30 3,

From face 40 3w, - By

Now i, provides nothing further, as it sends the right-hand side into
(0. So, eliminating duplicates, we have obtained the incqualities:

By - X

By - Dag - xg 2B

Pinear Algebra aud Its Applicaiions 21069y, 4515
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In this case, because % = M(BYM (I} is actually cyelic and oy, is an
isomorphism, we have actually obtained all faces of the corner polvhedron.

The fractional inequalities of {4} in this case woukl have been a
weaker set. We would have obtained from o,

and from i,

Y
o

By b B

APPENDIN 5

P(F,, (00

TFACES

Ty, Ty
Row
1 1 2

INCIDUNCE MATHIX

Face |
Vertex
i 1

Row
1 i

—_

linear Algelira and s Applications 2(1069), 431538
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VERTICES

Face H
Vertex
i. ]

P& (01
FACIES

s PR Ty
Row
i 2 1 a
2 1 2 3
VERTICLES

() (3]
(f]- t-_z) = (]» ”
(/sy} w2

w o =

INCIDENCIEE MATRIX

Iface 12 3 4
Vertex

1. 1 0 1
2 L1 6 0
3 o1 0

Ty

by

i i p

19

Linear Algebra and Is Applicakions 241069}, 451558
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VERTIOES

L

20 e (D

INCIDENCE MATRIN

Face Pz
Vertex

1. o1
2. o

P

FACHES

2 SR - i
Row
1 yoo 2 i |
2 i 2 3 |
VERTICES
TR RN ET
ES YN w2
Loo(f. 1) i, n
£ i) (41

INCIDENCE MATHIN

Tace i 2 3 4 3
Vertox
1 | (R I |
2 | I R S B
3 1 8 1 0
! o 1 1 ¢
PG, ()
FACIES

T 7 Ty g
Fow
1 | 2 I 2

Finear Algebra and s Applications 2{1968), 45
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VERTICES

Loy e (2
2 () e (1)
B () e (2)

INCIDENCE MATRIX

Faee o2 3
Vertex

1. | A U T
2, | I B LR
3 | I I I

P03

FACES

T Ty My

Raow
1 i B 1
2 i 2 3

VERTICES

B

INCHDENCE, MATRIEXN

IPace I R |
Vertex

1. o 10
2, 1t 0 0
3. | E N B

Ty
|
‘3
3
5
I
I
{
o
2

Fiwear Algebra and Is Applications 2{1968), &
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VERTICES

booidy g = (2)
A {."0.15 (2)
L) e (D

INCITHENCE MATRIX

Face P2 5 4
Vertex

i | I T
2 |2 T S
3 [ R 4

FACIES

Ty Tog g T
Row
| i | 0 1
2 i 0 1 i
VERTICIES
b ('Izin) = (1)
20 {fy =100
INCIDENCE MATRIX
IFace 2 5% 405
Vertex
1 | I VI B |
2 | S ) B
PUF,. ()
FACTES

Ty Ty Hqy A Ty
Row
| i3 2 1 b
3 3 1 4 2 A
3 RENE | 3 B
4 | 23 4 3

Linear Algebra and [s Applications 2(1969), 4

3

1=

i

38

I

L b

GOMORY



POINYHEDRA AND COMBDINATORIAL PROBLIEMS 523

VERTICES

Loy {5)
20 ) = (1D
3. () (5)
Lo ) e (2,1
B (fa fy) = (1, 1}
G {4y {5}
oo dy e {1 D
B {fy 4y (2,01
B {fy, ) == (1,2
0. ) e (&)

INCIDENCE MATRIX |

Face T2 3 4 5 46 7 8

Vertex
i a0 0y 0 1 11
2 L4 IR R S N N A |
] a 1. 0 o 1 0 1 1
| o o 1 10 1 0 1
5. 1 ¢ 1 t a 0 i
IN [ (N VR N A
7. 3 1 1 0 1 b 9
S, T o 1 0 | [ U] |
(R 9 0 1 0 1P 0

1 1 0 4 0 | i i 0

PUF, (1)

IFACLES

T Ty Ay Ty Ty

Rov

1 i 2 3 1 B

2 { 3 2 [ £

Lo (4
2 (5 (2)
(e (00)
1) 3
5.0 {1y (h

Linear Algebva and Is Applications 2(1969), &il--5i
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INCIDENCE MATRIN P9, (4

Face I N -
Vertox
i 1o 6 1 1 1
2 | I R T R |
3 | N O R C |
{ ({2 T T N A
3] N I S B S |
PLG, (04
1PACIES

Ty Ty Ty Ay Ty 1
Kow
I A 3 2 i 4]
2 4 2 3 4 2 i
3 24 302 4 6
4 i 203 4 K G
VERTICES
I (8]
2, h
3 (2
4. {200
. wx (11
0. o {3)
7. {1, 1}
4. {1, 2
9, {h}
INCIDENCE MATRIX PG, ()
ace P2 3 4 53 6 7 8 %
Vertex
i. a 0 g 1 4 | [ |
2, [C2NN T VRS S A A S |
3. | N SR T S T I |
4, G 1 P o0 1t 1 0 1
3. | U T S N N T |
6. A O R 1 S S R O
7. | A S TS R ¢ 2 I ¢
8. | 10 0 1 0 1 I G
9. [ A VR A T T N R 1
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PG, 50

FACIES

Ty Ty Ty Ty Ty g
Feow
| | {} i 0 ! |
2 R4 1 3 2 i 3
3 ! 4 3 20 3
€ | R4 3 I 2 3
VERTICRS
Lo {4y s (3 o0 () e (2,1
2o e e (3, 1) G {1y, £} [
3.0 44) = (1} T {3y
oLy (R

INCIDENCIE MATIRIN

Face P2 o3 4 04 607 84
Vertex
1. [ R A (NN NS S N
2, | NN N TR TN SN B S I
EN | IS J N S IR S A I
" oo b0t 10
3. I | I ) T T 0
(. | I R | I I (R R §
7. a 1 1 4 1 1 10
PUE,, ()
FACES

L L L Ty
Row
1 2 | 0 2 1 2
3 I 2 3 4 2 i
VERTICES
L) == () g0y e (B
2 =) 5. e
3oty iy == (11

Linear Algebra and Hs Applications 2(L369), 4317
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INCIDENCE MATRIX

/ I({‘("’u; ('1 !

e 2 3 4 5 6 7
Vertex
I a 1.0 1 1 1 1
2 1 1 0 1 1 ]
3. | A L I
4. 2 R T S A I |
5. [ 2 S T N I B
Pyg.. (50
FACIES

22T T P S g
TRow
i 1 0 1 0 i i
2 1 200 1 2 2
3 1 25 4 3 b}
NVERTICIES
- s ()
200 (L b)) = (1,02)
A {4 f) - (2
do {fy L) = (L1}
S (4, 8 = {1
G (. ) = (1)
o) e (D)
INCIDENCE MATRIX Y, (5
Face 2 3 4 5 6 7 8
Veriex
i (SR U VS A
2 I ¢ 1 0 0 & 1 1
3. [N S N T D
4. | A (N D |
3. o1 e 1 10
G I 1 0 1 1 6 0 1
. P11t 16

Livear Algebra and Tis Applicaiions 2{1069), 4
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PG, (0))

IPACES

oty b P S N Ty
Reow
i 6 5 i 3 2 1 7
2 5 03 i 6 4 2 7
3 4 ) 5 2 6 3 7
4 06 2 5 1 4 7
3 2 4 61 3 5 7
G 1 2.3 4 3 6 7
VIEERTICES
Loy (7) 13, {4, 1) < {1, 1Y
200 {1y (1,3 14, {4, 1, ) == (3, 1)
3 () = (7} 18, (£, 4 == {1, 2}
4oty = (2 16. (1)} o= {T)
300 .ty (1, 2 170 L dg) == {1 1)
6. (4y) {7 18, ({i, f6 = {2, 1
Tt ) (3, 1) 9 {4 = (1,1, 1)
B {4y, e 4y (1, 1, N 20, (¢, £, = {3, 1)
9. {1} (3, 1) 21 {4, fr} s (1, 2)
16, {is, 1) 1,3 220ty dgh == (100
11 ) {7 25 (g = (7)
120 (4.1 2, n
INCIDENCGE MATRIX P{#., {0)
Face 1 2 3 4 5 6 7 8 916102
Voertex
1 0 0 ¢ 0 0 10t 1 3 1 1
2 o 0 1 8 o 10 ¢ 11 41
3 0 000 190 1+ 11
4 o1 3 0 0 11 f 0 1 11
5 o1 ¢ 30 16 1t 0 & 1 1
6 o1 ¢ 0 0 ¢ 1 1t 0 F 1 1
i 0 0 ¢ o 1 1 0 & 1 0 1 1
8 o0 ¥ 0 1 1 0 0 1 0 11
4] H U T A S T R R (R A
10 O 0 01 0 1 0 1 0 11
1 oo o 0 1 0o 1 1 1 0 11
12 o 0 0t 11 6 11 101
13 i1 1 1 1 1 &8 011 0t

Linear

Algebra and Is Applications 2(19069}, 451538



528

INCIDENCE MATRIN 1”{.’9"?, {1 {continued}
Face 2 3 4 5 6 7 8 9101112
LN o 1 0 1 a4 90 t 1 0 1 0 1
i A, | R VIS S T R A I O A
1, LA O
17 | I C R S AN N ¢ A N D T ¢
I8, |V R R S | R S T S I
14, | S A N (Y Y| A SRR SR S TS B ¢ T
20. Fooo o1 00 b1 I Y
2%, L I e 1
23, | S S 4 N ¢ S S IR B I 0
23. o 60 0 0+ 1 3t 10
PG, (6

FACLS

oy my Tty Ty T Ty

Row

i 1 R4 3 4 5 6 [+

2 13 5 4 3 2 b s

3 § = B 2 1] 10 54

{ 4 G585 3 12 12
VERTICKS

Loy e (6 6. (1) e (B

T R Tty o (1

300 {1y w {2} St L) = (200
A4 e (20 8. () e (4}

B0, 0w {1 TR
INCIDENCE MATRIX P(%., (6]

Face P2 b s 67T 8 8 10

Vertex

i | I O P S T N T A |

2. | N U | A T EOE ¢ T R R |

3.  HN S R EE S S D S R

EN I 6 1 0 0 1 1 o0 11

3, i 1 1 0 1 0 1t 1

6. [ 2N N R T A I R N

7. e

B ot 1 0 1 1 1 0 01

9. a 1 o0 i1 101

16, | I T S R N
Tincar Algebra and s Applications 2(1969), 451-
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PGy 1))

FACES
T, Ty Ay Ty Ty Ay T T

Row

i 32 | 2003 2 1 4

2 i 2 3 2 1 2003 4

3 a6 a8 A 32 t 8

4 5 02 3 4 5 6 3 S

5 o608 4 03 2 05 8

1] 3 4 14 7 2 5 5

7 5 2 7 4 ! 6 3 3

8 1 2 083 4 3 6 7 §

VERTICES

Loy (3) 20 {64 == (2,
2. {1y 4 [T P I
3.0 L iy 2} 14 {6, it == {2
4y, 1) 2} 13 (f = ()
Tk 16, (6,6 ={l
6. () 1T f) e (3
T (0 1} 18, {fy tg, bg) = (]
8.0 {4, 1 8g) 1, B 190 {f,,6) = {1,
N {4, 8 1,1 200 (i, 1) = {2
10, {4 T4 R3] 21 (g, 4, = {1
() = (B 22, {1 = {8)

INCIDENCE MATRIX P&, (o)

Tace T 2 3 4 &5 6 7 8 0101112143 1413

Veortex

i O ¢ 9 0 0 0 0 10 1 1 1 1L 11
2 G o 0o 1 0 0 1 1 0 1 i 1 1 i
3 G 00 o 0 10 10 10t 11 1
4 T 0 19 1 0 1 1 0 0 1 1 1 1
3. G 9 0 0 o0 1 0o 61 3y 0 1111
6. [ R T A T
7. 01 49 0 0 0 0 1 0 1 1 37 6 1 }
8 O 1T 8 0 0 0 1 1 0 0 1 1 9 1 }
4. | N e
10, O 1 0 0 00 10 0 1 v P 0 11
it ¢ 00 ¢ 0 0 1 411 7 1 0 1 |
i2 O 00 11 0 1 0 1 1 11 41
13 2 S I S S S O A I A |

Linear Algebiva and s Applications 2(1969), 431--53

58



530
INCIHPENCE MATRIN t”(fﬁs. {1} feontinued)
Face P2 3 4 5 6 7 8 9103t 0213 14 44
Vaortex
IER (D2 S S T VR R S A I ¢
1h. [S2 N O T A R D A
16, |2 A A R A T R A A e R R
17. N N VI N o N S ¥ N ¥ A N NN Y A ES S 1
1S, Y R A N R T T R O I T
i o P b0 0 10 1 0 1 1 | B ]
241 [ R ¢ T L S R N R S L A T I
21 o o 0 4 9 0 1 o8 01
22, [& R L A | R T A A A
ST
FACES
Tyody Ty mtomy owy Ty
How
| 1 2 B 4 | 2 b |
3?2 1 2 3 A 3 2 I 4
3 3 4 | 4 4 2 1 1
i 3 b } 4 i 2 3 Bl
VERTICES
TN C (4 6. 1) e
200y = (2) I 3
LUy (D 5. df dg) (1, 1)
TR o 0 (L e i
TN i1
INCEDENCE MATREN %y
Face P2 53 4 5 6 7 8 010 H
Vortex
| | AN A 2 | I { R N N E A S |
2 [ N
3 SN (N S N R R R Y R
-4 g 0 1 b 1 1 0 1 b |
a | ENS S S I S S T A S |
i3 [V O N A
7. [ N S N
b | S T R N R N v I R ¢
9. (U S | S T A I 1
Liwear Algebra and Tts Applhications 2(1964), 451-558
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PG, (6

FACES
Ty Ay Ty Ty T Ty Ty Ty

Row
1 1 z | 0 1 2 1 2
2 5 z } 1 | [} 3 I
} 1 2 3 & 5] 4] 3 6
VERTICES

I £ (6} G (6 = (1
AT {3} T e (L2
3oty (2] S = {6}

Lo e, 1g) {2, 1 | (h

3. [ 15 {1, B [EUN Y o e

INCIDENCE MATRIN 7%, (6))

Face 2 3 4 5 6 7 8 &0

| o o6 1 o 1 1t b
R [ e |
b | AN S T S A A N R
-+, | N R SR T (N N ¢ SO A B |
3. | A T R S R R N
. A S A T R B
7. [ R S R A A
8. L2 A T I S S S
9, [ T S N N A A R
10 | S T S A R S T
Pl
FACKES
Ty Ty g0 g R Ty
Row
1 | I ¢ S TR N A 4] | I
2 | 23 0 1 2 H 3
3 I 2t 2 1 2 3 3
g 3 2 1 4 } 2 3 A
3 ] 2 3 -4 3 G T T
6 o6 5 4 yoo2 9 i
7 9 10 3 12 35 4 15 1

Linear Algebra and Ns Applicalions 2018969, 4351558
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VERTICES

L) e () 9.
2 Uty e (1W 1,
T Unt) = {21 1,
Ao it = L9 12,
ER A = (5) 13.
6. | —_y 14.
T, s 15
S 6,

INCITYENCE MATRIX (%, (7))

6 G0 11213 14

-1
psd

wt

IFace 12 3 4

Vertex

o0 G 0 1 0 0 6 1 1 F 1 1 i
2 T 9 0 g 1 00 ¢ 0 1 1 1 1 4
3 oo o 00 100 1
t oo 1 & 1 a1 0 v a1t 11
3. O 0 ¢ 1 0 0 ¥ 1 1 0 1 1 i 1
6. a 1 oo 18 9 0 10 11
7. ] P9 0 1y 6 0 0 010 1 1 |
8. [ T T A T R R T
Q. G o1 1 ¢ 1 9D o 0 1 1 1 0 1 1
10. | T A D D A
11, o+ 1 9 0 1 1 1 1t 1 0 i1
12 | A T R T N I A D A B I
13. P90 0 6 10 1 00 01
14 0 ¢ 1 | 25 N R N 0 N SN N ) B |
ia. 0 0 0 [ I S IS SO N O B ¢ B |
16, | R T R S N I A T T R R B
P . (0, 01
FACES
Tyg Mo Tap o Mg Tay T Ty
Row
i 3 2 ] 2 3 2 i 1
2 i 2 4 2 3 2 H 4
3 3 2 1 2 H 2 3 4
4 1 2 3 2 1 2 3 4

Linear Algebra and Hs Applications 2(1869), 4531-558
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VERTICES

T ) 60ty s
20 {ty ) ) Tty ) wr {2)
30 e byl = (LD L TN TIE N P
Lot {4 9 {0
5. g ) 2
INCITRENCE MATRIX I’(f&’l‘z, {0, 01
Pace P2 o3 4 a8 607 8 91011
Vertex
1. a1 0 1 o 1 1 1 P 1 1
2, A T T N R ¢ T R R T
iy 2 [ R N £ N N IS N S B
4. [ T S N A N § I A A B
3. | S I I R S S T A I |
{y. g 0 1 } i i i I & 1 |
7. | SN N KRN S N TS S S N |
h I | I I S A S T R S A
4. | N R S ) I R T T R Y
P 12 00
FACES
Tyo 20 Taa Toy Ty Mo Tag Ta
TLow
1 i 2 i 0 | 2 1 2
2 1 2 i 2 I } 1 2
VERTICES
I iy o {N | ¢y 41 (2
RO P {23 I (PR AU I {1, 1
5 g a) {3} Bty ) (D
INCIDENCLE MATRINX J"(f‘;)_, 2 {2, 00
ace 2 3 4 5 6 7 8 0
Vortex
1. 0y r 1T 1l
i | 2 T N S T S T
3 [ R I T VR S T
4. i} | IS S T T I |
5, | I IR I T S A |
6. | J K R T U I S B

Linear Algebra and s Applications 2{1069), 4515
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PUF o (3,00

IFACH

Ty Arx g T
Row
1 i 4] 1 1 0 1 0 i
2 1 0 1 s} 1 & 1 1
3 1 2 3 2 3 0 1 3
4 1 2 3 2 1 2 1 3
] 1 2 3 0 1 2 3 3

NVERTICLES

| P {

20 G fs ol
3.ty 0

L P T Y
5. {0 iy

G oy by )

INCIDENCE MATRIX P{%, , (3, 0))

TFace 12 3 4 5 6 7T 8 91011 12
Vertex

1. ¢ H r 11 o0 1 1 1 ¥ o1
Z. 11t 1 1 0 0 1 1 1 1 1
3 [ D S N A T D D
4. P10 0t 10 & o0 6 1 1
. I o6 1 1t 0 1 1 1 0 11
6. o9 0 0 1 ¥ 11 0 0 1 1
7. o1 1T 01 0 1 1 601 0 1
5. vt 1 811 0 00
9. | 2 I T T T A R R S 4
10, T ¥ 1 00 ¢+ 0 1 1t 1 0 0
11, 0 1t 00 1 31 1 1 1 0
12 o 1 0 0 1 1 f 110 0

Linear Algebra and Ifs Applications 2(1960), 431-558



POLYHEDRA AND COMBINATORIAL PROBLIEMS H3s

PUG, 0,1

FACES
T e Ty ff(fi Ty ey Ty Ty

Row

1 | ( H i & i 4] 1
2 t 0 0 I i 1 1 1
3 H 2 1 2 H 4} 1 2
) 3 2 | 4 3 2 | |
5 i 2 3 i ] 2 3 4
VIERTICES

1 gy N

L (el = {3, D

Bo Wigtaaty ) = (L11

A Ut fy ) S (11

o e hid U

8. oty (21

T (e fe sl = (3 1)

s, {":s,o- 32_1) = (2,1

TR a2 0

10 (yatyy) (. n

1. Uaglamte b o= (11,8

120 {00 8y 4) = {3,01)

1Byt e (L2

R (A (1, 3)

INCTDENCE MATRIX P(%, .. (0, 1))
IFace 1 2 3 4 5 6 7 8§ 1011 12
Vertex

I, | AN S A T T T A I O T

2. {1 T 4 S TS S T Py 0 1 1

3. Iy o6 1 0 0 1 0 0o 1

4. | IR S S K S N N+ S I A

3. 1T o 0 ¢ 1 o 1 i 1 G 1 1

. [ T T N ¢ T R I I |

7. | I S S R A A e (|

8. L1 A A A N A

. o & o0 1 U P 1 b 0 &4 1

141 | N (R I T N £ I S R A I )
11 0 1 6 1 0 0 11 10

12 L R A I T D ¢

13 A ¢ S U R (S T A R I N § B ¢

14 oo 0 1 10 i 110

Linear Algebra and [ls A pplicetions 2{1969}, 451558
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FACIES

Trow Teaw Tiae Teaoa Mo Tega Traas Ta
Rene
] i | i | i H 1 2

NERTHES

LU ge = 1D 3. gt = (@
2 Uy o) 4D B il ) = (2
B ity g} o D) (T R
Lo g pal o £2)

INCIDENCE MATRIN PU%, L, (0, 6 0

Face 2 3 4 5 6 7 8
Verles

l. I O T T A |
2. | I | A A E S S|
s | AN T SR £ N IS B B |
EN | IS S R N
A, | 5 D T N S R B
. A T R T T 0 R
7. [ R S A R A |

Py o (1.0, 05

TACES

Troo Tese Tran Teea e Toas oo Ty
Row
| 1 { | i ) | 1] |
2 l | ( 0 | 1 ] 1
3 | i i) i ] i} | H
4 1 i} i 3] I {3 | }
VERTICES
TR, (s T A N R T IR T
20 Wy by S G Uty yo fooe 'fl.l,l) s {1, F, 1y
3 (.5'04:1.1'-"1,0,1} = (1, 1 7. “1‘1.0»“,0.1: fyagh = {1 n
4 e e fea ) = (11,0 S o b (0

Finear Algebra and Iis Applications 2(1069), 4531353
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POLYHEDRA AND COMBINATORIAL PROBLEMS

Face 12 3 4 5 6 7 8 910 H
Vertex
1. i1 0 9 1 1 1011 i
2, D I (R TR N (T 0 S I N B
3. 2 A T S T (R NN O { B
4, G o1 i 1 AR S ¢ A ) S B ¢ B
3. [ AN TS T NS SN 4 N N SN R B
6 T &+ o 1 1 1 0 1 1 8
7. | N S SN TN T AN 4 S S U B ¥
8. | I SN W (D TN S N SRS S 4 2 4
PG, ()
FACES
Ly My My Ty &, g A Tk Ty
How
1 2 1 22 i 1 2 ! 3
2 2 H 1 2 ! 2 2 | 3
3 | 2 4 i 2 | 1 2 3
b | 2 1 I 2 2 | 2 3
a 8 7 6 a0 3 2 1 9
G 7 a3 | 5 6 { 2 il
7 i l 62 T3 54 i}
8 -+ h 3 T 2 § i B 9
] 24 6 08 I 3 A i 9
14 1 2 3 4 o 8 T b 0
il 14 1y 6 11 FE A S 18
i3 11 4 6 8 10 1 i I8
i3 10 1t 12 4 N [ 008 15
14 8 7 6 14 4012 410 i8
i5 T 12 18 85 4l is
16 4 8 12 T 011 6 e 14 I8
VERTICES (%, (0
{4y wn (D) (KSR AR {4, Iy 10, (g d) = (3,1
200 {6 1) we (1, 4) Vo (A = {3 1) 20, {4} a (3)
3. () = () P20 {7, dy b o= (1L, 1) . {41 w (2,13
4 {ly £y) =a {3, 1) 130 (d 6 {1 220 Uy, 15 = (11
A0 {4y wi {13 LI D U = (1, 3) 230 {0 = (4, 1)
6. {f, d 45 = (L LD 1A, ) =B Db {4, 1) = (1,1, 1)
Toon Yy = (1,2 b (), 4} = (3,13 25, (i 6y = (1, 2)
8.0 (s, £y = {1 | IS (P S Y (I, 1, 26, {6 e (1,8
I = () 1S5 {4, 7 {1, 13 27, () w (W

Linear Algebra and s Applications 2(1969), 451558
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VERTICES 2%, (0 jcoxtiNeen

I8t e (B SE A St e (0L 1y Bty L (h3
2G4 (2N 320 (4,49 w4, 1 Ia. (4 14 {1, 4
G1EAT P A R A T B B Uyt e (LD RUN = (0
INCIDENCE MATRIN P{Y,, (05

Face P23 453678000 0 1213 14 15 06 17 18 19 20 21 22 23 94
Vortex

| CH6a000060 0 0 o 00 0 b oqi o1 01 1 1
3 LU IV ¥ O v N I N VI ¢ N ) ST SN Y SN SO SR N N
3. GRa0oo0l 00 0 o0 0 0 6 0 0 N0 14 1 1 1
{ Daocoo o0 6 1 0 0 0 0 N0 it 0]
3. 1l O0Fa1rT010 1 g | (R U PR | [ S R
. o001 1I0d 1 0 0 006D 10 0 ¢ i I A
7. Gortirobrro0 10 19 0 Lo 10 111
8. Da000 1 t00 0 6 0 0 0 0 g 10 P o0 1 1t 1
i, GOGOHTO0O 6 o0 0 0 o0 0 0 v P 1 o0 P o1 r 1
] LI L U Y T Y R N P 7 S S T S B T S
Pt FP1T0000 0 10 F 0 1 0 o o 1 1 0 1 1 1
12, [0 V1 G ¢ O U TN S 3 R S Y N | N T T TN SO s S T S|
13 L O L e s e L T T s O R B
Iz GO00H001TL 0 0 00 e 0 f a0 11 i
13, Bo0a0EdEor 0 0 0 o0 0 00 11 o0 bt o1
16, GOaNGGoar 1D 0 0 &0 b0 i 0
17. NDH8000n 0 SN TN ¥ T Y T § R SR § B # S ! | ) S
s [ T I I A N Eood | I | N RV I T S O S
i OGoo0O0 1T 1L00 0 0 0 0009 1 1 o0
20 {1 T S ¢ S ) S T ¢ SN FNND TS S S S (R SN+ S B
21 a1 10000 1 6 0 ¢ 0 b0 0 i F 010
22 L S e L e e e e R T R
23 D000 YL 0 0 B0 B G 0 1 | S I A
24 DGDO1TORIE T 0 0 0 0 0 10 1o | I S T § B I |
23, [ T N U3 O 4 TN SN € SN 4 N S ( N N § SO | I U T B Y N |
245 D006 0010 8 0 0 60 10 1 i I L B § B
27 0000000 5 0 G o 0 0 0 1 0 1 o0t oa i
28, L L L T e O R T T T S Ot
240 FP1001r 080t o 1 0 0 F 00 1 ¥ 1 01 1 0
3 OO0 PIOO 0 0 O & 0 0o G 1 1 1+ 0 ¢t 0 1 6
3 GOoGoOT1Tore 0 0 o0 0 G0 10 0 8
32 DG00It 0 0 00 0 0 0 1 1 1 1 1 1 @4 0
33 Frage1r 00 0 10 1 0 ¢ 0 0 P01 1 1 110
kBN GHOGE1IOoO00 0 g o000 uon g 10 1 [ S B
35, BOONDLTHOOO0 G H 0 0 0 0 0 1 1 01 | P
36, DGO 1T o000 0 0 0 0 0 0 0 1 | | S| | S ]

Linear Algebra and Tis Applications 200069, 431533
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P, (G

IFACE
sty Ty Ty fhy Ay T TG g Ty

Row

i 4 H] 3 | 2 ] 4 2 &

2 ! 2 3 4 2 i - 2 [}

3 ] 2 R 3 4 4 2 4

b 2 4 3 2 -4 & 2 A4 t

5 1 2 3004 2 i | B 0

{i 3010 60 2 VR 5 4 B2

7 2 1 6 8 10 12 ] 7 12

8 b 7 | 112 210 12

VIERTHOES

T 65} §. 4] El]

2 {1 {31 0L () w1

B0 (D) Pho {f fd e (201
i) (20D LR (A e U

B0 {d £y e (110 [T NS (.3

B 4k 0 e (E, B ERTa it

Ty e (1) T N L P

AR TN }
[NCIDENCE MATRIN PUE,. (61

Face 2 3 4 5 6 7 8 100 12013 06518
Vertes
I. noa | g H 0 10 o0 1 i 1 | i | 1
i [ AN S N U A T Y ¥ SN N ¥ S S N E R N
3. | AN TR TR S N N N (N A N 1 A N H B R
o, [N I o4O | IR S I S B o0 | 1 |
ER P [ | 11 [ N VR St | | i
[ L T S T ) T N S oo 0 |l | | 1
T i I S A ) S T S T | I PO | | 1
5. [ J50 T T T A (NN SRR 4 N SNNND SN SN + S HRN S
. | AN T T S N 0 Y # T TN I D SN NN # S I B
10, | JSN N A A K (N T A NN S S S S S B
il | AN N VN ) N Y ¢ S (N U NS SN ¢ B H B I
12 G0 0 1 b 0 1w 0l
13 o ¢ o9 0 v 0o o0 b b 1000
id o 0 0 0 & 0 0 1 °F 1 1 1 | I B Y B
1 | N S R SN S NN SN S IS N NS N N ¥
6. | S S NN ) NS SN N SN S NN A NS SN R B )

Finear Algebra and Ms Applications 210681, 4513538
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DU, (81

FACES
23] o y Ty 7.-, Ty by g
Row
| | 0 1 20 1 2 i
2 ) 1 3 2 1 3 02 4 -+
3 1 PR T 3 06 7 8 5
it 8 7 G 5 4 3 210 1)
31 4 8 ]2 7 206 1 34 i
i 11 1 6 8 10 12 5 16 14
7 14 5 12 10 8 15 120G 20
VERTICES
L)) b} S {4, 1) (i o, (40 == (2,1}
20 (i} e {4} 9. (fs, L) (.3 16, (4, 65 == {1, 2)
Bty w2, 23 1) %) 1T g o) = {22}
4 ) = (1,2 | DR P w2, 1) I8 1) =z ()
5.0 (4] wn (2) P20y fg) (1) 19, {43 = {1}
G {fy, 1) =0, 1) L T P ] (1, 2)
ooy e (L | T i, 1
ENCIDENCE MATRIX _1"(.(6'.\,, {81}
lFace P23 4 5 6 7 8 9101111213104 15
NVertex
1 00 3 4 0 0 0 0 1 1 1 1t 1t 1
2. (L2 R T ¢ I R D I A A R I
3 o v 0 6 0 0 0 1 0 111
4, e 0o 0 190 6 0 11 0t i
3, L S e S A S S O I |
fi o0 1 6t 6 0 0 1 1 6 1 1 i
T. et 1 0 1L 0 o 4 01 1 01 11
s. | S T S N S T R I R T |
H] a 1 o 0 1r 0 0 1 0 1 P01 i I
14, [ S R | N I D/ S R T S R/ S S |
1t N € S W AR S ¢ T/ I o T R R R I
i2, | HN A A S T E S (R A R R N
13, I N I A ¢ T 2 R T 0 N T S |
fd. | A S S A T O JE T T A D S J R |
th, L £ I I T D ¢ R S § B
16. I € ¢ (R /N H T T ¢ B
17. Lo o 0 0 0 1 3 1 1t 00 i
14, 609 0 10 0 1t 11 1011 01
14 [N S S R S 2 S R R R e S )

Linear Algebra and s Applications 21960, 451-558



POLYHEDRA AND COMBINATORIAL PROBLEMS

PUG, L L0 o0

PACES
Tie Tan ez T Hay Wap Ty Ty Ty
Row
| 2 | 2 b 2 1 i ! 3
2 ! 2 2 3 2 H | | 3
3 2 ! t 2 2 2 ] 1 3
4 | 2 | 2 2 2 1 | 3
B 2 | 2 b | I 2 ! 3
& | 2 2 2 I ! 2 | B
7 2 t | 2 1 2 2 ] 3
H i 2 i 2 f 2 2 ! B
] 2 t 2 I 2 I 1 2 3
10 ] Z 2 | 2 1 H 2 3
H s I | i 2 2 I B4 3
12 | 2 H i 2 2 ! 2 3
13 2 | 2 | ] | 2 2 3
i ! b B4 ! | | 2 2 B
13 2 | | ! ! 2 2 2 3
16 | 2 i ! ! 2 2 pu 3
VERTICES 2%, ,, (o)
Lo = {3 Pty g dy ) e (0
2ot feel (1D A YY) = (3)
B Uy == {3 SO T e A U b
4oy ) - (3} (G A (4
VAN - {3 L T A N I
G {y w (I RO = (3

Face P23 456789 11 1203 84 15 16 17 18 19 20 21 22 235 94
Vertex
1. FEPOTOTO0OYO 10 1T 0 P 0 g o1y 11
2, L I T e e (7 T T T TS T T
3. Fororo1r o1 01 0 1 0 1 & 01 0 1 1 1 3 I
4. L O R A R R R T T T
3. (A U N e O A e R R
4. R L I 2 e T T S T TS T
3. L T e T e T S S D TR T
5. F1o0o01L 1001 0 0 1 1 0 ¢ 1 U 1 110 1 1
4. L L e e L L T T (T T
14 Prirtoo0oeci v 00 ¢ 0+ 1 1111 o0 1
IR L O T e T T e ) T R T Y
12, LT E R0 0 0 0 000 0 0D 1 )} 11110
Linear Algebra and Is Appleations 2{1069), 453
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PG 5 (105

FACHES

T fag Moy My Ty My M e g
Ronw
i 2 1 i H 2 2 1 0 2
2 2 ! (4 2 ) 0 2 ! 2
3 2 | 2 I 0 i 0 2 2
4 6 3 4 4 4 2 2 2 {i
B 6 3 2 2 2 4 1 ¢ 6
VERTICES
Lot e 8.
2 (e = (D) 9.
B U o) o (2T 10.
A (gt ) o (2 1) it
B gy by q) = (0 2) 12,
(TN 3} = (3 1) 13,
T (g g = (2,2} 14

INCIDENCE MATRIN (%, , (1, 0)

Face L2 3 4 5 6 7 85 910 1213

Vortex

1. N A R S N RS I A R R R
i | A R R S N VA I I R e
3. NS S T ¢ R T O R O
£, [ S VR A R A A R
H) L e e
. | N e
1. [WJ T T G T N R R S
5. I S S I N N A R D
. {12 N RS S R Y R R T
HIS [ A A O S R A
1L I S T R S
iz LA A D S| R I S T T S A ¥
i3, 0 0 0 1 1 6 11 11 i
i, 1 0 v o 1t 1 01 0 1 ¢

Linear Algebva and Hs Applicativns 2(1969), 451-558
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877
FEL| .g’m- [R13N

T O TR U U S A 1y

Row
1 a 5 7 [T | H 2 1 11\
2 56 i ? 5 8 [ 2 i0
i 7 4 G hoo® | [§] } 10
Bt 7 4 i A2 0 5 i 10}
3 [H] 2 4 i B i 2 5 1 10
G R 3 4 54 T8 1 10
7 4 5 7 G 3 i 3 2 0 1o
4 B! ¥ 2 G 5 ! 5020 1
i} 3 [ ] ) 3 B I B! i 1
1 3 (A 2 3 A R T it
I 2 | [{ B 31 ! H | R I
12 | A S 3 0 7 S ] H0

VERTICES D%, (03

(i (L
i (1h
ke {2,013
L s {1, 13
83 401
PR 2 T4 RN VO % B 2,00
s Lioh
3] I,
2,
)

B4t hy
A5 Ay by dg) o
36 (U 1)
BT (s dy)
L 38 (1)
) B9, (4.4
[ 40, (1)

1%,

|
{
{
IR
t
L
200 (

o

Lisiear Algelva and Hs Applicaticns 2(1969), 451558



GOMORY

:
.

!

{4

34

i

INCIDENCE MATRIN P4, (00

1O 11 B2 83 113 16 17 18 19 20 21

i)

g

IFace

Vertex

]]]]]]]]]]]]]]]] TZ T T T T —m e e I e T e e e D e e ey e
S DD D D e —m e e — e T T e o R T S S S S A S
i e = e R T T
B T T e o UL
d 2z P = o= o o Lo e Lo wom o

R T e I T [ B e B B B s O I s T R~ A B e T S S ]

3l

4

Applications 2(1969),

Abgebra and s

ey

1:



POLYHIEDRA AND COMBINATORIAL PROBILIIMS Hdd

P00 (5)]

FACHES
Ty My My Ty Y my T dy Ty

Roav

I i 0] i i i [ i 4] ] 1

pid 1 2 | 2 3 2 i 2 i 3

5 4 3 2 1 3 4 3 2 1 5

i 1 2 I i 4 3 2 1 3

& 3 ] 4 2 3 3 1 | 2 5

5} 2 4 i 3 5] 2 4 1 3 a

7 3 4 i 2 5 4 1 4 3 3

8 i 2 3 4 b i i 3 4 B}

9 3 [§] < 7 1 b G 4 2 0
10 2 o £ 5 10 7 El 6 3 10
11 1] 7 3 % 14 G 2 8 4 19
12 4 8 2 ¢ 10 1 3 7 [§] 10
i3 i 1 11 8 15 1z 9 6 3 15
144 3 6 9 12 15 8 11 H i 13
15 1] s 7 15 4 3 12 It 13
16 1T 12 3 4 13 G 7 8 9 13
VERTICES 9, (5]

ooy = () 16, (L) oo {5
20 (Ll = (LD 7. gl dg) = (1,1, 1)
3ot = {20 V8. {f fe fe) == {1, 1, 1)
A [ty fy) = (L) 100 (.t e {1 b
B () e (5) 200 (4, 4y == (LB
G, (6,0 = (1,5 2 (.t == (1)
P A T ) S (A S £ I
8. (&) - (13 23 (b = (20
9.ty 1) = (1L, D) 24 (i, 1, L1
0. {15 == (1, 4) P T (N VI
1, (.t == 4, 1) 26, {fg ty) e (1,1
12, (2, 1)) we (2,1} 2 (g 1) we {21
PR (e b)) e (1,1,01) W ity = (1,2
P (4, 0) = (1) 2% {ty) w (B)
15, (t,8) = {1,2)

Lincar Algebira and Hs Applications 2(1069), 451558
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INCIDENCE MATRIN %, 150

ace 12 5 A6 7T 8% 10 e 12 15 113 16107 18 10 20 21
Vertex

1. codotltooetlae 160 0 1 0 o o v of b v 11 1o
2 foo b toorG v o6 b 10 0 0 0 1T 1 F 1L
3. (I T I T N R B B¢ | IS R D I § ! i ] i
| I T T e N A
i R T€ 20 I N Y 3 ) TN S TN (N # S I S S UND AN N § T A IR N S |
[i% I T T S O O e e e
7. folgoao0oo0on o 4 0 o 9 0 ¢ o b e a0 b 0]
N, | I N S S S B A | i I b i | ! i | 1 i o | i l
49, NS - T N H ¥ D ¢ I P R S T A VA T R N |
[Nt oo i a o0 g 0 0 0 0 0 0 b 01 gy b
S {3 Y A T I T R N SN N S S Y NN S S NN Y AN KN NS S SN ) B B
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