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ANIRODUCTLON
A, Inequalities based on the integer nature of some or sll of the
variables are useful in almost any algovithm for integer programming. They
can furnish cut offs for branch and bound or ifruncated enumeration methods,
or cutting planes for cutting plane methods. Tn this paper we describe
methods for producing such inequalities and develop some underlying theory.
We will attempt to outline ouv general approach, taking the pure
integer case first.
Consider a pure integer problem
(1) Ax = b, == G
in which A is an mx(min} matrix, x is an integer m+n vector, and b an
m-vector. If we consider a basis B (in most applications this will be

an optlmal basis) we can write (1) as

BXB + NxN = bxg =20, x.20

where x, is the m-vector of basic variables and x_ the non-basic n-vector.

B N
The usual transformed matrix [1, pages 75-80] corrvesponds to the equations
x, + B3 T, = BV, x, 20, x_ 20
(2) y+N'z==%b", v20, z3z0.

o a .th
Taking the i Tow we have



We can form a new but related equation by reducing all co-
efficients modulo 1 and replacing the equality by equivalence modulo 1.

This yields
j=n
(3) jzl y(nj{j)zj = }(b:;_) (mod 1).

Now any integey vector (y,z) satisfying (2) auvtomatically satisfies {3),

so that any inequality

j=n
> f Ter 2T
121 “jzj Z Wy or Mez = T,

which is satisfled by all solutions z to (3) is also satisfied by all
soluidions te (2}, i.e,

(0, m)  (y,z) = ™y
holds for any integer vector {y,z) satisfving ().

The approach of this paper is to develop inegualities walid
for ail solutions to (2) by obtaining those wvalid for all solutions to
the simpler equations like (3).

More generally, we can proceed as follows, let U be & linear
mapping sending the points of m-space into some other topological
group 3 with addition. If we have an equation (like (2))

b Y C.x. = C
() >‘J i o

in which the Cj and CO are m vectors, we can obtain a new equation by

using the mapping ¥ to obtain, by linearity,

(5) Lyb(C ) = pic)

idi



which is an eguation involving a set of group elements in 8, tha

elements Y{C x,). Tor integer x_, @(Cixj} = w(Cj)xj 50 eqguivalent
13 N N N :

group equations arve

(6 Xj Mc:i)xj - MCD)“

In the discussion leading up to equation {3) the Cj were the columns
of the matrix (IL,N') and ¢ was the mapping that sends an m vector into
., cth , .
the iractional part of its 17 coordinate. The group § was the unit
interval with addition modulo 1. Equation (3) was the equation (6},
Again, 1f mwex = " helds for all dnteger x satisfying (5) ox
X : :
{6) it holds for integer x satisfying (4).
In this paper we study equations such as (6) and develop

1

inequalities for their solutions which are then satisfied by the

solutions to (4). Specifically we study the case where S is I, the
unit interval mod 1, and develop inequalities for the equations :

(7} 5 ut{u} = u

wel ©

where U represents the set w(Cé) € L and ©(u) is a non-negative inteper.
Equation (7)., which we refer to as the problem (or equation), P(Uauo),
is merely {6) vewritten in a different notation,

Returning to eguation (4) when some of the Xj are not
restricted o be integer, a linear mapping ¥ still gives another
equation (5) satisfied by all solutions to (4). Thus, any solution to

(4) satisfies the equation

) (C.x.) = e ).
LG = e

idd



Just as before, If any % is vequired to be integer, then
J
$(Céxi) = (Cj}x}” Let J1 denote the subset of § for which %. is
32 3 4 ) N
required to be integer and J? be the § for which x, is only vequired
L J i
to he non-pegative. Then, any solution to {4} with x. intager for
: 5 :

i = J1 satisfies

Wheo § is the same (fractional) map used o dervive (3), we

\ P H . _ - . P - A 3 .
JZV ‘f(nij)éj + ,z. j(nijzj) "‘%(bi) (mod 1),
j&J] - 3&32

Consider n!.z,  for j € J,. If n!. = 0, then z, does not really enter
117 2 ij N

into the equation. If n{i # 0 we can rescale Zj by letiing

W

Let I, = {9 e 0} and J

- i
Z - Z ’n:i.j

L o= {je J,m!, <0}, Then z! = nl .z,
2" : i 43T

and -z = n}l.z, for j £ J,. The restriction 2y % 0 is

o ot
for j ¢ J2 i 13%5 2

equivalent to 25 2 0. Hence, (9) becomes
(10) LoFaloz, ) 3G T 3(z]) T Hb)  (mod 1),
N P =S L Y A 1
1 Z 2
Since

\}1(2:}) Z?{Z . zj) (mod 1)

}
jEJ; jed,

iv



{10} can be simplified to

A N RN ACIEEFLCH (mod 1)
Jjedy ;
where
o b ., 259
j&J?
= ] e
jEJz

We can rewrite (11) in o form similar to (7) toe obtain the problem we

a1 )+ a
call }M(Uguo)c

(12> X ut{u) +J¥(S+} —l9(8~) =

ugl
In this paper, we concenirate on the development of valid
inequalities for equations of the form (V) and (12). These inequalities,
satisfied by every solution to (7) or (12}, are immediately applicable

to the original problem (4). 1In the case of an inequality

(13)

+ - ;
z oA, o z+ +we =zl

3€Jl

satisfied by every sclution to (11), the inegquality

(14) Yoome, y (u nf Yz, + ) _ (w—nif)z, z 1
jaJ1 b JLJ2 3 jajz ol

is satisfied by every solution to (10), and hence to (&).

B. The Arrangement of the Paper

In Seciion I we introduce the problems P(Uyuo) and P+(U,uo)
which are the problems (equations) which result from applying the mapping

Y to an integer or mixed integer programming problem. We next introduce



1. Development of Inequalities

TA. Problem Definition

Let I be the group formed by the real numbers on the
interval [0,1) with addition modulo 1. Let U be a subset of T and
let t be an integer-valued function on U such that (i) t{u) = 0

for all v & U, and (i1) t has a finite support: that is, t(u) > 0

only for a finite subset Ut of U,

The notation and definitions above will be used throughout
so that t will always refer to a non-negative integer valued
function with finite support.

We say that the function t is a solution to the problem

P(U,u ), for u €1 - {0}, if

(1) ) ut(u) = u
ucll

Here, of course, addition and multipiication are taken modulo 1.

Let T(U,uO) denote the set of all such solutions & to P(Usuo)o

.. -+
Correspondingly, the problem PM(U,uO) has sgolutions

- , .
t" = (t,s ,s ) satisfying

. R
(2) § oue) + 36 -G u_

uell
where t is, as before, a non-negative integer valued function on
. L. 4+ - . ;
U with a finite support, where s , s are non-negative real numbers,
and where‘3(x) denctes the element of I given by taking the fractional

+ .
part of a real number x. Let T_(U,uo) denote the set of solutions

..}. —_
t' = (t,s ,8 ) to Pf(U,uO).



it is also posgsible to define problems P (U°uo} and

. . +
P (U,u_) in which only s or s appear, and these problems are
et O
useful in some situations. Their development parallels that of

.
f”(Usuo),

The notation v € T will mean that v is & mewber of the
group 1 so that arithmetic is alwavs modulo 1. I we want to
congider u as a point on the real line with real arithmetic, wa
will write jul. Thus, lul and:}(x) are mappings in opposite
directions between I and the reals. and, in fact,f}(éu}} = u but

% and i%{x)i nmay differ by an integer.

1B, TInegualities

L. Valid Tonegualities For any problem P{U,u ), we have
y o

so far defined the solution set T(U,uo)ﬂ A valid dinequality for the

problem P(U;uo} is a real-valued function 7 defined for all w e T

such that
(3) n(u) =0, 811 w e ¥, and (0} = 0,
and

4y ) w(we) = 1, all £ e T(U,u ).
uel o

+ -
For the problem P_(E,uo}, o= (wywo,n ) is oa valid

L
. . o N . . . -
inequality for P (U”uc) when 7 is a real-valued function on I

. . + - . ;
satisfying (3), and ™ , ¥ are non-negative real numbers such that

4 - -
(5) L mwe(u) + st e wTsT 2 1, all ¢t e 7 (U0 ).
uel N ©



the notion of wvalid dvnequality, an inequality which holds for all

A
solurions to PXOM,u )} or P {U, u
S -

¥, Valid inegualiries are shown o he
3

b
arranged in a hisvarchy of exireme, wminimal ov subadditive inequalities.
some theovems velating these propertias are then given.

o Secwlon YI othe preceding theory is applisd to a useful

spacial case, the case in which the gat U +4n the problem P{T,u ) 15 a
E ! o

~

(In this case the problem reduces

nroblem situdied in [3], and an exireme

i

irequality becomes a face of the polvhedron, P{(G ,g ) descvibed there).
T n’ %o

The theory is also applied to the repular grid problem
1]
LT : RPN - i
PG ,u ). In both the P(G ,u ) and P (G ,u ) cases rhe theory allows
-’y n’ o -’ o
the explicilt computation of all extreme inequalities of the problems
> \ . ¢ q- ; e T . . f
PG ,u 3 and P (G gu() for small n. Tor n £ 11 the extreme inequalities
il O b il gl

. . . . . . - “+ .
for ¥(G_,u } ave dncluded in appendix 5 of [3]. For P (G ,uc)? ns7,
n’o " -~

they are Table Z of the appendix of this paper.
One vital step rewmains before the inequalities explicitly

constructed and tabulated can be used on an arbitrvary integer pregram.

The inequalities explicitly computed so far as valid only for integer

programs where the rvesulting problem ?(Uguc) has a U contained in a

regular erid Gn(that is, the fractional parts of the coelficients

have a common denominator n), In section TITA we give a simple way

of constructing an inequality valid for any P(Uyuc) {and hence for any

coefficients N') from an inequality valid for P(Gnsuo). In section

I1IB we give another simple construction which produces valid in-

equalities for a general Pi(U,uo) from a valid inequality for Pt(Gn,uo).



ITA and I1IB zllow ug to use the tabulated inequalities o construct,
essentially by interpolarion, valid inequalities for any integer or
mixed integer linear program. The mixed integer cut of [1, page 528]
emerges from the simplest case where Gn consists of only 1 point. In
ITIC we apply the methods of TITA and ITIB to actual numerical examples
of integer and mized integer problems.
In IV we return to theory and work toward an understanding of
. e - . N 5] 3 )'{m' . LI e
the properties of the problems I(I,uo) and }_(Iguo) where 1 1s the
entive unit dinterval [0,1). These problems here plav the role taken by
the master polyhedra in the finite group theory of [3]. In IVA we relate
; , . . . . .
the solutions of P(l,uo) te those of Pm<19”o)° In IVB we study conditions
under which the inequalities constructed in TITA and I11B are minimal or
e P s , .
extreme for P(Isuo) and Pu(iyuo), Conditions ave given under which
*
inequalities of special form are extreme , and under which extreme in-
equalities for P(l,uo) are extreme for the finite group problems.
In IVC we intreduce a more complex method of interpolation
which produces a multitude of variant extreme inequalitcies of P (T,u )
- o
. A A+ e .
from ipnequalities of Pm(Gn,uo), I'hese results shed light on the rate

of growth of the number of faces of the polvhedra P(Gn’go} of [3].

*Theorem IV-12 of this section is the result of collaboration with
Alan Konheim.



+
For a valid inequality 7w' for PM(U,uO) to be subadditive, we
require, in addition to (&),

- ks
(7) wlu) + 9 [veul = @ (v), whenever u,v £ U, |u| <« fvi,

8y T(w) + 7 lu-v| = w{v), whenever u,v € U, [u] > lv

o

Theorem 1.2 The minimal valid inequalities are subadditive valid
inequalities.
Proof: The theorvem will bhe proven for P(U,uo), and the extension to

+ . L
the case P (U,uo) iz similar.

Suppose ¥ is a ninimal valid inequality for P(U,uo} but

ls not subadditive. Then there are v,w with v,w, and v+w in U and
vy + w{w) < 1wk},

Let 0 be defined on I by
m(u), u # v,
plu) =
v} 4+ w(w), u = viw,
We will show that p is a valid inequality, thus reaching a contradiction
since P < ¥ and 7 was assumed minimal.
We show that p is a valid inequality by contradilction.

Suppose not. Then for some t © T(U,uo)9

Voplwe) < 1.

uell



6o

efine t* on U by

e{v) 4+ telviw), u = v

e{w) + p{vt), u = w

* =

e () 0, u = viw
t{uy, otherwise.

Clearly, &% g T(U,uo) and

o) = ) w{u)ek(u).

ucl ugld
But Xp(u)t(u) < 1, so Xﬂ(u)t*(u) < 1 contradicting 7 being a valid
ineguality,

Theorems T.1 and 1.2 prove the following sequence of
inclusions: the set of valid inequalities include the subadditive valid
inequalities which include minimal valid inequalities which include extreme
valid inequalities. The subadditive valid inequalities form a convex set
contained in the larger convex set of valid inequalities. The next theorem
says that the extreme points of the set of subadditive valid inequalities
include all the extreme valid inequalities. Further, among the extreme
subadditive wvalid inequalities, those which are extreme valid
inequalities are the minimal ones. This fact allows us to actually

find the extreme valid inequalities for some problems.

Theorem i.3 If 7w (or w') is extreme zmong the subadditive valid

: o + . ty s
inequalities for P(U,uc) (or P_(U,uo)), that is, # (or ') is not
the mid-point of any two different subadditive valid inequalities,
and if W {or W') is also a wminimal valid inequality, then it is an

extreme valid inequality.



. ca . . 1
Proof: Suppose ¥ is not an extreme valid inequality. Then 1 = 50 )

for some ¢ # ¢ which are valid inequaiities. Both o and o must be
minimal by lemma 1.4 which follows. Thus, p and ¢ are subadditive by
theorem 1:2. But thenm, 7 is a mid-paint of two subadditive valid in—
equalities, and a contradictiocn is reached,
. -+ .
The proof for P (Ujuo) is similay, with 7', p',

pi, ﬂ; replacing 1, p, Pis .

Lemma I.4 If anv minimal valid inequality is a mid-point of two other

valid inegqualities (and is therefore not an extreme valid inequality)}

. .2 1 ik Loy i
T miﬂ r‘"é'O'9 or f = 2“(_) 4 *?“O' 5

then ¢ and ¢ (or p' and 0') must also be minimal valid inequalities.
Proof: The lemma will be shown for P(U,uo) and the proof for PT(USUO)
is exactly similar.

Suppose one of p£,0 is not minimal, say p is not. Then there
is a valid inequality Di < p. Hence,

To= i 4 Ly
1ot

is a valid dnequality. But ﬂl < W, contradicting 7 being minimal.

IC. Subadditivity for Subgroups U

The problems for which theorem I.3 can be used to find
g +
extreme valid inequalities are P(U,uo) or PM(U’UO} where U is a non-
empty subgroup of I. We permit U = I and note that 0 is always in U.

We will say that a function v defined on I is subadditive on a subgroup U

of I if



{u) =z 0, ue I, {0} = 0, and

w{u) + w{v) = w{utv),u,v € U,
The function 7 is not assumed to be a valid inequality. The following
theérem establishes the close connection between subadditive functions

on U and subadditive valid inequalities.

Theorem [.5 If % is a subadditive function on a subgroup U of I and

if ﬂ(uo) 2 1 for some u € U, v # 0, then 7 i a valid inequality

for ?(U?ug), In fact, the subadditive valid inequalities for P(Uﬁug}
are precisely the subadditive functions W satigfying ﬂ(ug) = 1.
Furthermore, if 7 is a subadditive function on U and ﬂ(uo} > 0

for some u, € U, then %% defined by

{(9) wH(u) = g%ﬁljs ve I,
O

is a valid inequality for P{U,uo)“

Proof: The last statement follows from the {irst by W*(uo) = 1 and
the fact that multiplying & subadditive function by a positive number
preserves subadditivity. The second statement is equivalent to the
first.

The proof of the first statement consists of showing

(10) Poatet(u) = 7w ) ut(u))

ugl uell

by induction on Zt = Eugut(u) for all non-negative integer valued
functions t on U with finite support and, hence, finite Et Since U

is a subgroup of I, Z ut(u} € U. For any t, Zt is a non-negative inte-

uel]
ger, and Et = 0 means all £(u) = 0, u ¢ U. For such a t, (10) is
satisfied trivially., For % =1, all t{u) = 0 except for one v £ U

t



having t(v) = 1. For such a t, (10) becomes W(v) = w(v) which is
true.

Suppose, as induction hypothesis, that (10) is satisfied
for all ¢ for which Xt = l, k 21, Ceonsider now, any t having
Xt = k+1, Let v £ U such that £(v) =2 1 and let w = EuEUUt(u)“(V)°

Then, viw =

= Zueﬂut(u)vand

Lom{we(u) = a(v) + e ) 4+ (W (e @)=L
uel uelU~{v}

[\

T(v) +w( ut (v (t(v)-1))
uel-{v

= (v} + w{w)
= 7 (vtr)
= m( } ut(u))
uel
by the induction hypothesls and by subadditivity. Thus, (10} is
proven by induction.
To complete the proof of the theorem, we need only use (10)

and observe that if t € T(Usuo), then u = ut(u), and

ZuEU
ﬂ(uo) z 1 by hypothesis.

The analogous theorem for Pf(U,uO) will now be developed,

_l..

Define w' = (m, m , T ) to be an extended subadditive function

on_a subgroup U of I if 7 is subadditive on U and if, in additioen,

(11 1l = v, ve v,

(12) 7 lu] = w(~u), ~u € U.



10.

Since the above two conditions are a weakening of (7) and {(8), it is
; A c 3o I + .

obvious that a subadditive valid inequality for Pm(UguO}s where U isg

a subgroup, is an extended subadditive function om U. The following

theorem establishes a converse result.

Theorem I.5B If ®' is an extended subadditive function on a sub-~

group U of T, if u € I, u, # 0, and if both of the following hold:

2

+ - )
(13) m(u) + 7 [uowui = 1 whenever u £ U and ful = fu |,

{

{14 w(u) + W—Eumuof z 1 whenever u £ U and {ul = fu |,

; s a4 s , s . . .
then 7' is a valid inequality for PN(U,uO). In fact, the subadditive
valid inequalities are precisely the extended subadditive functions
which satisfy (13) and {14).

Proof: The proof closely parallels the proof of theorem 1.5 and
is by dnduction on lt|. However, three preliminaries ave needed.
First, (7) and (8) will be shown to hold for an extended
subadditive function ¥ on a subgroup U. We will show {(7), and the
proof of (8) is similar. By (l1) and {(6),
+ - .
T(u) + o fveul 2 ow(u) + T(v-uy = (v
whenever lul < [v|. Hence, (7) is frue. Here, we use the faet that
U is & subgroup s¢ v-u is in U.
\ . + - ]
Secondly, (13) and (14) imply 7™ =2 0 and 7 = 0 bv taking uw = 0
and using Euol > 0,
. . ! + - ., , e . 4
Thirdly, if t' = (t,s ,s ) is in 1M(U,uo) and if s > 0
— ES - 4 —
and s > 0, then one of s ,s is larger, say 8 > s , YNow let

+ R

s = 5 -3 and s = 0, Then

1



11.

4 -

ti = (t,sl = )
o , -+ , +
is in T_(U,ug) since s, -s, = s -s . [Furthermore, since 7 2 0
and % = 0, if

Yomwt) s e T s g
1 1
uel

. . . -+ \ + -

then the same inequality holds with s replacing Sy and s
replacing sl“.

The second and third observations show that in order to
prove that #' ds a valid inequality, it suffices to conslder t' =

-, + , 4 -, .

{(t,s ,s ) in Tm(U,uO) for which only one of s , s 1is positive and
the other is zero. For such t', we wish to show that the hypothesis
of the theorem imply that (5) holds, that is,

- 4+ 4 - -

bomwt(uy ¢ s s 2 1.

ueld

We already know that subadditivity of # implies (10) and

R
that one of s

,s is zero, say 8 = 0. Then
. 4 - -
) mlaycf{u} + 7w 5+ + 7 og
uel
= 7 s + 1's’
ucl
+ A
S N ¢ Z ut (W) + 71 s
ucl
+ +
by (10). If s = iuol, then w s+ = ﬂ+|uOE 2 1 by taking u = 0 in
. + + .
(13). If s =< luoi, then s = qu - X ut (u) |, and (13) suffice

ugl



12.

to show (5) since Euguut(u) is in U, Similarly, if s > 0, then

{(14) suffices to show {3).

The theorem is, thus, an easy conseqguence of (10}, (13)
and (14).

We can now use theorems 1.3 and 1.5 to characterize the
extreme valid inequalities for P(Ugue) a8 the extreme subadditive
functions subject to ﬂ(uo) # 1 which happen to also be minimal valid
inequalities. The next subsection gives a simple condition for minimality

when U is a subgroup.

I.D Minimality for Subgroups U

Theorem 1.6 TIf U is g subgroup of I with u € U and if
T is a valid ineguality for P(U,uﬂ)s then v is a minimal valid in-

equality if and only if

(15) 7w(u) + ﬁ(uowu) =1, all v & Y.

Proef: That (15} is sufficient for minimality is obvious since
lowering any ©w{u), v £ U, would vesult in

w{u) -+ ﬂ{u0~u) < 1,
by (15}, while ¢ (u) = 1, t(uomu) = 1 is a solution to the problem.

The harder part of the proof is to show that (15} holds
whenever M is a minimal valid inequality. Clearly, w(u) + ﬁ(uowu) z 1
becguse u + (uc—u) = uo and 7 is a valid inequality. Hence, if (15}
does not hold, then

T{v) W{uomv} = 1 + 4
tor some v € U and some & > 0. Clearly, at least one of ﬁ(v},ﬂ(uomv)

is positive. Suppose 7(v) > 0.



13,

Define p on I by

lig m{v), v = u,
plu) =
m{u) ,u# v, ue I,

Since ¢ » 0 and 7(v) > 0, it follows that o < 7w, If p can bz shown
to be a valid inequality, then a contradiction will be reached since
7 was assumed to be minimal.

By the definition of p, we have for any solution t

16y J et = § e + g,

uell uell

ufv

1If t(v) = (348) /v (¥), then clearly Z p(u)t(u) » 1. On the other
uel

hand, if t{v) = 0, then
Z pluitiu) = E (a)e{u) = 1.
uel uel
Suppose now that L < t(v) < (1+8)/w(v). Regrouping the term
(L/{1+8))m{x)t (v) in (16) gives the equation
Yot = { § net) + 1) (e(v)-1)]}

uel uel
uv

() - e,

By subadditivity, the expression in brackets is greater than or
equal to ﬂ(uo—v}, and by £(v) < (I+8)/m(v) we can write

Yop(wit(u) = m(u_~v) +m(v) -3
ueld e

v

1+8 -8=1.



The proof is complete.

" + . .

The analogous theorem for P (U,uo) ig separated into two
parts. When U is finite, the theorem is given by theorem I1.2B, and

when U-is infinive, the result is given in property IV.7.



15,

TT., The Regular Grid § = Gn

Let G1 denote the subset
T

12 n-1
Gn = {O,E',Ea ST

of I. The elements of G_ will be denoted g, = F(i/n). Bach set G

for n » 1 is a subgroup, and, in fact, the sets Gn,n = 1,2,... are
the only finite subgroups of 1. By virtue of Gn being a subgroup,
the results of IC. and ID. apply to this section.

We first discuss the problem ?(Gn,uo) and then the problem

pT e Lu).
- 1 O

17.A. The Problem P(G ,u ), u_ € G
i’ o 0 n

The results from TC. and I1D. are specialized in the next

two theorems. Theorem IT.1 is a direct restatement of theovem 1.5,

Theorem II.1 7 is a valid inequality for P{Gn,uo)3 u_ € Gn, provided
T is subadditive on Gn and ﬁ(uo) 2z 1. In fact, the subadditive functions

T on Gn satisfving ﬂ(uo) z 1 are precisely the subadditive valid in-

equalities for P(Gn,uo),

2

Theorem 11.2 The extreme valid inequalities for P(Gn,uo),uo £ Gn

are the extreme points of the solutions to
(1) wlg) =0, 5(0) =0,
(2) ﬂ(gi) + ﬂ(gj) z ﬂ(gi+gj},

-

I

(3 T(u)

which satisfy the additional equations.



16,

Gy mg) + o ~g) = L,g; €G-

In particular, (4) implies ﬂ(uo) 1 since w{0} = 0,

Proof: Theorem II.2 is a specialization of theorems 1.5 and 1.6
since conditions (1), (2) and (3) are necessary and sufficient for 7
to be a2 subadditive valid inequality for P{Gn,uo), and (4) is
necessary and sufficient for a valid inequality to be a winimal valid
inequality.

In this case, (1), (2), (3) and (4) can be combined into
one linear system whose extreme points are the exireme valid in-
equalities of P{Gﬂ,ug). This is a special case of theorem 18 in [3]
and the extreme valid inequalities for Gn’ n o= 2,...,11 are included

in appendix 5 there.

II.B. The Prechblem P+(G s ), u £ 1
- n’’o o

The condition I{(2) now becomes

git(gl) + ... + gn—lt(gnwl) +{3(s+)mi}(s~) = U

where 8y z:}(i/n} as bhefore and where the t(gi) must be non-

negative integers and s+, s must be non-negative real values., We no

longer confine u te be in Gn° Let L(uo) and R(uo) denote, respectively,

the points of Gn immediately below and above u - If u, happens to be

in Gn’ then L(uo) = R(uo) = u.
Before proceeding to the analogue of theorem IT.1, we

note that for our special problem U = Gn’ the conditions for '

to be an extended subadditive function on Gn are that W satisfy (1)

and (2) and, in addition,
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S+ i (1 - =
LI W(gi) and © (1 n) = ﬂ(gi}
The last two inequalities can be weskened here to:

(5) n+ %-2 ﬂ(gl},

(6) i

o |

= TF(gn_l) s
where gl=:%l/n}and gnmzﬁﬁf(nml)/nl since (5) and (2) imply

+
il

B iﬂ(gl) z ﬂ(igl) = ﬂ(gi)-

=R

Similarly, (6} and (2) imply 7 (i/n) = T(gnmj). Recall from the proof

of theorem I.3B that extended subadditivity implies T(7) and 1(8),

that dis, (5) and (6), together with (2), imply

. A , o
w{g,) + T = W(gi+gj) and ﬂ(gi)+ﬁ

" > H(gi+gn_:)q

3
n j

The next theorem extends theorem 171.1 to the problem

._I_
PM(Gn,uO) and is proven by the above argument and by theorem 1.5B.

Theorem 11.1B 7' = (7, ﬁ+, 1) is a valid inequality for PT(GD,uO)S
u £ I, provided
(1) (s ) + 1 lu Llu )| oz 1
i . UO UO UO =< .
T + 7 IR -u i oz
()  w(Ru_)) iP(uO) U 1

and provided 7' is an extended subadditive function on Gn, that is,

T is subadditive on Gn and (5) and (6) hold, 1In fact, the subadditive
Sy A + .

valid inequalities for P_(Gn,uo) are precisely the extended sub-~

additive functionson Gn'which satisfy (7) and (8).
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Proof: The only remaining part of the proaf is to show that (7)
and (8) above imply conditions 1(13) and I(14) of theorem I1.5B.
Conditions (7) and (8) are a special case of I{13} and T(14}.

Suppose i/n < iuﬂl, Then i/n < %L(uo)l

and

; . i
me) +m Cullg 1) = 7(g ) + 7 lu <L )]+ T (L) |- 5
—+
= ﬂ(gi) + W{L(uo)wgi) 4w !uO—L(uO)l

+ |
> , + T ~L{u
ﬂ(l(uo)} T Iuo I(UO)1

z 1,

Thus, I(13) is proven. The proof of I1(14) is sindlar.

-+
Theorem 11.2B The extreme valid ineqgualities 7' for Pﬁ(Gn’uo)’

uﬁ € I, are the extreme points of the solutions to the system of

linear equations and inequalities (1),(2),(5),(6),(7),(8) which

satisfy the additiocnal restrictions:

(9) ﬂ(L(uD)) + ﬂ+EuO~L(uO)I =

(10)  w(R(u ) + 7[R Yu | o= ]

i

{(11) for all 8 £ Gn, ﬂ(gi) + ﬂ{L(uO}~gi) w(L(uo))

i

or 7(g;) + M(R(u )-g,) T(RCu_)).

Proof: Conditions (1),(2),(5),(6),(7) and {8) are necessarv and
sufficlent for #' to be a subadditive valid inequality since they
are a restatement of the conditions of theorem 11.18. By theorem

1.3, the theorem will he proven if (9),{(10) and (11) are shown to be
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P . +
necessary and sufficient for a valid inequality for PM(Gn,uO) to be
a minimal valid inequality. In the case of P(Gn,uo), the corresponding
conditions (4) were known to be necessary and sufficient for minimality by
theorem 1.6. However, that theorem only applied to problems P(U,uo) and
+ . +
not to PW(U,uO). We now prove its analogue for P_(Gn,uo) and, thereby,

complete the proof of theorem II.28.

Theorem 17.3 A valid inequality w' for Pi(Gn,uo) is a minimal wvalid

inequality if and only if (9),{10}, and (11) hold.

Proof: The proof parallels that of theorem [.6. TFirst, assume 7'

is a valid inequality for Pi(Gn’uo) and (9),(10} and (11) hold. Since
+

t(L(uO}} =1, s = EuOmL(uO)l is a solution, (9) assures that any

p' s ©' having p+ < v+ o1 ﬁ(L(uO)) < H(L(uo)) is not a valid inequality.
Similarly, (10) impliies that o = 7 and p(R(uO)) = W(R(uo)) for any

valid inequality o' s @',

¥For any & € Gns (11) together with (9) and (10) imply

it

-+ .
t{g.) + - 4o ~L : ;
Rt T(Llu J=g) + 7 fu ~Llu ) = 1, or

H(gi) + ﬂ(R(uO)wgi) 4o iR(ug)muoi

it
—

Let us suppose that the first of the two equations holds. Clearly,

£(2;) = 1, £(Llu )mg) = 1, s

i

IuowL(uO)] is a solution. If p' < n',

and p(gj) < ﬁ(gﬁ), then p cannot be a valid inequality because
(5.0 + p(L{u )=g.) + 7 lu ~L{u )] <1
S oLk o’ By T, TR, -t

Hence, any valid inequality satisfying (9), (10) and (11) is a minimal

o q , +
valid inequality for ?H(Gn’uo>'

Assume, now, that 7' is a minimal valid inequality for

PT(G_,u ). We will show that (9), (10), and (11) hold.
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By theorem 1.2, we know that 7' is a subadditive valid
inequality. By theorem IT.1B, we know that (1),(2),(5),(6),(7), and

(8) hold, and therefore

(12)y ) () = (] gtlg))
gEGn gEGn

holds by 1(10), and

+

{13) m = (g,

1

k]

i - i o
-'[‘—1— ), m (lw E ) =0 (gi), gi e Gn
holds since, in fact, (5) and (6) imply I(7) and 1(8),

First, (9) will be shown. Suppose (9} does not hold. Then,

by {7),
T(L{u }) + T'+]u ~L{ua )| =1 + &
Q o o
for some § > 0. Define p' on T by plu) = i(u), ve I, o = ﬂﬁs and
+ 4 §
o= - Tﬁ .

. ; + + A .

Clearly, p <7 so p' < 7', We must show p’ to be a valid inequalicy
+ . ,

for P (Gn’uo) in order to reach a contradiction to 7' being minimal.

. + .

First of all, p = 0 will be shown.

Sy

+
By (13),m |L(uo)|2 W(L(uo)) so by definition of &

1+ 8

i

ﬁ(L(uO)) + ﬁ+fu0~L(uO)§

I

{L{u )) + ﬂ+Eu [= 7w (L{u ))
o] 8] o
+
< 7w lu i,
o

Hence, s (l+6)/!u0!, and p+ =gt - ﬁ/EuOl > 1/]um! >0,
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In showing p' to be a valid inequality, it suffices to

) ) : + . -
consider selutions t' for Pw(Gn,uO) for which only one of s g

is positive by the same argument as used in the proof of theorem

1.58. Cleaxrly, if s+ = (0, then

- + 4 - ¢ - - -
bt +otsT T = T we(g) + st 4w e 1.
gEG geG
+ - .
Suppose s > 0 and s = 0. Then,

Vo)t +otst 4 pTs

gEGn
- + + +
= ) w(g)tlg) + s - Tngs
gaGn 0
o { +
zn( ) grlg)) + K+s+ - !i e
gEGu 0
+ 8 +
= fm{v) + T 5 - —— 5
fu i
O

where v = E

e gt{g), by (12). In order to complete the proof that
G,

-+
o' is wvalid, w(v) + st (& /{uoi}s+ z 1| must be ghown.

..i.‘
Tf s+ 2 §u0§, then by %(v) =z 0 and 7 - 6iu0[ = 0,

rey st o St et LS
lu E iu i
o Q
(”sr+ i( "ﬁi.m);u ]
T
(e
= H+Fu ~L{u )| + ﬁ+1L(u V| - 8
(o] Ie) o

Y

ﬁ+[uowL(UO)] + ﬂ(L(uO)) -8

i

1+6 -8 =1,

by (13) and the definition of §.
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+ +,
Suppose now 0 < 5 <« [uO!c Then by t' ¢ PH(GH,UO),
[v] + s+ = luol, solv$<EuO!. Since L(uo) is the largest element of Gn

below u_, fv[ £ IL(u ). Hence,
o o

4+ + 5§ +
(v} +m s - T

. . 8§

= w{vy) -+ 7 (iuomvj} - wa~wﬁuo~vl
o

i . I R P
= g {v) + 7w fuo L(uo}| + o ;L(uo) v ] I Iiue v
2 (v) + (L(u )-v) + ﬁ+1u ~L{u )| ~ &
= (a o ~Llu {

by {13) and luomvi < Euol. Now, by subadditivitv of

T{v) + H+S+ - 4§—~s+ o {L{u }) + H+§u ~L(u )| - &
Euof 0 o o

2148 -8 =1,

Therefore, ¢' is a valid inequality for Pi{Gnguo) and (9) is
proven. The proof of (10} is similar. The preof of (11) is
close to the proof of theorem 1.6 and is as follows,

Suppose that (11} does not hold for 3 £ Gn and that ﬁ(gi) > 0.

Define § = min {5], 52} where 61 and 5? are given by

i

ﬁ(gi) + ﬁ(L(uo)“gi) H(L(uo)) + 61,

]

Tgg) F TR g ) = TR )Y + 8,
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Then, 61 >0, ¢, >0 and § » 0. Now, define p' = (o, p+, 0) with
po= ﬁus p =7 and p defined as in the proof of theorem 1.6. The
proof now proceeds exactly as the proof of theorem 1.6. The only

part remaining is to show that if (I1) is violated for some B, € Gn9

then it is violated for a &; & Gp

having m{g 1 > 0. However, that
i

paxt is easy and is shown below.
Suppese (11) is violated for 8, € Gn having W(gi) = {,

Then,

it

= 7 &, @
H(L(uo} gi) H(L(uo)} + 51 nd

#

TRGu ) -g,) = TR ) + 6,

for some 5] > 0 and 62 > 0. Clearly H(L(ug)—gi) > 0 and

H(R(Uo)mgj) > 0. If (11) is violated for either g = L(uo)mgi or

g o= ﬁ(uo)mgi, then we are done. Suppose instead (11) ig satisfied

for both. Then

W(L(BO)*gi) + ”(gi*13%°3” ﬂ(R(uo)), and
1T(R(uo)wgi) + ﬂ(gi-*ﬁ(“ f;)) = Tr(L(uO)).

Substituting for F(L(ub)wgi) and H(R(uo)mgi) and adding gives

o=

!
S, + 62 + ’.F.r(gi %-HJ + ﬁ(gi -~ 3 =0,

1
a centradiction., Hence, (11) is vioclated for either g = L(ug)—gi or

g = R(uo)mgi, and the proof is completed,

In the appendix, we discuss the computation of the extreme

. 4 . . o
valid inequalities for ?_(Gn,uo) and give these inequalities for
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n=1,2,...,7. A comparison with the extreme valid inequalities for
P(GH,L(uO)) and P(Gn,R(uo)) is interesting. However, it is not the
case that the 7 of an extreme valid inequality 77 = (%, W+, Wm) for
?f(Gn,uO) is necessarily an extreme valid inequality for some P(Gn,g),
g E Gn° In section 1V, we discuss the connection between the problems
PT(U,UO) and P(U,uo), In the appendix, we give further discussion of

.,},.
— b ~ Bl -
the two problems I(Gn,g) and P~(Gn’uo)'

At this point, we can give one further result connecting
+ . , .
P(Gn,go) and P (G ,uo). This result says that the relationship between
- n
the vertices of the convex hull of solutions to the two problems is a

simple one, by contrast with the situation for faces.

Theorem I1 .4 iIf t(g1),.°.,t(gn_1) is a vertex of the convex hull of

solutions to P(GH,L(uO}), then both

o (t(gl),,,,st(gn_l),luo—L(uo)!, 0), and

]

L= 0,508 seeeyt e, ), lu L)+ e (g,),0)

are vertices of the convex hull of solutions to Pt(Gn,uO), A similar
statement holds for P(C_,R(u )) with & = [R(u )-u | or s =

n (o] o Q
iR(uo)—uOl + t(gn_1)/n. Furthermere, all of the vertices of the convex

hull of selutions to PT(GH,UO) are of this form,

. . +
Proof: Clearly every such t' is a solution to P (Gn,ug). Suppose
one is not extreme. Then,

(t(gl),...,t(g ),in—L(uO}I,G)

-1

B

]

- -
.lki(ti(gl) on ,ti(gn) 38 48,)

it

i



- \ - ‘| A . 1L - o
vhare Ai =0, }Ai = 1, and each of (Li gi)g""‘”ti(gn>’sigsi) is a

T - -

B .é.. - -
solution fovy P {G ,u ). By s, 2 0 and 0 = }X.s,, everv s, = 0,
b £ 3 E
— n o] T N T - a

..i. . N A . : =
Put then s. = lu ~L(u ). Also, YA.s, = lu ~L(u )| so each s =
i o o L7 o o i

fu ~L(u_|. The ; is a solution to P(G_,L
fu L(ug.f Then, (ti(gl)glhA,Li(gn}} is a solution to }((nsi(uo>)*

contradicting (t(g])jge,?t(gn)) being a vertex of the convex hull of

aolutions.

The proef is similar for ¢ = (0.t {L,?) O ¢ Y,

Sl

o L [+t i, but uses t, {g 0 and eghibits (¢ PR o =
s I(UO)L (gl)/",())9 hul use L ) oand exhibits (i{gl), ’L(Em))’

odn
t, (g ¥y, where Lﬂsij

k

L ) 4
as a convex combination of (Lnség,

oy

. - . - . o rro -
denotes the largest integer less than or equal to ns.. The proof
- i

for PG ,R{u }) is exactlv gimilar,
n ol

The remaiunder of thae proof is te show that everv vertex for

+, . . . . . N ; Lt - -
P (Gn9u3) is of the form given here. Clearly, only one of & ,5 will
- . : ]

. . . 1 g . - i -, - — o
be positive for a vertex, Let us assume s 2 0 and & = 0. They,
+ . . , N . .o Lt .
s > I/n dmplies t(g.) = 0 since if both s > 1/n and t{g. = 1, then
; By ’

71

1
-3

\ | F oy e Lo ) + 1
(EQgy)seeestlzg )8 ,87) = Se(z )1, 0(g )8 = 2,87)

1 . A
b “2~"(t(gl>"“19aa,gt<gn};5 4 njs’ )‘

- . ) - . . 5t
Thus, (t,s ,¢ ) is a convex combination of solutions for P (Gn,uo)
contradicting it being a vertex of the convex hull of solutions to
+
P (G ,u).
- 0o O

— e
If ¢ =0, then clearly s = lquL(uO)] + k/n for scme

integer k. If k¥ 2= 1 then t(gl) = 0 by the above argument. Hence,

we need only show that
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(t(gl) + kﬂt(g?_)y" ¢ 9t(gn)>

is a vertex of the convex hull of solutions to P(GHSL(uO))U If not,

we can express it as a convex combination of other solutions to

PG Lu ),
(t(gl)+ky t(g2}9°'=9t(gn))

K

- iélki(ti(gl),,,,,ti(gn)).

Clearly, we can find e with ¢ s < < ti(g{} such that

jid
(L(gl}s"°st{gn}gluo"‘?a(uo)' 'f" EQO)

C,
: e , )iy ~Liu )i+
3Ai(ti(g1) Liat(gz)g"°5t(%n 3suo L(UO>\+ n 3O)y

It
[ e B2

i
but the o, may net be integers. If they were all integer,
5 . :

(t(g])ﬁn%oat(gn),Euo~L(uo)[+ l/n,0) would he exhibited as s convex

. ; g + - o
combination of solutions to P (Gn,u J, giving a contradiction and
- 0

completing the proof. However, if some < is not integer, then

(e
. _ __i
(i (gpdme st {By)oen,t (g ), lu ~Lla ) [+ —,0)

r 1

PO,
I P e T o _ o
S e )t ) Te e (ay), ot (8 ) Tu =L ) [+ = )
. . Lci}
+ (L= (ci}) (ti (gl)—tci__l,ti(gz) b yti (gn) . uOmL(uO} P+ j{v—vg{}) ,

where fcii denotes the smallest integer above or equal to c,.
Making this substitution into the above convex combination shows
that (t(gl},,n,,t(gn),EuoﬁL(uO)!+ k/n,0) is a convex combination

. + ,
of solutions te Pw(Gn’uo)’ completing the proof.
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111, Valid Inegualities for Genmeral Problems

TIT.A, }?(U,uO)

We now connect the results about P{Gn’uo) with the general
problem P{U,UO), Here, U can be any subset of the unit interval
including the interval I itself,

We will see that valild inegualities can be obtained for
the general problem simply by interpolating from the inequalities we
already have. As in section II, the elementf}(i/n) of Gn will bhe
denoted - Also, 1f u is a point on I, R{u) will denote the first
point of Gn on or to the right of u and L(u) the first point on

or to the left of u.

Theorem 171.1 Let 7 be a subadditive function on Gm' Define w{u}

for u e I-G_ by

O

(1) {u) = aflu-LW in(R&@)) + IR ~ulT(L(u))}.
Then, 7 is a subadditive function on I, and 7% defined on I by

m{u)
ﬂ(uo)’

R {u) =

u e I,

is a valid inequality for any P(Uyuo), U a subset of I, provided
e ) > 0.

O
Proof: We remark, first of all, that the proof of theorem 1.5
actually proved more than the theorem. The additional result is

stated here as a corollaxy.
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Corollary 111.2 1If 7 is a subadditive function on a closed subset

U of T and if ﬂ(uo) > 1 for some u, € U, then 7 is a valid inequality
for P(U‘,uo) for any subset U of U, The set U' nead not be a subgroup,
and U need net be in U' but must be in U,

Proof: The proef is based on I1(10), which was proven from the same
hypothesis as here. To complete the proof, we nzed only remark

that if

z ut (u} = u s

uel’
fhen

Z T{u)t{(u} = ﬂ(uo)

usl’
follows from I{1l0) and U' contained in U. Since W(um) z 1, the
result follows.

To return te the proof of the theorem, we need only show
that v, defined by (1) on ImGns is 2 subadditive function. Then, by
corollary I1T.2 and the scaling of 7% so that W*{uo) = 1, T must be
a valid inequality for any P(U,uo),

Clearly, T is continuous and piecewise linear with breaks
only at points u = Gue By (1), if jul = IR, ol < [R()!, then
IR(u)~u| + 0, lu-L{a)| » 1/n, and, hence, 7(u) + i(R{u)).

Define V on I % I by

V{u,v) = n(u) +1(v) - w(uww), ue I, ve I,

Then Y(u,v} 2 0, all u,v, if, and only if, 7 is subadditive on 1.

Suppose V(ul,vl) < 0. Suppose, further, that neither uy

nor v, ig in Gn" Then, ‘?(ul+(§s vl—S) + U(ulmﬁ, vl+5) = ZV(ul,vl) for



28,

some & » 0 by the linearity of 1. Since V(u?svl) < {0, at least one
of U(u]+5, V]—S}3 V(u}mﬁ, v1+6) is also negative for some § > 0, say
V(u1+6, V1—6> < 0. Then & can be increased until either uy F § =

R(ul) or v, - § = L(v]). By this argument, we have shown that if

V{ul,vl) < @, then V(ulgvl} < 0 for a pair Uy s Yy having at least one

of WV, in Gn,

I both uy and v, are in Gm’ then V(ul,vl) z 0 by sub-

€ G and v. £ G . Then,
n 1 jal

additivity of 7 on G1° Therefore, assume U,
1 1 1

uy + vy & Gn' As before,

)

v +6) + -8) = 29
f(ul,vlL() 4 (ul,vl §) ZJ(ul,vi

for some & > 0, and we can find wy vy such that V(uisvl) < 0 and
Wy £ G1 and one of Vi + vy is also in Gnn But then all three
1 n 1771 1
Uy Vg sty + vy must be in Gnﬂ contradicting subadditivicy of T on Gn'
A contradiction 1s, thus, reached, and the theorem is
proven.

Three remarks are worth making about ¥,

First, all the inequalities for P(Uauo) chtained by using
subadditive T on Gn are convex combinations of those obtained by
using only the extreme subadditive functions T on Gn.

Second, intuitively speaking, the power of the resulting
inequality will be determined by the size of ﬂ(uo) relative to the
other #(u), u £ U. In other words, we want 7*{(uj = ﬂ(u)/ﬁ(uo) to be
small for u # u . To achieve small values w#%{u), ﬁ(uo) should be

large relative to 7(u). It will usually help to choose T to be a
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minimal valid inequality fox P(Gn,L(uo)) or P(Gn,R(uO)). Even better,
# may be chosen to be an extreme valid inequality for one of thoese
two problems.

Third, the valid inequality 7% obtained here can be extended
to a valid inequality for Pf(U,uO) by defining

+
o= nﬂ*(gl) .

).

"= nﬂ*(gn_l

This result is a special case of the more general propertvy IV,2

given in section 1V,

TI1.B. Pf(U,uO)

From valid inequalities for Fi(Gn,uo), a different method

. a s + ) )
for generating wvalid inequalities for P_(Usuo) is available.

. + -
Theorem IIT.3 Let W' = {m, T , ™ ) be an extended subadditive

function on Gn" Define w{u) for u ¢ I——Gn by

(2)  wu) = min{n(LQW) + 1 le-Lw)],

T(R(u)) + 7 [R(u)-ul}.

Then, 7' is an extended subadditive function on I, and p' defined hy

1 -+

P! = e (T T )
(]

is a valid inequality for Pt(U,uO) provided ﬁ(uo) > 0,
Proof: As in the proof of theorem III.1, we need only show that 7'
is an extended subadditive function because of the following

corollary to theorem 1.5B.
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Corollary ITI.4 If w' is an extended subadditive functicn on a

closed set U of I and if both 1(11) and I(12) hold, then #' is a valid
inequality for Pt(U‘,uO) where U' is a subset of U, Furthermore, if

u £ U, then ﬂ(uo) z 1 can replace T(11) and 1{12).

Proof: The first statement follows from the proof of theorem T.5B
in exactly the same way that corcllary IT11.2 followed from theorem
I.5. The second statement is an easy consequence of the definition
of extended subadditivity, in particular I(7) and 1(8)}.

We return to the proof of the thecrem. We need only prove
that %' is an extended subadditive function on . The function 7
. . . . . . . + -
is plecewise linear on T with only two slopeg: % and - . TFurther-

more, ¥ is continuous. To prove continuity, we need

+ i+l i
mg,) 41 (o= =) 2 (g, ), and

~ i+l
H(gi+}} 4+ (=

iyl
1 H) = W(gi)’

which follow from 7' being an extended subadditive function on Gno
The fact that 7 is piecewise linear and continuous on I with only
two slopes, ﬂ+ and ~ﬂm, makes 1{7} and 1(8) obvious.

The remaining part of the proof is to show that 7 is subw
additive on I. Consider v & Gn and any v £ 1. If v also is in Gn’
then T(u) + (v} = W{utv) follows from subadditivity of 7 on Gn.
There are two cases for w(v):

T(L{v)) + ﬂ+(V”L(V));

i

Case &k 1(v)

F(R(V)) + 7 (R{v)-v).

Cagse 2: T(v)
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Case 1 will be considered and the other case is similar.
By u & Gn9 L(utv) = u + L{v}, R(utv) = v + R(v), and (utv) - L(utv) =

v - L{v). By definition of 7 and by the above,
+
m(utv) £ A{L{utv)) + 1 Judv - L{utv)|

< (u+L{v)) -+ ﬁ+iv"L(v}i,

By subadditivity of 7 on Gn,

T(utv) S () + TLOD) + 7 fe-Liv) |,
and by case 1,

wlwiv) £ () + w(v).

We, thus, know m(u) + w(v) = w{utv} provided at least one
of u,v is in Gn' Suppose now that neither u nor v is in Gn' Again
there are two possible cases for m(u), and we will suppose that 7{u) =
ﬁ(L(u)) + 1T+iu—~L(u)|° Then, by the case just considered and by L(u)
in Gn’

T(u) + V) = TL(W) + T(e) + 1 u-L(u) |

> (L) + v) + ﬂ+1u~L(U)io

We have already shown that I(7) holds for all v £ I so

m(u) + 7(v) =z T(L(u)+vdu-L(u)) = T (utv).
The proof is completed.

If 7' was minimal for Pj(Gn,uo), then

il

T(L(s ) + T lu_~L(u )| = 1, and

]
o

T(R(u )y + ﬂ+!R(u Y-u |
o o’ "o



(%)
(o]

and, hence, w{u } = 1 by the construction (2) of 7. Therefore !
Q

' need not be a minimal wvalid

requires no normalization. However, 1
inequality for P (U,uo), This question is discussed in the next

section.

I11.C Numerical Examples

Example 1: Consider the integer linear program

%, = 0, Xj integer, j = 1,2,3,4,5

3
x] + sz -+ x3 + Xé + SXS = 16
3x1 - 3x2 3 2x3 - BXQ + 3x5 = 5

¥, +x, +x, + 2x, + 4x5 7 (min)

1 2 3 4

The optimum linear programming tableau is

4 7 - i L Z'E_N = 4 “Z‘I:‘

TR TN T AR 9

Lo, 2 L !

B e G M, S S T Y

I T LA e R
13_.'}{ + 17_2_>{ e _.J..X ) = 7 (miﬂ}

373 T34 9

The optimum linear programming solution is X, = 4%3 X, = 2%@
Hy = OF, TR T 0, z = 6§m From the first row of the tableau,

using as the mapping ¥ (x) ::}(a),W@ obtain

éx3 + %Xq + %XS = %-(mod 1.

That is, U = {7/9, 2/3, 1/3}, u = 4/9. The mapping used in
the introduction is simply this; that is, we get a problem P(U,uo)
from every row of an optimum linear programming tabieau for which the

basic variable is integer constrained but at a fractional value.
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-

From appendix 5 of [3], we find the following three

extreme valid inequalities among those for P(G ,u ), n = 2,3,6.
: n’ o

P
\.!/

IE
—
-
=

et
fo
B
s

H
o

=

P(sz : ﬂl(O)

g
i
[T

P(G39 =) ﬂZ(O) =0, 7,

T = = i 4, 2 lk Ti _)_ RN,
B T @) g ) =

We could take any of the faces for cvelic groups from appandix 5 and

]

use them in the following way. The linear interpolation of IIL.A,

extends T i T, to the interval T

17 2% 3

Zu, 0 2y =z =

(

ﬂz(u) = <

RS
.

R

u

R——
i

A i
bl Fa
o o
w v

1 ot
N Iy
o

1/ )

! TN

£
3
I
o=}

-
jopiae]
A

o
ay
-



Cur congruence problem has u = 4/9, and so ﬂ1(u0) = 8/9,
o 1

7:?{%} = 576, 'ﬁ',}(u[}) = 8/9. Since U = {7/9, 2/3, 1/3}, the wvalid

inequalities from % Ty and Ty are of the form

379

_— s
5 &) SN U :

W, -+ O
L A{u 4 T {u 5 ’
T {u )T l( o>

for L= 1,2,3, and are given below:

>

The plane’ from [1] is, here,
7 ? 4 7 3 3 ]
Y e PP E) S SR S G LS I
R T T g 0T g R Rt gEg 2]
oy

That inequ ig obtained from the subaddicive function 7 on I

giver by #(u) = u. The figure [1i.1 illustrates the functions

4 o

T’*Cai&.;. L
Wl L
Pes L
W L

Figure 11I.1
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Example 2: Consider the same
integrality restriction on Ko

programuing tableau now gives

7 2 + .4
§#3 -+ §x4 + 8 = g
. - L = {7
where s = 3¥5e  Thus, U = {99

From table 2 of the appendix, for n = 1

valid inequality has

[}

Here, v o= 4/9 so wr

inequality, this time for n =
I, . 1 2
”(59 = FTeT ﬁ{3)
0
Since u, = 4/9 here,
Lo 3 .2 .3
W(B} - 4 ”(3) g’

The conetruction I11.B extends

and ﬁz on the unit interval:

gﬁui
A

ﬁl(u) =

F-lul)

2
5& and o

- 1

a |-

9/4 and 1 = 9/5.

integer program but without the
The first row of the optimal linear

the congruence:

(mod 1)

the only extreme

G

Another extreme wvalid

3, is
P -
; Hiu -1
N 1 A+ 1 - ol
= S RPN B e—— D -
Glu 1° fu |- C ..
o o Glu [=piu |
O
ﬂ+ 9 - 45
@ o = -
47 1.6
these two inegualitvies to funct

ions 7,

O &
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(%!uis 0 < ful <4,
345 2 L 2
§+E—(-§ |ul};§*[u§‘:3
., (1) :'{
3.9 g 22y 2 7
g T g vl =3, 35 Jul =3
, .
B - b, b e
L (
Since U = {%—, i}, a valid inequality is

7 2 [ .
ﬂi(anB + ﬂi(gﬁxé + g% 2 i, 4 = 1,2,

: ) 2 . Ca -
Evaluating i,oat %‘and g gives the two valid inequalities

Other inequalities can be generated in the same way from Table 2.



~+
- )
v P{[suo) and PW(I,UO>

Let the set U now be the entire interval I. The problem
P(T,u ) involves the congruence
0
{1 Vet (u) = u
= 0
ue T
+ . :
and P (I,u ) has the constraint
- o
o o ﬁlw .
(2 Z ut (u} 4;%(3 )mé%(s PESTINN
o
ue X
where © is a non-negative integer valued function on T having finitre
SUpPPOTE.

This section intends to reveal something about the extreme
valid inequalities for these problems. Such information could be
useful in dealing with problems involving subsets of I. The relatvion to
P(U,u ) is the same as the relation between Lhe master polyhedra and

0
the corner polyhedra corresponding to subsets of a group [ 37.
Heve, every finite cyclic group Gn is a subset of 1. 1In particular,
if % is a2 valid inequality for P(I,u ), then trivially 7 ig also a
o !

valid inequality for P(U,uo} for every subset U of I, including all
cyclic groups U = Gn or subset U of Gn. Furthermore, if 7' is a

L . + ) S 4 -
valid inequality for P {Iguo), then 7 is a valid ineguality for

+ L . . 4 L+ -
P{Uiuo), {(n,m ) is a wvalid inequality for PT(USUO), {n,7 ) is a

i

C . g N L .
valid inequality for PW(U,UO}, and T’ (7,7, ) is a valid inequality

for Pt(U,uO) for any subset U of I.



The property of being a valid inequality is hereditary,
that is, if % is a valid inequality for P(Sguo), then it is also valid
for any P(S’,uo)s §' < 3, and subadditivity for a valid inequality is alao
hereditary. However, minimality and extremeness are not hereditary
properties. That is, 7 can be a minimal or extreme valid inequality

fer P{U,u ) and still, not be for P(U',u ), U' ¢ U.
: (o] [8)

IV.A. Properties and Relation between P(I,uO) and Pf(I,uO)

Property IV.I If 7' = (W,ﬂ+;ﬁ‘) is a valid inequality for

P+(Z u_}, then @ is a valid inequality for P(T,u ).
R o

Proof: If m is net a valid inequality for P(I,uo}9 then there is

a t satisfying (1) with X m{uyelu) < 1, Clearly, (£,0,0) solves
+

{2} as well contradicting 7' being a valid inequality for PW(I,UO)

and completing the proof.

Recall that we define Ful , the absolute value of u, as
the real number corresponding to u eI, We can then define right

and left limits,

limit,and limit
u fu u tu
0 o)

as the pointfuiapproaches[uolon the real line from the right

(tal > [u ) or the left (lul < |lu |).
o o

Property TV.2 If 7 is a wvalid inequality for P(I,uo) and if




ot o 1imdc Ei“;_) and L = limit -l
ud0 utl T

both exists {that is, if 7 has right and left derivarives at 0 and 1y,

thea o' = (mw, 2+, 7Y is a valid inequality for Pf(?,uo)(
Proof: Suppose t' = (t,s+,s“) solves {2} but
X m{u)t (u) + £+5+ + s =1 - €, ¢ » 0,
uel

We can assume, just as in the proof of theorenm 1 5B, that cnly one

+ . L. + -
of s, 8 is positive, sayv s > 0 and s = 0.

Choose an integer M large enough that

+
5
v TG

27 - ] < B

+ +
M

) . .
which can be done by existence of 2 . Let

» N

t{u), u ¥ s /M,
£, (u) = )
: L(u) +3M,u = S{'/M.

Clearliy, £ satisfies (1) since t' satisfied (2). BRuc,

a

M

E ﬂ(u}tl(u) X m(u)t (u) +Mu{E)

uel uel

N

Pt + £ v e =1,
ubl

contradicting 7 being a valid inequality for P(I,uo).
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Jemma IV.3 If 71 is a subadditive function on T and if
T
Lim sup %£$) B < o,
10 e
then
7
Limit W g
, ful
UYO

Proof: Tf the limit does not exists, then

T (u) # 3,

1im inf m
) .

that is, there are peints v arbitrarily cleose to 0 with
w{v)/lvl 5 ¢ < 8. By the lim sup being B, there are also points u
arbitrarily close to 0 with w(u)/iul > a.

Choose any u with 7(u)/iul > ¢ and choose 0 < v < u with
alvdy/ v £ a < B, Then,|u|can be written as an integer multiple of

fv]aﬂé a remaindey:

;fo L:%_J Evi + yv(u), N s ylu) < M

Since T is subadditive on I,

1w < Q) > e

< [olr) + rev).



Hence, b

Since th

some & >

and as v

The lemm

and limi

v TE(V)/EV] s oo,
() s g%g abvi + m{y(u)

2 alal + wly{u))

e lim sup exists, 7{v(u)) = (8 + & ivi{uw)i = (6 +
O provided v is small encugh. Hence,

m(a) < aful + (B + &3 ivl,
+ 0, we have w(w)/lul € o, a contvadiciion to i

a is, thus, proven.

)

P

Clearly, we have the same property for Llim sup v{0)/{i -lul)

tow(u)/{l ~lul) as u + i.

Lemmna TV .4 TE 7w is a subadditive function on T and if

then

for any
Proof:
for any

for Jul.

1w

Timie —— =
P

1+

Lim sun __'(wu_%
" lu

wdv

v e T.

By subadditivivy, w(u) £ w(v) + 9{u-v). By & = limit

-~

¢ » & there ds a & » 0 such that ¥(u-v) = (& + ¢)(iu!

> lvl and |ui -~ {vl < &, For such u,v in 1,
T(u) < 7{v) + (8 + Yy (lul ~ Iv]), or

mlu) - m(v) _

T i B+E.
flal -~ {vl

£
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The lemma is thus proven.

Clearly, a similar statement holds for limit uil w(u) /{1 ~tul)
)

and

1 (u) - m(v) ,

lim sup T = Tal

utwv

4 -
Property IV.5 If w' = (v, w , 7™ } is a minimal valid inequality for

.%..
P (1, uo), then

-+ g .. U
m = limit ( )3 and
, [ul
us0
- . .. m{u
B = 1imie 20
. 1t
utl

=
- . 4 I
Proof: By subadditivity of n', v(u) = 7 |ul se

Lim sup ) x

140 i
Then, lemma IV.3 implies that limit 0i0 m{u)/lul exists and is less

than or equal to 7w . Similarly, limit m{u)/1-lul exists and is

utl
- - ) aa -+ -
less than or equal to m . If eithey limit is less than 7 , or o ,

' is not a minimal wvalid

respectively, then property IV.2 implies that o
inequality, and the proof is complete.

Property IV.6 If 7 is a subadditive function on I and if 7w{u} > 0

as u ¥+ 0 and 7(u) ~ % as u 4+ 1, then 7T is continuous at every u € I,
Proof: For any u £ I,

m{u + 8) - &)Y £ wlu) < wlu + &) + w(-&)

= (8) £ wlu) - v(u + &) £ w(-§).
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As § + 0, we have -6 + 1 (since § is a group element and -4 = 1 — &)
and u + & ¥ u. Therefore, w(u + &) » w(u) as v + & 4 uw. Now, letting

¢+ 1 gives ~6 ¥ 0 and v + 8§ 4 u so that 7{y + &) » 7{u) as u + & + u.

Theorem I.6 applies here since T is closed under addition
and says that a valid inequality ¥ for FP(I,u ) is minimal if and ounly
; ; o
if m(u) + ﬂ(uo~u) = 1 for all v € I. The analogous result for

+ . .
P {I,uo) will now be given.

1
Ea

Property IV.,7 A valid dipequalicy v' = {w, w , 73 fFor P {Iﬁup) is

>

minimal 1f and only if

(3 w{u) &+ W{unmu) =1, ue& I,

s . . I
&y = limit %, and

w0
e
- q . [N
(3) wm = limit fiwlw
utl v
Proaf:  Suppose T’ is a minimal valid ineguazlity. Then hy property
.5, (4) end (5) hold. Furthermore, property IV.1 imolies w
ig a valid inequality for P(Iyn(}o If 7 is not a minimal valid
3
Ineguality for P(Iyuo), then there is a valid inequalicy p < 7 and
v{._

oy e s . . )
(p, ® , ™) iz a valid ineguality for P (T,u ) bw
o

+ —_

X pluyeduw) +ws 1 g
uel
> ) et + (@ s)) + rE-sT)
uel
s pt) ¢ @) + o (=sT)

uel

1,
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since p is a valid inequality. We can use ﬁ+s+ = ﬂ(}(s%)) and
similarly for 7 s because ' is minimal and, hence, subadditive by
theorem 1.2. Therefore, 7 must be minimal, and (3) must hold. We
have shown .that if 7' is a minimal valid inequality for Pi(I,uo),
then (3), (4) and (5) must hoid. As a cercllary, we have seen that =
must be a minimal valid inequality for P(I,uo).

Now suppose (3), (4) and (5) held for a valid inequality 7'

+

for Pf(I,uo). If o' < 7w for p' = (o, p , 0 ) a valid inequality for

+ e + - -
?M(I,uo), then at least one of p <7 , p <7 , or plu) < 7{u) for
some u € I must hold. The latter pessibility is ruled out by (3),
just as in proving theorem 1. 6. Hence, p(u) = w(u), all v £ 1. Hence,

+ + - - . :
at least one of p° <7 , ¢ < 7 must hold., We will reach a contradic-

+ o+ e - -
ticn by supposing 0 < 7, and the proof is gimilar 1f ¢ < 7
—}« .-{»..
Suppose p < T . By (4), there is some v € T with
+ + _
o < wlv)/ivl, and, hence, p lv| < 7{v). But then t(uoﬁv) =1,

+ i . - . +, . .
s = lv| is a solution for Pm{lsuo) having

olu ~tlu ~v) 4+ o't = weu vy + ot v
O O Q
< flu ~v) + wlv) = 1
Q

. . . . + ; .
by (3). Hence, 0’ is not a valid inequality for Pm(I,uO) completing

the proof.

Property IV.8 If 7 is an extreme valid inequalitv for P(I,uo} and

+ - e
T, T are given by (4) and (5), then w' = (wm, m , m ) is an extreme

valid inequality for ?f(l,uo).
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Proof: By property IV.2, %' dis a valid inequality since we are
assuming existence of the limits in (4) and (5). By theorem I.1, 7
is minimal so (3) holds. Hence, by the previous property, 7' ig
a minimal valid inequality for P_(I,uo)°
Suppose 7' is not extreme. Then, there are walid inegualities

+ .
o' and oF for P (I,u ) with
& - o

1 1 1 + - ] ! -
P 1 Tl B o P
[ Ht -+ "2"(.7 = 5({)5 IS I Y o+ , O, T ).
How, o' and ¢ must both be minimal oy lemma L4 smince 1’ dis wminimal.

By propaviy IV.1, p and ¢ are valid inmequalities for P{Iyuo}a By

hypothesis, v is an extreme valid ineguality fov P{i,u ) so p = o = 1,
o

3

4
By p' and O being minimal valid inequalities for v (Ljuﬂ} and by

o - 4 - - -
property IV.5, B0 =% and p =0 = T hecause o= g = 7,

1

Thus, #7 is extremes,

- e - -y e s .
Property IV.9 1f w' = (0, 7w , ¥ ) is an extreme valid inequalicy for

+ 9z . . - -
P (Iguj}p thep 7 is an extreme valid inequality for P&iyuo}c
- ¢ )

Proof: Since 1" is extreme, it is also minimal, and by properties

—
L
i

Wl and IV.7, 1 is a minimal valid inequalicy for P(I,uo}n Tt

therefore, a subadditive function on 1 by theorems 1.2 and 1. §.

Suppose T is not an extreme valid inequality for P(L,u ). Then ,
O
1 1
il :ED "%*";}'UB O #Uy

where p and ¢ must be winimal valid inequalities for P(I,u )
o

foreed

0 % T and

1

by lemma T1.4. Then,

(]
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7 (u) L
iu? =2

lim sup f ? £ lim sup
u+ ut0

Hence, limit 130 p{u}/iul exists by lemma IV.3. Call it ii. Similarly,

limit u419(u)/(1“1u|) exists, and let us call it £, . Obviously, the

1’

same limits exists for ¢, and let us call them Q; nd 25, By property
B U T _ + 14+ L+

IV.5 and by w = 50+ 50, it follows that 1 = 221 + §£2 and

- 1,- 1, + - . X +

o= §£1 + ﬁﬁzn Hence, p' = (m, Rl, Ml) and 0’ = (o, EZ, £.) are valid

. + .
inequalities for Pw(l,uo) by property IV.2. But, m' = %Q' + %G', a
contradiction to W' being extreme. Thus, the property is proven.

These nine results give a fairly complete picture of the
relation between extreme valid inequalities for the two problems
P (Iﬁuo} and P(lsuo}n In addition, the results give some idea as to

what these extreme valid inequalities are like.

IV.B. Construction of Some Extreme Tnequalities

Next, we will see how to construct some extreme valid
+
inequalities for P(I,uo) and PM(I,uO) from extreme valld dinequalities
- + - . g s .
for Pi(Gn,uO), Let w' = (m, w , ¥ ) be the valid inequality fox
Pi(lguo) obtained by the method of thecrem II1.3 from an extreme
, , 0 +
valid inequality for P—(Gn’uo)'

t

Theorem IV.10 7' is an extreme valid inequality for Pt(U,uO) for

any subset U of I which contains Gn and for which

#{u) + ﬂ(uowu) = 1, all uwelU.
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Proof: We know by theorem III.3 that 7' is a valid inequalicy for
+ . ce g . 4.
P {U,u )}, We first show that it is¢ also a minimal valid ineguality
- o ’
+ C . \ . . S
for P (U,u@), suppose it is not minimal. Then there is a valic

. +
ineguality p' for PM(U,uO) with p' < 7',

By construction of w', %' is an extreme valid inequality

-+ . s G . -
for P (Gn’uo)‘ and, hence, 7' is a minimal valid inequality for

. » . . : o o
P (Gnguo), Since p' is a valid inequality for P {Gnsuw) because
- - ¢

i
4 AL

G2 5, o' must agree with 7' on G, and, as well, p = u

go=m . Hence, p(v) < w{v) for some v £ U - ¢ . By the construction

H

of ®', for the complementary poing I

W(uowv) = min{ﬂ(L(quv)) + ﬂ+(fuomvf o IL{uO~v)i),

T(R(u ~v) + 7 ([R{u =) ey w3},
8] 3 &
Suppose the first term in brackets gives ﬂ(uOmv}e Then,

-+ : _ . . - . . R
5 = !uowvi - EL(uO«v)E9 t(v) = 1, t(L(UOmv)} = 1 is a solution to

'JI"
P_(Sguo)g but

I

b e +o'sT 4 07sT = p(w) + TG )
ucs . o

+ 'n‘pi‘(iuc--»vi - §'£,(uow-V)!)
= Tlu ~v) + 0(v)
ﬁ(uomv) + vy = 1,

, . . . g +
contradicting p' being a valld inequality for PW(U,HG), When
W(uowv) is equal to the second term in the brackets, the proof ig
similar but uses the solution s = FR(uowv)E ~du v, t(R{u -v)) = 1,
o o

t(v) = 1,
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Next we show that #' is extreme among the subadditive valid
) - -+ o ; o :
inequalities for P“(U,uo), This result, together with minimality,
s [R p . g +
will show that @' is an ewxtreme valid inequality for P"(U,uo) by

theorem I.3,

Suppose 7' is not an extreme subadditive valid inequality.

Then, #' = %p' + %G' for subadditive valid inequalities p' and

g'. Just as in the proof of winimality, 7' is an extreme valid inequality

_{_
for P_(Gn,uc) 50

g, ) = 0e) = 0(g),

and, hence, o' ¥ o' means that o(v) # o(v) for some v & U - Gna Since
{v) = %p(v) +7%0(v), one of p(v), o(v) is larger than #(v) and one is
smaller. Without loss ol generality, we can assume p{v) > 7{v) > o{v),
Again, by the construction of 7{v), w{v} is either

TLE)) + (v - L), or

T(R(v)) + w (IR(w)| ~ lvl).
Let us assume W (v} is given by the first expression, and the proof
in the second case is similar.

By subadditivicy of p' and by p+ = H+,

O(L(v)) + T (vl - (L)) > plv).

But p(L(v)) = w(L{v)} by L(v) € Gn' Hence,

L)) + 1 (vl = ILOD D) = p(v).
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But the left-hand side above is equal to W(v) by our assumpiion of
case 1 above., Hence, w(v) z p(v) contradiciing p{v) » w(v}. The
proof is, thus, completed.

We can apply this theorem to table 2 of the appendix,
Corresponding to sach extreme wvalid inequality for P;(Gnﬁug),

no= 1.6, we can easily gilve the set Uc ori which w{(w) +‘ﬁ(uonu) = 1,

' . ) . N e e
w € 5 . Thepn, for sny set U, G < U« U ,the inequality given by theoren

c 0 o
P . PR - o P . .. . \ .
TIT.3 is an extreme valld loequality for P {Ujuo)n For quGwssygcgsej; and
- - L. X i . f
. f SN .
and G,, I = I for all extreme valid inequalities of Pm(ﬁynyug)9 the
& I

fivst exception occouxs at G.. There are four exceptions for G
‘ 5

among the 26 faces given by table 2 and the refleciions., These ex-

cepiions are discussed further following corellary IV. 18,
i e - . q e - i . ~ 1
The unique extreme valld inequality for P (G(Sum)g where GG
i : - b L.
is the subsel conslsting of only the point 0, is of particular

intevest., It is veadily seen that this ipeguality 7' when used in

conjunction with a mapping @ gives the mixed integer cut of [2]. We

see at once that for this w%, wlu) + ﬂ(u@wu) = 1 for all u so that

' is an extreme valid iunequality for ?j(Uﬁuo} for any set S ¢«
provided 0 € 8, which is actually not a restriction since O can always
be adjoined to 8 without changing the problem,

When the inequalities 7' given by theorem 1I11.3 satisfy
m{u) + ﬂ(uowu) = 1, then the theorem just proven says that m' is an
extreme valid inequality for PT(I,UG). By property IV.9, 7 is an
extreme valid inequality for P(I,uo}o For subsets U of I, we know
that 7T is a valid inequality for Pﬂj,uo), but we do not know that 7w

is extreme for P(U;uo), The following theorem establishes that



result for some U and applies, in fact, for any extreme valid

Theorem IV.11 If 7 is an extreme valid inequality for P(I,uo) and

consists of straight line segments connected at values u belonging to

a regular grid Gm with u € Gm’ then 7 is an extreme valld inequality
for P(Gm,uO)°
Proof: Sipce 7 4s extreme for P(I,uo), it cannot be written as
%p + %ﬁ for different valid inequalities p,0 for P(I,uo), Certainly
7 is a valid inequality for P(Gm,uo}, and if it 1s not extreme for
P(Gmguo)9 then 7 = %ﬂ + %0 for different valid inequalities p,r for
P(Gm,uo), If both p and ¢ are valid inequalities for P(I,uo), a
contradiction is reached. However, both can be extended to valid
inequalities for P(I,uo) by defining them on I - Gm as in theorem
IIT.1. Furthermore, such a construction maintains n = %@ -+ %0
on all of I since m also consists of straight line segments joined
at points of Gm, The proof is, thus, completed,

This theorem enables some extreme valid inequalities
{faces) of the polyhedra ?{ngo) of {31 to be constructed. It is
of particular interest whem cne axtreme Iinequality of Pj(Gn,uo) gives
rise to many slight variants, all of which are extreme for P(I,uo)
and all of which in turn give rise to apparently unrelated faces

of P(G,uo). Before showing that possibility, we digress to give a

theorem related to the two-slope construction of theorem ITI.3.



Theorem IV.12

&

finite number of straight line segments, each line segment having

A

[ - - . . . . . . .
T o 0 or else -1 < (0, If 7w iz a subadditive function on I with

il
7

ﬂ{uo = | for some u_ € I, then 7 is extreme among the subadditive

O

inequalities pfor P(13uo}ﬁ which have plu )} = 1.
C

1.
=3 where

Proof: The theorem asgerts that if ¥ = §ﬂ +—? 0 oand O are
sdditive valid inecualities for P(I?uo) with Q(uo} = ¢g{u ) = 1, the

’ 0
plu)y = o(u) for all u e 1. We know from theorem 1.5 vhat v iz a su
additive valid dnequality for P{I,u ).

0
. R y o R ‘.
Suppose W = 50+ 5 for subadditive valid inequalities

for P{I,u } wirth p(uo) = 0(u ) = 1. 8ince 7 has a vight-hand deriv
o o :
moat O,

i

Lim sup
1t

By lemma TV.3, 0 and

and similarly for o.

W

+
and ¢ at 0.

o + e ; . .
dervivatives p Similarly, the left-hand derivatives

p and ¢ at 1 exnist.

We next show that p and ¢ have the same form as w: that i

i.. — =k

slope p or p  {o

continuous line segments of T or ¢ )., Choose a po

L
- . P T o .
within an interval where 7 has slope 7 . Let & > 0 be small enough

+

first interval. Then, 7(u) (5} = m{ut+d) by the fact that T has

+
same slope T on (8,8) and (u,ut+d). Hence,

Let 7 be a continuous function on I congisting of a

alope

valid

artive

o
=g

int u

es in the very

the



1 Loy 4 Loesy = 2 1
§Q(u) + §o(u) - 2@(5) + E0(3) = Eﬁ(u+§) + 20(u+6),

or

'%(Q(u) + 0{8) ~ plutd)d) + %{U{u) + a8y -~ o(urd)) = 0.

By subadditivity, each of p(u} + p(8} - o(u+d) and g(u) + (&) -~ o{utd)

is non-negative. Since they sum to zero, each must be zero. Hence,

Timit ~-~9—§E———+[(}3;—Q(ul = limit %%?L = ", and
S0 ‘ sv0  °
Y — i &
limit ~ELE+V%TE£51.= Timit E%%%AE g’
&40 ’ £40 .

Similarly, we can show that the left-hand derivatives of ¢ and o

e nb + o o
and u is p and ¢ . Therefore, o{(¢) has a constant derivative p {(0)
on the interval, and so it is a stwvaight line with this slope. A
similar result is obtained for any x on an interval where 7 has slope
-1 . Here, one works with subadditivity through the inequality
o(~8)+ o(utd) = plu), and concludes that both the left and right
derivatives at u are pmﬂ Hence, both p and ¢ are of the same form as

7 with two slope straight line segments over the same intervals,

+ + + - -
We now show that p =g =1 and p =0 =7 ,

Let Q; be the total length of the intervals on which the
_§_
slope of m is ™ and which lie to the left of u, - Similarly, let
R; be the length of those intervals te the right of u_ on which #

+ -
has slope 7 , and let f. and RR be the corresponding lengths for

1.

intervals on which 7 has slope -7 . Since ﬂ(uo) = 1,
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- T s ]
?r ,QL L L s
ot e
T QR - QR = w1,

, + - + -
and the same equations hold for p , p and ¢ , ¢ . But these two
, ; . + - .
equations have only the solution T , 7 because in order Ffor them to
have more than one solution, one equation would have to be a linear

ul e
multiple of the other. But then, ﬂ+ + 8. =0 and -4 - L =0

L. R L R
. ) + o - - + +
implying that all of RT’ RR’ RIS and QR are zero. Hence, p' = 7 |
o . “1‘* v]L, ) . — ‘
p =% ,and g =7 [0 =7

We have two immediate corollaries.

Corollary I1V.13 If 7 weets the conditions of theorem IV.1? and if

aluy -+ ﬁ(uomu) = L for all v g I, then ¥ is an extreme valid inegualiry
for P{T,u ).

¢
Proofs If w{u) -+ ﬂ(uo~u) = 1 for all v & T, then by theorem 1.6, @
is a winimal valid inequality for P(Iguo)o The subadditive valid
inegualities p for which Q(uo) = 1 ipcludes the minimal valid
inequalitfies by theorems 1.2 and I1.6. Since, by the theorem 1V.1Z, W
is extreme among those Inequalities, 7 cannot be written as a wid-point

of two other minimal valid inequalities. By lemma 1.4 and minimalityv of

T, H im an extreme valid inegualicy for P{I,u ).
| o

Corollary IV.Ll4 If 7 meets the conditions of theorem v, 12, if
. L -{_. —— .
m(u) 4 ﬂ{uomu) = 1 for all v e I, and if % , -7 are the two slopes of ¥
PR L ; . fa .
witho > 0, w > 0, thep 7" = (7w, ¥ s T 1s an extreme valid dinequalicy

. s S
for PW{I?“O)“

Proof: The corollary is immediate from covellary TV.13 and propercy IV.8.
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iV.C. Generating Extreme Inequalities and Exponential Growth for

Faces of Some P(G,uo)

We begin by discussing some of the possibilities for creat~
ing extreme inequalities for P(I,uc) from extreme inequaliities of
Pj(Gnsuo) when the condition 7 (u) + ﬂ(uowu) = 1 does not hold for
all u £ 1 for the % constructed in theorem IIIL.3.

By way of background, we observe that the T given by the
two-slope fill in of theorem TX1.3 does satisfy w(u) + W(uomu) = 1
when u & Gn. This fact is a consequence of II(9), (10), and (1l1)
because they imply

ﬂ(gi) = min {N(L(uo)) - H(L(uo) - gi),

ﬂ(R(uO)) - ﬂ(R(uO) - gi}}

= min {1 - ﬂ+(fuo - L(UO)[) - ﬂ(L(UO) - gi)s

1~ (iR(uO) - uol) - W(R(uo) - gi)}
bv 1(9) and (10). Hence,
ﬁ(gi) + min {H(L(uo) - gi) + ﬂ+(§u0 - L(uo)i)9
TR(u ) - e+ 7 (IR@) ~u D} =1,

By the construction of 7 on I~Gn and by L(uo—gi) = L(uo) -8y
and R(uo—gi) = R(uo} TR the min in the equation above is precisely
ﬂ(uomgi).

Since #(u) +'ﬁ(u0“u) = 1 for u € Gn’ equality also clearly
holds for u = MooT B, B F Gn' These points are located between

consecutive grid points L{u), R(u) in the same relative position as

is bet L and R .
u, is between (uo) an (uo)



Figures 1(a) and (b) illustrates the possibilities for =

on the intervals By 1o Bys By and the complementary intervals
AT Y

i
- - L —u, -, where we
o ias Mo P P T
{a) I
! |
by
| ! ,
! L ‘
; [ | I
i Y 9 Ui e
th) ;
H
H i i
} ¥ { f
i § i i
H i H $
unmgi«H uouui«’rl uo g: uo ui uo gl!
Uj i Uj 41 i1 Uj+z

Figure 1.

let u,

i+l

= 1oL nd u r, -+ . Then u - s G 28
gi+uo I{ug) and v, 24 R(uo)rUO Then u e G ay

+1 n’

.= ou i, and g,,, =u -u, £ &, If, as in figure 1. the mawi
gj o il gj+i o i o 2w Bt : fas i

of 7 in (giygi+1} aeours at u o= Uy then w{u} + ﬁ(uowu} = 1 for all

i€ (gi’gi¢l}“ In order to see this result, consider any interval

', . ) where u, = g4 ~1, =g, . . a “he ¢ Le-
(U1+19g1+l) here u, . gy tu E(uo) &1 R(uo)—'ruo3 and the comple
mentary interval (uowgi+l’uomui+l}° The difference ﬁ(ui+l)"ﬂ(gi+l)

) = 1

st be the same as 7 g - -1, cause (g, 4+ (y -
must 18 me as (uO g1+1) (uO u1+1) becausgea T(gl+1)r (UO Biy1

and ﬂ(ui)+ﬁ{u0~ui) = 1. Since 7 can have onlvy two slopes, T must be

the same, except for a constant difference in height, in the two intervals

(Ui g 85490 ond (u g, LRI



The second possibility is illustrated in figure 1 by the
interval {Ui s gi) and Lts complementary interval (u0~gi, u o ).
In both intervals, 7 has two slopes and a relative maxima occurs within
the interval. In this case, we must have n{u) -+ ﬂ(uowu) > 1 for all u
within either interval. For at o = uig m{u) + ﬂ(uo—u) = 1, but as u
is increased, both 1{u) and ﬂ(uomu} increase until one of w{u}, ﬁ(uowu)
reaches a maxima, hen, 1(u) -+ H(uo—u) remains constant as u increases
since one of u(u), W(u0~u) is increasing while the other is decreasing
at the same rate. When the other m(u), ﬂ(uo—u} reaches its maxima, then
w{u)y + ﬁ(uo—u) decreases until u reaches 2; and u_-u reaches v B at
which peint w{u) + ﬁ(uomu) = 1,

An dinterval (ui’gi) or (gi’ui+1) with only one slope for w

vilt 2all an interval of the first type. Here L= 41 -
will be called an interval of the firs ype Here, Wi gi+u0 L(uo)°

The complementary interval will alsc be an interval of the first type,
and for u in an interval of this type, w{u} + ﬂ(uo—u} = 1., An interval
(ui~f’gi) or {gigui+1) with two slopes for @ will be called an interval

of the second type. Then, its complementary interval is also of the

second type, and for u within an interval of the second type,
() + ﬂ(uomu) = 1.

We note that the intervals (L(uo),uo) and (uogR(uo)) are of
the first type, and so are their complementary intervals (0, uO—L(uo)),
(le(uO}+uO, 1.

An interval (ui s gi) will be its own complement if

= i - = - 4 = ]
g; t 8y R(uo) since then U gy T U R(uo) By = Uy The



interval (giyty41)will be its own complement il 3 +og, = L(uo) since
R , =5 ;

then u - g. =u_ - L{u ) + g, = u, .. Thegse self~complementary intervals
o 1 o o i 141
may be of either the first or second type. In what follows, we will
exclude the self-complementary intervals in discussion of intervals of
the second type;

With this backgreound, we can construct a function i from W
which will lead to some interesting vesults. Let o = (giﬁui+l)be an
interval of the second type and let B be its complementary interval.

We assume o is pot its own complement, so o # £. Then,n{u) +'ﬁ(uomu) >0
for u within either o or B,

Define ™ on I by
o :

m(u), u € I ~u

ﬂg(u) =
) I~ {U.O -u), u 8 .

Figure 2 illustrates T in this case. ILet u denote the u where 1 (u)
; w ")

is smallest in o,

i a
7 /

uy
T

, o™ Uis T Uy gy Ug Y
i{ff- a ————wi iqi_w ..... B h__._mm;,,.i
(¢) (h)

Figure 2,
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First, two lemmas are needed. The first appliies to any 7,
and does not depend on the particular construction here,
Lemma 1V.15 Let 5 be a subset of I and let 7 be a subadditive valid
inequality for P(S,uo). If

mi{u) + ﬂ(uomu) z 1 for all uv e I - §,

{u) + w(v) = A(utv}), and u € I-§, v & I-§,

then 1 is a valid inequality for P(Isuc)n

Proof: Censider any t solving P(I,uo}a If ¢fu) » ¢ and £t (v) > 0 for
both u and v in I-5, then we can change t by reducing t{u) by 1, reducing
t(v) by i, and increasing t(utv) by 1. The new t is still a solution,

and, since n{u) + m(v) = T(wkv), y m(u)t(u) has not increased. This

“uE L

process can be continued until qt(u) £ 1. At that point,

kueli—

XuEI wlult(u) = wlv) + Eugsﬂ(u}t(u), where v € I-S. By subadditivity of

T oon 5,
F e @e@ = n() + (] )
= m(v) +a(u ~v) = 1,

by w{u) + ﬂ(uomu) = 1 for u € I-5. The lemma is therefore proven,

The second lemma applies to the particular function m,
constructed here. It actually applies to any two-slepe function T

in an interval in which the function first decreases and then increases.
g Iv.16 T1f 2w =M T ‘ L :
Lemma £ a(ua) (Zua)3 then 7a(u) + ﬂu(v} OC(u+v) fer all

u,v £ a.
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Proof: Tor any u € o, u # U either |ul < Iuoi or ful » Ju |.
A s

Let us assume lu| > ju |. The other case is similar. Then,
o
T (u) =7 {(u) + ﬂ+(!u| - fu_ {) and for v £ a,
o oo o

Va(u,u) = Fa(u) + WG(V) - ﬂ@(u+v}

RN .
= 4w - s - W 4 )
m (u ) T (ful !uui) o (v) o (ut)
=97 (u )+ 7 {v) - (7 {utv) - ’H+(lu-’.—v| - Ju 4v|))
oo o o o
= + - -+ = Y
”a(ua) t Ta(v) ;a(uarv) Q(UU’V}’
+. e
vy AT + 4 + - -+ R 4+v). Similarl we can show
by a(uu V) {{utv| iua v ) a(ua ) nilariy, ca 7

Va(ua,v) > Vu(uapua)a Hence 1if va(ua” ua} 2 0, then Va(ugv) =0

for all u,v € a.

These two lemmas suffice te prove the following theoren.

Theoyrem V.17 If ZHU(ua) = FG(ZUG)s then m, is a valid inequalicy

.

for P(I,ua)g

Proof: By lemma TV.15, we need only show thar ﬂa(u} + Wq(unmu) z
for all u € a and T(u) + W(v) = Tlutv) for all u, v € ¢, The firsc
inequality is tyue, in fact with equality, by the construcition of .
(L

The second is true by 27 {(u ) 2 7 {Zu ) and lemms IV.i6,
oo [

Corellary IV.18 If o and its complement B are the only two intervals

of the second type, then ﬁa is an extreme valid inequality for P(Ijuo)

if, and omnly if 2ﬂa(ua) = ﬂ(Zua).
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Proof: If 27 (u ) = 7 (2u ), then, by theorem IV.17, ¥ dis a valid
oo o o a

inequality fox P(I,uo), Furthermore, if o and B are the only two
intervals of the second type, then ﬂ&(u) + Wa(uomu) =1 for all u e I,
S0 ﬂa is minimal. By cercllary IV.13, Wu is an extreme valid inequality
for P(E,uo).

We now consider in more detail the case described in
corollary TV.18. To begin, two cases will be shown frem table 2.
When n = 5 and uo € (O,%}, face 2 from table 2 is illustrated in
figure 3. 0Of course, when LR £ (%,1)5 the reflection is also a face

+ , -
of P (G59U ). Figure 3 actually shows the construction of theorem
- )

I17.3 for u, = 1/10,

8_
6.«
4 I

| /
2h !

] AN/

L Fes B

0 uo I/5 2/5u, 3/5ug  4/5

Figure 3.

Tt is easily verified directly that the two complementaryv intervals
@ and £ are the only two on which w(u) + ﬂ(uo—u) = 1 does not hold

and that Zﬂm(ua) 2 ﬁ(Zua). Here, u, = 9/20.
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12
Figure 4 shows another example for n = 5 and u £ g}gﬁ, Its

reflection is, again, another example. This figure is face 6.

1 | =&~ f=B+ )
1/5 2/5  Vai/s  Ug4ys |

Figure 4
As in Figure 3, ¢ and § are the only two intervals of rhe second type,
and 27 (u z w{2u ),
L) = )

In both figures 3 and 4, the role of o and & can he reversed,

and we gtill have qu(ug) s ﬂ(ng), In other words, if 7, is defined
oo : B

i

8 13720 in Figure 2 and ug = 15720 dn Figure 4,
il »

then ZWS(u%) = ﬁ(Zug)a The next theorem shows that in rhis case, a
e

analogously to ﬁa with u

great many extreme valid inequalities can be generated which differ from
7 enly in the intervals o and 3.

Theorem IV.19 If o and 8 arve the only two compilementary intervals of

the second type and if . and HS are each valid inequalities for
P(I,uo), then any continuous, piecewise linear function O en I having only

-+ - . .
the two siopes 7 and w satisfying

i

p(u) m(u), wel - {agu 8y,

[}

p(u) 1 -~ p(uo—u), u e g,

is an extreme valid inequality for P(I,uo),
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Figure 5 illustrates such a function p in the example

shown in Figure 3.

ol o> peBe
ug 1/5 2/5uq  3/5ug  4/5 I

Figure 5.

Proof: We will consider only the case previocusly considered; that is
a o= (gi,ui+1) go that the left end-point of o is in Gn° Figure 3 is
this case, but Figure 4 is not. The case a = (Ui’gi) is similar and
will not be considered.

First, we will show that neither o nor B is a subinterval of
(O,gl) or (gn~l’1)° Since o and 8 have an element of Gn as left end-
point, 1if either was a subinterval of (O,gl)s then it would have to be
(O,ul). However, this interval is of the first type as was remarked
before lemma IV.15. Hence, the only possibility is that o or B

is (gnml’un)' We will now exclude that possibility,

Corollary TV.18 says that ", is extreme and, hence,
subadditive., We will show that 7 is, then, linear on (gnmi’l) with a
slope -1 , and, hence, neither o nor B could be (gn—l’un)' To see

that 7 is linear on (gnwl’l)’ recall that v&(gi) + Wu(uﬁ—gi) =

ﬁ(gi) + ﬂ(uo~gi) = 1 = ﬂ(uo) and that ﬂa and T are decreasing on
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(uomgi, uowui) because of the shape of % in . Hence,
Ha(gi) %-ﬁa(uomui) = Hu(R(uo)). But, ﬂa(u&) = ﬂa(gi) mﬂw(luQMgii),
and by subadditivity,

ﬁa(ua) + ﬂa(uowui) = ﬂu(R(uO)~(ua"gi}}, or

ﬂa(gi) -7 (lu ~gi]) + ﬂa(uomui) z ﬂa(R(uO)w(uawgi)), or

7 (R(u))) - ﬁ—(luuwgi]) 2 (RGu )-(u ~g.)).
By ﬂa having only two slopes, the reverse inequality also helds, and,
hence, ﬁa is decreasing on the entire interval (R(uo), R(Uo)+g1)“ This
fact and subadditivity dmply that ﬂa is decreasing on the entire

2

interval (gn 1), completing the proof that neither o nor 3 is a

-1
subinterval of (gn_lgl) oY, (Oggl)o

To return to the proof of the theorem, by lemma IV.15 we can
prove that p is a valid inequality by showing p(u) + p(uomu) > 1 and
plu) + o(v) 2 p(utv) for v and v in o v B, The firast inequality is
obvious from the construction of p. What remains is to establish
p{u} + p{v) = p{utv) for u and v in o u B,

There are twe cases: (i) 1u,v both in w(or bheth in B), and
(ii) v £ o and v & 8.

In case (i), we only consider u,v both in ¢ since both in B

is exactly similar. By p being continuous with the same two slopes as 1,
l

A

plu) + plv) 2 m (W) + 7 (v).

By Wu being valid, and hence extreme,

ﬂu(u) + ﬂu(v) z 1 (udv).



If w4+ ve T~ {au i), then ﬂm(u+v) = p{utv) so olu) + olv) = olutv),
Ifu+wve B, then 7w (uhv) = 7(utv) = plutv) so, again, plu) + olv) z plutv).

The third subcase, v + v £ a, is excluded by a not being a subinterval of
(O,gl} or (gnml’l)” for any o which is a subinterval of (giggi+1)3 but
not (O,gl) or {gnﬂlﬁ})y utv & o when u € o and v £ ¢.

Next, we consider case (ii), u € o and v € 2. Here, there are
two subcases: |vl z iuomui, and jv| < Iuo~uEu Consider, first,

Ivi # fu -uf. Since v and u_-u are both in B, lv-{u -u)! < [R¢u Y—u | and
o ) o o’ o

it

o (uv) p{uo + (v - {uamu)}}

It

1 -1 (v - (uo—u}i).

Hence, we need only show

olw) +plv) =1 ~% (v - (u-)l).
But ¢ has only twoe slopes, so
n{v) = D(uowu) -1 (iv - (uo-u)l), and

plu) + plv) = plu) + Q(uomu) ~ 7 (v - (uomu)l)

b= (v ~ (u_~udl),
o
completing the proof in this subcase,.
Consider now |v} < Iuo—ui. In a similar way, we can now
show that
+
plutv) = 1 - 7 (I(uomu) - vl|), and

p(0) & plu-w) = 7 (I (u =w) = vi).
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Hence, as before

p(u) + p(v) = o(w) + ola_—u) = 1 ([a ) = vI)
= 1 - ﬂ+ (%(uomu)m vi) = oluv).

Hence, p is a valid inequality for P(Ijuo), To show that
it is an ex%reme valid inequality, we need only remark that
plu) + Q(uo~u) = 1 and apply corollary IV.13., The theorem is, thus,
proven.

The development here can he extended to the case where
there are several intervals of the second type. However, its present
form suffices to show an eyponential rate of growth for some of the
polvhedra P(Gn,g) eof [3]. We show this fact by means of ap exanmple.

Consider the group Gn for n = 208, ¥ » 1, and let uoo=
/10 ¢ Gn{ We said that the function p in figuve 5 gives an extrenme
valid inequality for P(Iguo), The same is Crue for & great many
functions p. In figure 6 we illustrate the intervals « and 8

=

from figure 5.

¢< T G e

—
}l
]

275 @™ 3/5 ! 4/5
1.

Figure 6.



Let us restrict p to be straight Iines with breaks at points k/Z0K.

In figure 6, K = 3, and we are perfectly free to let 0 have slope

a5 or =n7 in the 3 intervals (8/20, 25/60), (25/60, 26/60), (26/60,9/20).
The only restriction on o here is that it must have slope ﬁ+ on as

many intervals between &§/20 and 10/70 as 1t has slope . Since p

has been determined on 8/20 vo 10/20, it is given on 12/20 to 14/20 by
m{u) +-ﬂ{uowu) = 1. 1In general, there will be K intervals between 8/20
and 9/20 on which p can have either slope. Thus, there are at least

ZK such functions p. By theorem IV.14 each omne is a face for the

problem P(G 1/10)., TIn fact, there are more that QK functions; there

2087

are

k! K!
such functions p. This number results from the fact that we can choose
any K of the 2K intervals between 8/20 and 10/20 for p to have slope
ﬁ%, As K becomes large, this number approaches

22K

Y R

by Stirling's approximation teo nti.

There are an abundance of such examples from table 2. 1In
particular, for n = 7, there are several similar cases. A similar
construction works as long as there are two compiimentary intervals
a and P with T, and HB valid and provided the u and all other

break~points of T fall on group elements.
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Appendix:  Computing the Faces for P_(Gn,uo}°
n-1 .
Let G_ = {0, =, ..., WH"} be the cyclic group of order 1.

By theorem 1I1.28, the faces (extreme valid inequalities) of the

convex hull of solutions to Pi(Gn,uO) are
1 o
'.?,: (ﬂ(gl)s e e g W(gn}y i 2 i )
o
where (7(g,), ..., (g ), ﬂ+, 7 yare the extreme rays of
(1) w(g) + Tlgs) = lggta),

l"rJr T .;1; - ST ¥
{2) U ﬂ(gl), sl W(Bn~l)’

(3y m(Llu)) + ﬂ+(luoml(uo)[) = TR ) + W—(ER(uO)MuO§}> 0,

which satisfy, in addition,

b

}(gi) + ﬂ(L(uO)—gi) H(L(uo)) or

()

li

ﬂ{gi) + H(R(uo)mgi) ﬁ(R(uO))s

+
; ) = 1 ~-L Y. Re 3 fL < < f
where ™ ﬂ(L(uO)) 4T (Euo I(uo)() Recall that ;I(uo)1 % Eu0§ < IR(UO)E

for L(uo), R(uo) in Gn' For consistency of the above expressions, take

i

= = ..n-- = = I 1 - o
& 0, By F(n) 0 and ﬂ(gn) ﬂ(gn) 0. We do not include the

]

constraings ﬂ(gi} z 0 sgince they are, in fact, implied by (1) in this case.

Let A denote the matrix whose columns correspond to constraints

. i = = - 5 e = . 1
{1); that is aij akj 1 and aﬁj 1 when 8 8y 93 Then, {1} is

equivalent to WA = 0,
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First, let us discuss the computation of the extbreme rays
of the cone wA 2 0. Tha double description method [41 was used and is
interesting theoretically in order to describe the resulting faces.

We will describe, briefly, that method. The constraints (1) corres-
ponding to columns of A are introduced successively. TInitdially, a
cone having extreme rays {1,06,...,0), (0,3,0,...,0), ..., (0,...,0,1)
is formed. As each comstraint (1) is imposed, we find the extreme
rays of the cone formed from the intersection of the previcus cone and
the half-space of solutions to the new inegualiny.

To elaborate, suppose that m — 1 of the constraints {1
have been imposed and the resulting extreme rays are (Fi(gi)gn,,,ﬁi(gnml)),
i = 1,...,K, Consider the matrix

Yo AT A I

’{{i(gl) s 5.7T] (g 1

L -1

m~1 m
A

1
’H' wus gl AT, L., T A 5 1
(B ey )AL &

where Aj denotes the jth column of the previcusly defined matrix A.
Since each .o was assumed to satisfy the first m-1 constraints of

TA = O, every ﬂiAj 20 dor i =1,...,Kand § = 1,...,,m~L. The extreme
rays of the cone formed by the intersection of the old cone having
extreme ravs wl,,,,gﬂK and the half-space ™" = 0 wili be among the

vectors ﬁ1"°"WK satisfying WiAm 2 0 and the linear combinations:
o= . s T, (g + cae
P ey, (g )) Bl (ay)se vyt (g ),
m m
o = TpeA » 0 and 8 x“ﬂiA = 0. However, some of the vectors 7 formed

in this way will not be extreme rays and can be identified by the fact

that the j, 1 < j £ m, for which A3 = 0 are a subset of the j similarly
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defined for ancther such vector and the % for which ﬂ(gﬂ) = () and
a subset of the similarly defiped # for the other such vector,

At this point, it is easy to see that the conditions (4)
can be imposed throughout the above described process. Eventually,
the T's not éatisfying {4} will be discarded. But if an extreme ray
7 is formed at some iteration of the double description method and if
7 violates (4), then any extreme ray formed from 7 will also violate
(4},

The effect of expanding the dimension of the cone by two
and imposing conditions (2) is to adjoin two new extreme ravs
0,.,..,0,1,0% and (0,...,0,1). Fvery other extreme ray will have
(gy) > 0 and S nﬂ(gl), and T(g ;) > 0 and To= g ).

The extreme ravs of (1), (2), and (4) are called the

‘ 4

subadditive rays. They are listed in table ¥ for n = 1,2,3,4,5,6, and 7.

in addicrion, the matrix A and the values At are given in the columns

following the 7's, The last two columns correspond to the constraints
.,{N —
Tz W(gl)/n and T = ﬁ(gnmi)/nn

For n # 2 and for each subadditive ray T let the matrix

ak of 0's and 1's be defined by

if 7 deoaT - -
LAt (g o legme) = (e
0 otherwise.
Then the condition (4) is equivalent to
Ik k

o .= Lor a ., =1 for all j.
1'“193 13

k
These a( are useful in determining whether (4) holds for a particular

extreme ray when (3) is imposed later. They are included in table 1.
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Table 1. Subadditive Ravs
n o= 1
A
1 1 4]
2 G 1
n= 2 (A=)
Wy W T
1 2 2 it 0
4] 1 0 1 0
0 0 1 0 1
i pi 3
o

@ ad
1 2 3 G 0 3 0
2 1 6 3 3 G 0
0 0 1 0 0 0 1
G G 0 1 0 0 0
O’l O“z 0.3 0'.4

[

10
i1

IR

iR
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"2 1 el 0
b b rd oLt 2]
1 1 2 1 4 & 0 2z 2 0
2 3 2 1 12 & 4 4 4] ]
3 1 2 3 4 12 8] 4] 4 4
4 1 0 1 4 4 2 0 0 2
5 o] G ] 1 0 0 0 0 ]
6 ") 0 0 0 1 0 0 1] ]
o',l rxz m3 o 0. o
1 GO0 i1 1 1°¢ 0 111 111 i11
11 i 0311 1106 019 11 111
C 0 1 00 1 111 11 111 1 1 1
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The faces of P(G,g) from [3] are included among the sub-
additive rays and correspond to rays having a row of 1's in the
associated o matrix. In addition, there are subadditive rays which
are not faces of P(G,g) but can be associated with a pair of elements

of G such that uij = 1 or ST ; = 1 for all j. For n = 1,2,3,4,

Ed

BisBig1
and 6 there are no such subadditive ravs, but for n = 7 there are two
given in table 1: rays 25 and 26 which are actually reflections of each
other.

+

By the reflection of (n(g),...,m(g ), T , 1) is meant

+ - .
(ﬂg(gl)’“°°’ ﬂR(gnml)’ T FR) given by

ﬂR(gi) =q(g_ ), i = 1,...,n-1,

-1
.%_ - —
T =7,
T -
R .

Every reflection of a subadditive ray is a subadditive ray,
and every reflection of a face for Pf(Gn,uO) is a face of Pj(Gn,l—uo),
For that reason, in listing the faces of PT(GH,UO} we only consider
0 < Iuol < R(%J. The only reflecticns listed are, then, for odd n

and L(%ﬂ < 1u0| < R(%J-

The faces (except for scaling by ﬂo) of Pt(Gn,uo) are among
the extreme rays of the come formed by intersecting the cone having
extreme rays the subadditive rays with the hyperplane.

F(L(uo))+ﬁ+(iuo—L(uo)l) = TR )+ (1R Y=u_|).
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In addition, the faces must be minimal; that is, satisfy (4).
Any subadditive ray in the hyperplane will be a face. The other

faces are among the linear combinations
g ) .., 1{g ) w7y = AL (g.) T (g ) it Y
1ot n'* 7’ IR TS B T A LA |
D SN G €0 I N ¢ at )
28 kP17 Pk Pnt TRk R

where

A= (L ) (u =LCa ) )= (RGu ))=m (1RGu Y=a | > 0,

A, =--(’7Ti(z.(uo))+?l‘:“(Iuo--L(uo)])-~Tri(R(nO})—ﬂ;(E1{(uO)-uoi))> 0.

These linear combinations must satisfy (4) in order to be a face and
must be extreme. As before, in order to be extreme the set of
ineguality restricticns (1) and (2) which hold with equalitv must not
be a subset of the similar set for another potential face. Satisfying

(4) is equivalent to aij = ] or a = 1 for all j where L(uo) =8

o+l , ]

and R{uo) =8,
The faces for o = 1,...,7 are given in table 2. In each

case, it was directly verified that the face remained extreme for

all U in the indicated subinterval of I. The values Al’ AZ’ and the

scaling were then computed for a general value of e in the subinterval,
We are now in a position te discuss in general the

"persistence” of faces as U, varies. In addition, extremality for

certain potential faces will be discussed.

Proposition 1 For any Pt(Gn,uO), U, g Gn’ a face is given by

1 - 1

+
m{g) = 0,g € G; T & sy T = o
Euo L(uo}l IR(uO)—uOI
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Proof: This face is obtained by the linear combination

A (0,00 ,0,1,0) + 3,(0,...,0,0,1)

: . + -
of the two subadditive ravs associated with 7 and 7 , where

P
|

= -T, d A, = + -3 . The scaling factor is
Iuo (w )| and 2, IR(uO) u g

4

IUO—L(uO)E.

Condition (4} is seen to be trivially satisfied. Extremality
is true because every one of (1) is satisfied with equality. No other
potential face can make that claim.

Proposition 2 If (ﬂ(g]}ﬁ..,,ﬂ{gn_l)) ig & face of P(Gn’gi}’ g; € Gn’

g5 # O, then

ﬂ(gi)+ﬂﬂ(gnml}(|gi~uoi)mﬂ(giWE}
. 5nw(gn~l))

i
tu g, !
0 gl“l

T w (w(g1)s»==9”<gn“3}s

) +
is a face for P“(Gn,uo) whenever |g,

< ho ;
1—1‘ < inl = !gii and the scaling

factor is o= W(gi) + nﬂ(gnmi)(lgi~uoi), Also,

ﬂ{gi)+nﬂ(gl}([uo—gil)—ﬁ(gi+l))

m Mo (T{(g‘ )?Bnﬂ?‘rT(g )91-1’“(3 )9
1 n-1 1 18141 Y|

+
. S X ] ) X . )
is & face for 1w<Gn’uo) whenever 1gil s inI < 'gi+l| and the scaling
factor is = 7(g,) +'nﬁ(gl)(iuo”gi'>‘

Proef: The first assertion will be proved, and the second is similar.
The 7' given in the first assertion is a linear combination of sub-

additive rays:
(ﬁ(gl),-eesﬂ(gn_l),Hﬂ(gl),nW(gn_l)) b A2(09°°°a09130)

where
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A= (T(gy ) + (g ) (u g, 1) - wlg) - ni (g g0 Ugymu 1)

We know AZ > 0 by Igiwl' £ Iuos 5 Jgil and ﬂ(gi“l) + ﬁ(gl) = w(gi)

because T is a face for P(Gn,gi} (See {3], theorem 18). By

ﬂ(gi*l) + ﬂ(gi) = ﬂ(gi) and ﬂ(gn~1} > 0,
9\2 >“'ﬁ(gi_}7) - nTT(gl)(in"-gi__l%) + ﬂ(gi)
>-m(gy )~ T(gy) +(g) = 0.

Clearly, (4) is satisfied, by theorem 18 of [3] which says

ﬁ(gj) + ﬁ(gimgj) = H(gi) all j. Hence, dij = 1 all j.

Extremality remains to be proven. For convenience, let us
distinguish the subadditive rays

e = (0,...,0,1,0), and

©,...,0,0,1).

9]
1

The face given in proposition 1 will be denoted, e and it satisfies
neither condition (2) with equality. The potential faces for

Pi(Gn,uo) will, then, be of three types:

type 1: e = Ale - kze :

type 2: a linear combination of two subadditive rays,

, , + - , .
one of which is ¢ or e and the other is neither

..I..
e nor e ;

type 3: a linear combination of two subadditive rays,

, R . -+
neither of which is e or e



~ ALO -

Include in type 3 any subadditive ray which satisfies (3) so by

- . .
itself may be a face for Pm(Gn,uo), The following gives the manner
in which conditions (2) are satisfied for the three types:

+ ——
type 1: % > nﬂ(gl) and ™ > nﬂ(gn_l);

+ - )
type 2: one of ® - nw(gl), oo nﬂ(gnml) is zero, the other
positive;

type 3: T = n7(g,) and I (g e

This classification will be useful in proving the next two propositions,
as well as this one.

To return to proving extremality, here, recall that we must
show that the conditions (1) and (2) satisfied with equality ave not
a subset of the same conditions for some other potential face. By the
above, we need only make this comparison with potential faces of fype
2 or 3. Consider the subaddivity conditions (2) satisfied with equality
fer n'. They are the same as for (ﬂ{gl}u!,,w{gn_l))swhich is a sub~
additive ray, and, therefore, they are not a subset of the conditions
(2) satisfied with equality for any other subadditive ray. But the
conditions (2) satisfied with equality for a potential face of tvpe 2
or 3 are a subset of the conditions satisfied with equality for some
subadditive ray. Hence, extremality is proven.

We have actually proven, as well, the following proposition.

Proposition 3  If (ﬂ(gl}"'"’ﬁ(gnml)) is a subadditive ray with

., =1 or a, .= 1 for all j and some fixed i and if u_is defined by
ij i+l, 3 T :
i) + g ) Uu—g 1) = ey, ) +nilg ) (g, -u 1),
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then

ey Hnmle, ) e, mu D))

tu g, |

(ﬂ(gl)y-"“s”(gn__l)w 5nﬂ(gnm1))

. 4
is a face for P (G _,u ) whenever [g.! s lu | £ lu_l, and
-~ "n*p i 0 1

Mg rtan () Clu -g, =g, 1)

(n(g,)s...,m{g _,),n7(g,), )
1 n-1 1 Igi+l—“ol

+ ;
3 . ) g < g
is a face for PH(Gn,uO) whenever luw) 2 Ju | Ig:
The scaling factor is

T o= max {ﬂ(gi)+nﬂ(gl)(luo—gi!), Te ) tre D Uey D

If we consider subadditive rays which are not faces for any
?(Gngg), then the faces described in proposition 3 do not occur until

n =7, Forn=7 and u € (%3%0, face number 13 is of this case.

5o far, three kinds of faces have been described. Referring
to the classification of potential faces in proposition 2, we see that
every potential face of type 1 or 2 which satisfies (4) and can be
formed, is extreme and therefore is a face. The situation for

potential faces of type 3 is more complicated and is summarized below.

Proposition 4 Let g and 1, be subadditive rays such that the

2

1 Z 1 2
roduct o, , o), = 1 or o, ., ., o .
P ij i I T £

= 1 for all j and some fixed i,

d let o= <
and le lgli IuOI



Ay =y Gg 0y (g ) (o =g )=y (g )y (g g0 (g a1
Ay = -ﬂz(gi)~nﬂz(g1){luomgil)+W2(gi+1)—nﬁ2(gnml)(Egi+l~uoi)

gatisfy AZ > 0 and Kl = 0, If
o= A g ) myle 00T ()T (g 4))
+ >\2 {-Wz (81) gt STT (gn__-lv) Bnﬂz {gl} ?HT{Z (gn_l}) 9

, . —+ ;
properly scaled, is s face for P_(Gn,uo), then the same construction
|

.+.
: . PR 3 3 < < N
gives a face for }_(Cn,uo} for every uo,lgil luog lgi+ll’ such that

l] and A? are both nen-negative.

Proof: The propesition says that every potential face of type 3 which
ig a face for some U is a face for any other u provided only that it
can be formed. The only thing to be proven is that extremality persists

for Uo in the interval for which the face can be formed.

In order to prove this persistence, we resort to thecorem I1II1.4.
That theorem can be says that when u, is varied within an interval

. + -
(gi’gi+l)’ the vertices t' = (t(g1),.°°9t(gn},s ,8 ) of the convex hull

) + , + -
of solutions to P_(Gn,uo) only change in the s and s components. Only

+ . - . , ‘o
one of 8 , 8 is positive for a vertex and the one which 1s positive

o e . ; < .
varies linearly in iuos for Egif < !uoi < ]gi+1

If 7 1 : i 2 - it i
m is a face for some u_ in (gi,gl+l), then it must satisfy

+ -+ - -
ﬂ(gl)t(g1)+,,ﬂ+ﬂ(gn_})t(gn_})+ s +ws = LR

for n+l lirearly independent vertices t'. Here, that means
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.1L. + — -
(53 A a +Aza?+(h " + Azﬂz Vs +(Alwl + Azﬂl s

= 2 (g )4 T u =g D)+ A, (ry (g 0, (a5, 1),

where
n*_:}_
=]
n~1
a, = ) m (g )tlg,),
2 421 271 ]
-+

ﬂi = nﬂl(gl), ﬂl == nﬁl{gnml),

ﬂz = nﬂ2(g1), o = nﬂz(gn_l)

are all constant as u changes., Let us consider a particular vertex

+ - + .
with, say, 8 > 0 and s = (. From theovem IIl.4, either s = iuomgii
_}_
or § = Euomgil + k/n for k 2 1. In the latter case, t(gl} = (. The
case s = 1u0wgil will be treated and the other one is similar. In

this case, (5) reduces to

klal + Azaz = Alﬂl(gi) + Rzﬂz(gi).

. P . . -
But subadditivity implies a, =z ﬂl(gi) and a, = nz(gi} because
Egjt(gj) = g, for any vertex ¢ with s* = luomgii. Hence, (3)

implies a, = ﬁl(gi) and 32=ﬂ2(gi), in order for (5) te continue to
hold as u, varies, we need only know that

+

+ , + + +
(Alal + Azﬂz Y g = (Azﬂl +-k2n2 )luo—gil

o i o .
which is clear from s = Euo gi1 for u_ in (gi’gi+l)'
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Table 2. Faces of the Convex Hull of Solutions to

P+(G L)
- "n’o

n=], uO(U,l}, hf -

3
3
face T "

1 1 1
¥ OITTEET
1
no= 2 u_ € (O,EJ, o | = x
facel T{Z) m T
1 1 L
1 2-2% % 1-x
3 2
2 0 - e
b4 1-2%
n=23 u € (9 Eﬁ v | = x
3 v, ®
ik N R e
face n(3} ﬂ(3} i T
1 2 1 1 1
3-3x 3-3% x 1-x
% 1-3%
12
u_ ¢ (§3§J, |n0| =X
2
Ey o H (e ,+ =
face (=} 3) T ™
1 LA Ly 1 A
3x 3-3x x 1%
S RS R O bx-1
3x 6% X bx—fhxl
, 17 5 6% e
6H-b6% 3-3x% {(3=x) {6x-4) | 1-x
3 3
4 I [
Y 0 331 12~-3x
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n o= 4 u ¢ (034}, fu | o= x
DUN S 3]
face ”(ZD W(é) ﬁ{é) i
L 3 2 1 1
by b4—bx 4-bx X 1-x
1 1. 1
2 2-hx 0 Z-bx x 1-2x
1
3| o o L - e
i
11
U-O € (Z,'—‘} s ! u i = X
1 i 2 .3 +
face ﬂ{2° i W{ZJ ”(4) "
1 L 2NN B S B 3
bx bty f-bx x
1 1 1
2 4y v 4x x
3 1 1 i 34w
bl 2-2% h-dx iw}%SXmﬁxz
P I A S S
' i 6x 19 X
. 4
5 0 0 ( p)
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.n =75 u £ (G,%J, fu | = x
[om (~]u'~) T (g) T (~3~) ¥ (i) 'f!+ T
faces | 5 5 5 5
1 4 3 2 1 1 1
5-5% 5-5x 5-5% 5-5% X 1-%
) 3 1 3 2 |1l
) 5-10x% 5-10x 10-20x | 5~10x b 1-2x
1 5
3 Y 0 0 ! 0 . | 175—;‘{
! i !
u € {%,%), la | = %
NS NN B T b ot ~
fac(_af ki (“5—) i (-[-3—) it (3) i ('g“) i (1]
1 . 3 2 1 B 4
5% 5-5% 5-5x% 5-5% ® I-=
P Lo 2asx 1L =1410x 1 ~1+10x
i S5x Sx(3-5x) 10x 10x (3-5%) ps Z2x{3-5%)
N T 2 |2 _7-10s |1
10~-10x | 5-5% 5-5% 5-5% 2(1~x) (5%~1)] 1-x
. 2 4 1 3 8-15x 3
10-15%¢ 10-15x%x | 10-15x! 10-15% (5x-1)(2-3%) 2-3%
A I T T I U O 1 _20x-3
: Bx T0x Tox | 20x % Bx 2052
s Lo 1 |12 1 R
5x 15% 10 15% ¥ x{6-15x%)
i - .
4 ; 5 S
/ 0 f 0 o Sy 2-5%
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2
u € (5_,%) , fu | ==
ook e 3, a -
H{g) H(S} H(B) n(s) i T
1 1 2 2 1 1 1
N 5% 5% S5{Ll-x) | 5(1-x) ¥ i-x
) 1 2 1 3 1 10x-1
5% 5% 10x 10% % 631 0%
3 3 1 2 L 9-10x 1
10-10% | 10-10% | 5-5% 5-5% | (1~x) (10x-4) 1-x
4 1| 2 4 2 1 15%4
5% 5% 15x% 15x 5 ®x(9-15x)
5 2 4 2 i 11-15% 1
15~15x | 15-15x 5-3% 5-5% | {(1-%){15%~6) 1-x
5 5
6 ? 0 0 0 o 3-5%
1
n==o u € ((}’E) , lu ]l = x
1 3 4 5
7 (- = T {= T (=~ = + -
faces (6) TF(f) (6) 1T(6) ﬂ(ﬁ) 7 it
1 5 3 2 i 1 i
- 6-6% 66 6B 6-Hx BBy 1%
, |2 2 I
) 3-6% 3-6x 3~6x 3-6x% b'e 1-2
. 1 1 1 1 3
SO e R R ¢ v x T03%
l 1 6
4 0 0 é 0 0 0 ” T
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o € (%-, -g;) . du | o= x
facasl T (ié«) T (—Z‘—) it (&g) 7 { -gw) 1 { %) Wt T
A O R I [ A A
- 6% 6—6x -6 663 6-6x ® 1-x
S I R A I T [
- (O 3-6x 63 363 e 1-2%
5 2 b 3 N 1 L% 1
6-6x% 1 0O-6x 66 6-6x 6-0x (1-%) (6x-1)!l-x
P I B T . I A
6% 6x 6x x 1-3x%
5 1 i 3-0x . 1 ~14+9% 1 - 1.-+-9m>5
6% hx-Shx” | Thn-5h%? | Thuonhnl | Thx-Bhn’ x g~ 2
P I B ; N N T
bx 12% , 12% 17x X bx—1 2 ul
P e S A B B U B [T
: bx T0% 30% . 30x 30% % Sx—15%7
: ; ! & 3
8 0 0 0 i 0 Lo =T T
23 |
uo (gg€> ! U,O o= %
faces T (%) b (»é—) T §'> T {-é~ m( é-) " ’ i
1 A 2 3 2 1 Y A
- O O% G--6% f-6x 6~Hx X 1=
1 2 1 2 1 2
2 1% 53 O & 6% " [
3 LE A N 3 A exel 4 bx-1
bx 63 bx (4-0%) ] 6x G (4d-6%) ® w{4~-bx)
4 5-6x 1 3 2 1 5-Hx% 1 !
6(L-x)(6x~-2) |6-6x O-bx | 6-bx 6-0x 1 (1-w){6x-2) 1-x
R 2 3 2 ] 2-3% R
) 6-63x 6-6x% 6-bx% | 6-6x 6-0% 1 (L~x) (3x-~1) I
L L 1 . 3 3
6 Lobx 0 tox |0 h-b6x 331 2-3x
7 m;]:_ ,,,g _3q 441;., .__1;,,. 3 qﬂ* x-]
6 6x 12% 6x 12% ® 2x-bx
A A
9-T7% §-12%  3-h j
3 : 2
9 0 0 0 G 0 o LT




W) - ~X
Lo £ o g g 0 0 0 61
L L
*-1 (E-%L(*-1T *HT X1 %971 X7l Al %51 1
1 xpT~E1 Z 5 9 1 3 ¢ -
(2/-9)¥g x X451 X1 xy1 Al xqT 91 T
-2 1 g € T 9 Y z
xhp—¢ (E=2L) (Xp-¢) (Zy=£) 91 (Ey-£3%T (2y-£3%1 (Ry-£ 9T (Fp-E)%T ¢ (X5t ot
Y XQT-61 g z 01 7 g g
(I=%X4) (Ri=%) 1~X% (I-%7) %1 (I-%9) 97 (=% %1 (=x9)yit (I 91| (I-%9)¥i 6
6-X3Z 7 9 3 ¥ 0T z 8
G-y (€-%4) (26-4) (X5~9)¢ (%e-%)/ (EG-7) L (Fg-9)¢ (X5-%){ (xe-vy/ g
g XCE-77 ¢ € g 9 y Z
' (xf-y) (T~XC) 1-%¢ (1-%g) ¢ (I-%¢3 ¢ (I-%6) ¢ (I-%£) ¢ (I-%6) 4 (1-%6)7 /
i ¢ z .q g g € g
2
=
i =7 (- {(*-D)y (*-1) 82 (*-1)8¢ (x-1)ge (*-1)8% (x-1)8¢ (x-1)87 g
1 X87-61 i 8 21 6 g €
(2f-g)ny X xg7 %87 X8 %8z %87 ®g ¢
6-%87 T £ g 6 Z1 g Y
o F-TIRIT G 7= {F-T)RTE 9= (X-TIXTZ (- (F-DIXTE [ y- (B-TI¥TT | - (X-1)¥I7 (9= (%~D)XT1Z | - (%~T)¥17 1,
=Y (Fe-2) L = %1 Xz (1) z X XE-7 K
-1 (g-%0) (X~1)2 {(¥=-131 (=134 (T30 FT-20C-T0%T1 (09T (=% (=Dw1 ¢
T HHpT-T1 T z £ [ 3 XHT~TT
(®{-G2%g X (F{~C)%9T 9T (%{-CIXHT X XL pa -
£-2yT T £-%iT 3 (-1 3 z T
-1 x (*-13¢ (%-T) 4 (¥-1) 4 Ry XL XL .
1 1 T Z g € [4 T
it 3 ..h. L WJ Iy iﬁa 1 L : W L I
-t +=r m@vp Am\ Aq L Tm.ub ﬁwvﬁ mr.mv;; EEELF
R o= _o.,.; am%“hv mom L =1



(Xi=-z3%y % x9C Xg¢ %9¢ x5¢ %55 %98 .
T-%g7 T g ¢ 7 ¢ z g ot
(X/-g)%¢ X %0/ 04 204 04 vy XG4 6
€-%G¢ T Y g ¢ z 9 01
(¥L-T) %9 % A RTY xzh A A A 8
A T 1 z £ 7 < g
(z-D)7 AR - H-Dvl (xz-7)827 | (¥7-7)87 (%z7-13 %1 (XZ-TIvT | {(¥Z-13%1 /
7 RRT-IT 7 & ¢ z g c
\ (F2-T02 [ (I-%4) (Bz-Dz | (Xz-1)91 (Xz-1)%1 (Xz-1)%1 (2z-D%I (Xz-1)91 | (Mz-T)¥1 5
- ¥ %g7-11 i T ¢ 4 g 3
&
| RET (Ci2f) (RE-7) | {(HE-23 4 (Re~2) 4 (Xg-73 L (x¢-72) ¢ (xg-73 4 (x¢-274 c
3 R1Z-0T € g z ¢ 8 B L
(XL~E)%C ® (XL~EIXTT %17 (- EIXTT %ig (R{-£)%T7 X/ 5
7-X1¢ 1 -T2 T XH1+T Z X4y T
-1 (%) (X-T37 (-T)¢ (-3¢ (%132 (=134 (X=T}{ (*-T)¥1 ¢
T XHT-6 1 z ¢ y g <
(XL~7) %7 % (Xi-9) 91 (XL=9)%/ Xy1 (RL-F3%GT L (NI XHT %/ .
T-XgT T Xy T-%97 T EYE=S RIZ+T T
=T X (-1 ¢ (%~1) ¢ (X-1) 1 (*-T) L (X-1)¢ XL -
T 1 T Z € 7 < T -
\ L L { [\ , s8uBj
_u L of e %) G O oF
o] 5T.L. _ ©
PR o= X m:rmrw M T N



xZ-1 X (XZ-7) ¢ (%Z-1)%91 Xy (Xz-1)¢ (XT-1rd XL ¢t
z T z T~%8 1 T ¢ T :
{(XZ-1} * (Zz-1)¢ (xg-Tyxy (Xg-1)”YL (Xz-1)¢ (z-1)¢ XL oT
z 1 z XE-1 T-%9 1 € T
(X4-7)%8 % X9g xgC Ll Xgg %9¢ ®g¢ T
6-%9G T g g Y £ & 8
FA0QE ST
i [T, o Z1-T
r~ (= lmwlu 3
o Z
£
Xz-1 X {(Xg-1)4 (Xz-1)%L b2 Fz-T)=EL (*z-T> 4 X/ <1
z T z REwT T T £ T -
(X71-G)%Z x (HT-C3¥yT | (XyT~)XyT *57 (XpT-C)RyT | (XPI-¢)¥yT x{ bT
¢-¥g87 T £-Xg7 T~%{ T xCE-5 X[~g T
X2-T KI-3(¥2-1)€) (Xg~T)1¢ (¥z-D1z (X{-T) 1z (*z-T) 12 (Xz-1) 1z (¥T-1)7¢ 7
z XZ5-ET E g 9 3 & g
Xi=-7 -3
l|.\,% L .% 0 9 o 0 0 0 71
(xi-2)%y X xg¢ X1z ®9¢ X1z x9¢ %QC IT
1-%§7 T g T g z z 8 :

s$30E3



-~ A28

Xi-T

b
—— = 0 0 0 0 o 0 S
L [
-1 * (xe-1yi | (XE-Tovl (xe-1) 4 (RE-T) 9T (xe-D¢ (R¢-T) £ b
£ T 3 € z < T Y
Xg-1 x (Re-T) 4§ (XE-1)9% (2E-1) 4 (Xe-1d 91 (xe-T) ¢ (Xg-1) 4 ¢
£ T € B z £ T y
xXz-T X (X7-1) L (Xz-1) ¢ (Xz-1) 9t (27-1) 1 (X7-1) 4 (X¢-T) < s
T T Z 7 S T ¢ <
X1 ® (X=T) ¢ (=131 (x-1) ¢ (x2-1) ¢ (2T ¢ (x-1)¢ :
T B T z 3 Y < 9
. N,, rml‘ 3 ..W 1 .W " |_'h|, " h " S8IB7
L K n.wT Amvr T hm L AN\F {n
o, ¢ ohe
i = n
npo= X 0



AZ29

M- 7=
@m M £ o o 0 0 0 7T
Xe-¢ (g-%4) (¥c-¢) (%5-£) ¢ {(®g-g3 ¢ (¥g-£3) 4 (¥g-£34  {HG~-£3/7 | (x¢-€) 2 1
g KEL-/T g ¢ 1 g 5 4
XE~7 {Z-x/) (%g-7) {(Xg-~7) 91 (=g-7391 {(XL~2 %1 (RE-23%1  (XC-2)H1| (Xg-7) %7 oT
£ XT7-¢1 g ¢ 7 01 Z 8
{(X/-hi¥g X (R1-9)X5T 4T A (Xi-9yRyy XL X/ 6
1-X¥91 1 T-41 € 1 X{+E z
(X72-1TD)X * (FLZ-T0¥L | (XTg-TDIXL | (RI2-TIOXL | (R7g-TI0%L XY x/ o
H-XTZ 1 H=R17 Hi-g XCC-gT (X(-9)7 2 1
Ko T (E-X) (#1072 {(X-T) 91 (X=T) %% (%13 %1 (B~1)%1T HX-T)ol | (X-T)%1 ,
T XeT1-11 Z & g 8 3 g
- (Z-%4) (X~T)¢ (¥~1) 17 (x-13717 (X~ 17 (X-T)Tg  {(x=T)Tz | (%-T)17 5
it ®7z-¢71 € g 6 71 g i
{(R4=-gYG X e XgE Xeg HOL KCE Xg¢ c
9-XGE T z ? g 8 01t g :
(XL~ )XRE X 17 X1 X717 K17 X1z 17 “
7-X17 I 5 T 3 Z 9 ¢ 7
(R7-¢)xg X X7y iy Xgh Xy X7y X7y ¢
7T-%1Z T 2 & ¢ f7 21 9
(X[-§)%7 x %9z %g7 g7 g7 %87 Xg7 .
g-RG7 i £ 9 z G 8 Y
-1 X (x-1)7 (x-1)¢ (xX-1)¢ XL Xi .
T 1 Z £ 5 Z T
i H Eh} i) Em..a 5 ..W H A : 4 mmumw
i L hmvs {e ﬁmf ﬁmur_ ﬁ%m
¢ mnih.. - c
Am mv 2
[/ = U






REFERENCES

1. Dantzig, G.B., Linear Programming and Fxtensions, Princeton

University Press, Princeton, New Jersey, 1963,

2. Gomory, R.E., "An 8lgorithm for Integer Solutions to Linear
Programs™, in R.L. Graves and P. Wolfe {eds.}, Recent

Advances in Mathematfical Programming, McGraw-Hill Book

Company, Inc., New York, 1963, pp.269-302.

3. Gomory, R.E., "Some Polyhedra Related to Combinatorial Problems’,

Linear Algebra and its Applicatioans, Vel. 2 (1969},

pp.451-558,

4. Motzin, T.S., H. Raiffa, G.L. Thompson, and R.M. Thrall, "The
Double Description Method", in H.W. Kuhn and A.W. Tucker

(eds.}, Contributions to the Theoxry aof Games, Vol. LI

Aunals of Mathematics Study No.28, Princeton University

Press, Princeton, New Jersey, 1953, pp.51-73.






