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ANNALS OF MATHEMATICS 
Vol. 62, No. 1, July, 1955 

Printed in U.S.A. 

A STUDY OF TRAJECTORIES WHICH TEND TO A LIMIT CYCLE IN 
THREE-SPACE 

BY R. E. GOMORY AND F. HAAS 

(Received October 13, 1954) 

1. Introduction 
The object of this paper is to study the behavior of a solution curve of an 

ordinary differential equation as this solution curve approaches a limit cycle of 
the differential equation in Euclidian 3-space. In the entire paper we shall 
denote the limit cycle by the symbol C and the solution curve which tends to C 
by the symbol S. The same problem if studied in 2-space has a very simple 
solution. A solution curve which approaches a limit cycle in the plane spirals 
towards this limit cycle from one of the two sides of the limit cycle. The manner 
in which a trajectory can approach a limit cycle in 3-space was studied by 
Birkhoff [1]. But in his classical paper on transformations of surfaces Birkhoff 
assumes conservation of energy. No such assumption will be made here. 

The methods of this paper are similar to the methods used by one of us (2] 
in investigating singular points in 3-space. We shall use some of the results 
obtained there. 

In Section 2 the exact problem is stated and certain transformations of co- 
ordinates carried out which facilitate the analysis. In Section 3 two tori, T, 
and T2, are constructed. T1 is essentially the torus of radius e with the limit 
cycle as center line. The other torus T2 is produced roughly by expanding C in 
another 3-space. If i is the identity map from the second 3-space onto the first 
one it is then shown that a certain set on T, which is related to the limiting 
behavior of S is just the image under i of a set on T2 about which it is fairly 
simple to get information. Section 4 is devoted to the study of limit sets on T2. 
Finally, in Section 5 the main theorem is proved which shows how a solution 
curve can behave if it approaches a limit cycle. 

2. Statement of the Problem 
In the following we shall study the differential equation 

(2.1) dX/dt = F(X) 

where X and F are 3-vectors and it is assumed that the components of F are 
analytic functions in the components of X. 

We assume that (2.1) admits a limit cycle, C, and a solution, S, which tends 
to the limit cycle in the following sense: For any fixed choice of the parameter t 
and any fixed e > 0 there exists T such that for t > T S(t) is within c of C. 

Near C it will be useful to adopt coordinates based on the limit-cycle itself. 
In this local system one coordinate, 0, runs along the limit cycle, while two others, 
y, and Y2, give the position relative to mutually perpendicular axes in the plane 
normal to the limit-cycle at the point specified by 0. That these coordinates 
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TRAJECTORIES WITH A LIMIT CYCLE 153 

exist and are in fact analytic seems well known. See for instance a forthcoming 
book by S. Lefschetz [3] or a paper by Diliberto and Hufford [4]. Specifically 
then we take the following lemma as known. 

LEMMA 2.1. There exist coordinates yi, Y2, and 0 valid in some neighborhood of 
C such that 

(a) y1, Y2, and 0 are analytic functions of the xi; 
(b) (YI, Y2, 0) and (y,, Y2, 0 + 1) correspond to the same point; 
(c) if p e C then yi(p) = 0, dyildt (p) = 0, and d0/dt (p) = 1; 
(d) if (2.1) transforms into the system 

dy~/dt Yi i = 1,2 
(2.2) dO/dt = 

then the right hand side of (2.2) consists of power series in yj and Y2 with coefficients 
which are periodic functions of 0. 

Remark: (c) and (d) together imply that (2.2) is of the following form: 

Fdyl/dt = Sk 1 Y1 

(203) dy2/dt = Ekl 2 

L dO/dt = 1 + ma "1 Di 
where Yk is a polynomial in yi and Y2 (combined powers of yj and Y2 equal to k) 
with coefficients which are periodic functions of 0, and where Di is a polynomial 
in yi and Y2 (combined powers of y, and Y2 equal to k) with coefficients which 
are periodic functions of 0. We next perform one more change in coordinates. 
Let 

0 = (Y2 + Y2). 

Let u be the unit vector (y1/o, Y2/o) and u, and u2 the components of u. We 
obtain the following: 

do/dt = 1/o {y1[Y Y + YNI1 + * . + Y2[Y2N + YNt' + * 
= 1/I {uj[NYr(Ul U2 0) + YN+ Y1V(U1 U2 0 0) + ] 

+ U [_NyN(U, u2 0) + aN +yN+ (U U2, 0) + ] . 

= Y2S-N 0TAs(ul , u2, 6) 

du -{(dyi/dt) - yi(do/dt) o(dy2/dt) - Y2(dh/dt)} 
dt ora2 ' a2 

= l/a {dyl/dt, dy2/dt} - didt 
(Y1 X2) Y1,Y 

= l/a{oa Y1(U U2 ) + a i2N (Uy X U2 0) + a. . 2 U2 ) 

+ aN+lyNY2+(Ul U2, 0) + .S.. } - -SN asAs(ui, U2, a) a U21 

= E?ff'_N asB(u, u2, 0) where B8 is a two-vector. 
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And finally the following system is obtained 
Fdo/dt = 1 + o 1&Di(ul, u2, O) 

(2.4) 8 do/dt = 1 acAa(ui , u2, 0) 

Ldu/dt = Lo a'Bs(ui, u2, 0) 
where the AS, B8, and Di are periodic in 0 and where any of the A', Bs, and 
Di may be identically zero. 

3. The Tori T1 and T2 
In introducing the coordinates yi, Y2, and a in Section 2 we could have also 

noted that for sufficiently small e the set, y2 + y2 e (a = e), is homeomorphic 
to a torus with C as center line. We shall denote this set with e fixed henceforth 
by T1 . S will be inside T1 for t 2 to for some to. We project the part of S corre- 
sponding to t 2 to onto T1 and denote it by P(S). Under P the point (Yi, Y2, 0) 
maps onto the point (eyl/ci, ey2/oc, 0). A point qeT1 is said to be in the limit set 
of P(S) if there exists a sequence {t. I t -+ co I and a sequence I en -E+ 0) 
such that P[S(t.)] is within en of q. We shall denote the limit set of P(S) by L. 
This limit set is of interest because it characterizes the limiting motions of the 
trajectory S near C. A direct study of L, however, is difficult since P(S) may 
cross itself on T1. For this reason the following artifice is introduced: 

Let E3 be the Euclidean 3-space containing C and T1. We now consider 
another Euclidean 3-space, E3, and two maps i and f from Ea into E3. i is 
just the identity map of Ea onto E3. i- maps C and T1 onto a closed curve and 
a torus in Ea respectively which we shall denote by C' and T2 (See Figure 1). 
In a neighborhood of C' we introduce coordinates 0', a', and u' which are defined 
as follows: 

If q is sufficiently near C in Ea 
M'(q) = 0(iq) 

at(q) = a(iq) 
u'(q) = u(iq). 

7- 
3 J~~~~~~E 

C~~g, 

C T1 

f1 

C 
FIG.1 
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The second map, f, is defined only in the neighborhood of C' which is covered 
by the 0' - a - u' coordinate system and for which o >_ e. If q belongs to this 
neighborhood f(q) is defined in the following way: 

OAf(q)] = @'(q) 

u[f(q)] = u'(q) 

o[f(q')] = af'(q) - c. 

We note that f maps T2 onto C and an open neighborhood of T2 analytically 
and homeomorphically onto an open neighborhood of C. Intuitively this corre- 
sponds to expanding C into the torus T2. f-' when applied to (2.4) in an open 
neighborhood of C excluding C itself induces a differential equation in an open 
neighborhood of T2 excluding T2 itself. We obtain 

F dO'/dt = 1 + E7=1 (a' - E)iDi(u, u', 0') 

(3.1) do'/d = E (7' - e)SA2(u u2, 0') 

Ldu'/dt = 1 (a7' - e)SB(ul up , 0'). 
It is clear that f'(S) will be a trajectory of (3.1) which tends to T2 . We shall 

denote this trajectory by S' and its limit set on T2 by L'. Specifically a point q 
of T2 belongs to L' if there exist sequences j t. I t-4o I and I E. l E - 0 such 
that S'(t.) is within E. of q. 

LEMMA 3.1. qEL' -#* iqEL. 
PROOF OF LEMMA 3.1. The lemma follows directly from the definitions of 

t, f, L, and L'. 

4. The Structure of L' 
In the previous section a motivation for the study of L' was provided. L' is 

just i-l of L and L in turn describes the limiting motions of S as it approaches 
C. In order to study L' we consider (3.1) on T2 itself. We obtain the following 
system on T2: 

d'/dt = 1 

(4.1) da'/dt = 0 

du'/dt = Bo(u., up, 0'). 

This system only admits entirely well behaved trajectories. L' is closely related 
to (4.1). We note the following Lemmas. 

LEMMA 4.1. L' is a compact connected subset of T2. L' consists of trajectories of 
(4.1) ((401) has no singular points). 

PROOF OF LEMMA 4.1. The claimed properties of L' are proved the same way 
in which they are proved for the limit set of a trajectory which is contained in 
the bounded part of the plane. See for instance [5]. 

LEMMA 4.2. Let A and B be disjoint open sets of T2. Suppose there exists a 
trajectory of (4.1) which is entirely contained in A n L' and a point which belongs 
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to B n L' then there exist points p and p' in (T2- A - B) such that the positive 
semi-characteristic through p and the negative semi-characteristic through p' remain 
in (T' - B) n L'. 

PROOF Or LEMMA 4.2. This lemma for the case where a solution curve ap- 
proaches a sphere rather than a torus is proved in the previously cited paper of 
Gomory [2]. The proof, there, makes use of none of the properties which dis- 
tinguish a sphere from a torus. Hence, no additional proof is required. 

We need an additional lemma which will say roughly that if Z is a limit cycle 
of (4.1) then solution curves of (3.1) sufficiently near T2 can only cross above Z 
in only one direction. To state this more precisely we need the following definition. 

DEFINrIION. If Z is a limit cycle of (4.1) the set B will be called a one sided 
6-barrier above Z #. 

(a) B is contained in the part of E' for which the a'- u'- ' coordinate 
system is valid and B is homeomorphic to the product of a circle with the closed 
unit interval [S1 X I]. 

(b) if g is the map of [Si X I] onto B and t and 4,6 are the natural coordinates 
on Si X I 

(1) g[(t, 0)l t = 0] is just Z 

(2) '1{g[(t, 46) I t > 0]) > E 
(i.e. the image of all points with t > 0 is outside T2) 

(3) a'{g[(t,2,6) 1 t = 1]) > e + 5. 

(c) trajectories of (3.1) can cross B only in one direction. 
DEFINITION. If B has properties (a) and (b) but trajectories of (3.1) can not 

cross B at all we shall speak of a complete 6-barrier above Z. 
LEMMA 4.3. There exists a b(Z)-barrier above every limit cycle of (4.1). 
PROOF OF LEMMA 4.3. Let p belong to Z and Q be the plane perpendicular to 

Z through p. Let A be a closed line segment in Q, outside T2, which starts at 
p and is perpendicular to T. [See Figure 2]. If A is sufficiently small all trajectories 
through points of A return to Q and the map which sends a point of A into the 
first intersection of the trajectory through this point with Q is analytic. We 

Case I Case II 

A nA' 
2FIG.r 

A 
FIG. 2 FIG. 3 
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shall denote this map by h and the image under h of A by A'. Since the map h 
is analytic we only have to consider two possible cases: 

CASE I. A' coincides with A in some neighborhood of p. 
CASE II. A and A' have at most a finite number of intersection points. [See 

Figure 3]. In Case I there exists a point r of A such that the arcs [pr] of A and 
[ph(r)] of A' belong to the neighborhood of pi which A and A' coincide. The 
closed arc [rh(r)] on C+ (the positive semi-characteristic through r) is at a finite 
distance 5 > 0 from T2. The band of solutions starting on the closed arc [pr] 
of A and ending on the closed arc [ph(r)] of A thus form a complete 5-barrier 
above Z. 

In Case II let r be a point of A which precedes the first intersection point of 
A and A' on A. It is clear that r can be chosen in such a way that in addition 
h(r) precedes the first intersection point of A and A' on A'. Again the arc [rh(r)] 
on C: is at a finite distance 5 > 0 from T2 . The band of trajectories starting on. 
the closed arc [pr] of A and ending on the closed arc [ph(r)] of A' can be closed 
by the part of the plane Q which is bounded by the arc [pr] of A, the arc [ph(r)] 
of A', and the straight line segment rh(r). It is clear that for r sufficiently close 
to p trajectories can cross this band only in one direction. Thus a one-sided 
5-barrier has been constructed above Z. 

REMARK. For every limit cycle, Z, of (4.1) there exists thus a 5(Z)-barrier. 
Since S' tends to T2 there exists to(Z) such that S' remains within 5(Z) of T2 for 
t > to. We shall say that S' crosses over Z if S' crosses the barrier above Z at 
a time greater than or equal to to(Z). 

REMARK ON ANALYTICITY. While Lemmas 4.1 and 4.2 are also true for non- 
analytic systems provided only the right hand side of the differential equation 
is differentiable a sufficient number of times, Lemma 4.3 rests strongly on the 
analytic nature of our problem. If the system would not be analytic the map h 
would not be analytic which fact, of course, invalidates the whole proof. 

5. The Structure of L and L' 
We are now in a position to analyze the various possible structures of L' and 

thus draw conclusions about the nature of L. 
CASE A: Bo 0: (For the definition of Bo we refer to equation (3.1).) 
We note that Bo is always zero if Yl y2 0 0 (see equation (2.4)) and may 

equal zero in some of the other cases. 
It follows from (4.1) that if Bo 0 the trajectories on T2 are just the closed 

curves u' UOo. By connectedness L', then, consists either of a single closed 
curve, or a band of closed curves, or the whole torus. It is interesting that our 
analysis up to this point is valid even for non-analytic systems which admit a 
sufficient number of continuous derivatives. But if the system is analytic it is 
possible to go even further and rule out the case of a band of closed curves. 

LEMMA 5.1. L' can not consist of a band of closed curve solutions of the form 
u = UO. 

PROOF OF LEMMA 5.1. Suppose L' consists of a band of closed curves but is 
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not all of T2. Let Z1 be a closed curve in the interior of the band and Z2 be a 
closed curve in the exterior. Let B1 and B2 be the 5-barriers above Z1 and Z2 
respectively. Furthermore let B1 be a 61-barrier and B2 a 52-barrier. Then if R 
is the region e ? a < min [61, 52] R is cut into two sub-regions Al and A2 by 
B1 u B2. Since Z2 is not in L' there exists to such that C(t) does not cut B2 for 
t _ to . Hence for t greater than some to C(t) is always in R - B2 . Since there 
are points of L' in both A, and A2 C(t) must be able to go from Al to A2 and 
from A2 to A, . But since B1 is a one-sided barrier this is impossible. This contra- 
diction establishes the lemma. 

We can now use Lemma 3.1 to translate the above analysis for L' into a result 
for L and obtain the following theorem. 

THEOREM I. In Case A L' is either a single closed curve or the whole torus T2. 
Hence in Case A, S approaches C in one of two ways: either S has a single limiting 
direction in every surface of section of C or every direction in every surface of section 
is a limiting direction for S. 

CASE B: Bo # 0. The rotation number of (4.1) is irrational. 
In this case if p is any point of T2 the whole torus belongs to the positive 

limit set of the trajectory through p. It is easy enough to see that if p belongs 
to L' the positive limit set of the trajectory through p also belongs to L'. We 
again use Lemma 3.1 to relate L to L' and obtain the following theorem. 

THEOREM II. In Case B the whole torus T2 belongs to L'. Hence in Case B every 
direction in every surface of section of C is a limiting direction of S. 

CASE C: B, = 0. The rotation number of (4.1) is rational. In addition (4.1) 
admits an infinity of closed curve solutions. 

In this case by analyticity all solutions are closed curves and we have the 
same situation as in Case A. Hence we obtain Theorem III. 

THEOREM III. In Case C L' consists either of a single closed curve trajectory or 
of the whole torus. Hence S approaches C in either of two ways: Either S has a 
finite number of limiting directions in every surface of section of C (the same number 
in every section) or every direction in every surface of section is a limiting direction. 

CASE D: Bo = 0. The rotation number of 4.1 is rational. 4.1 only admits a finite 
number of limit cycles. At least one of the limit cycles is stable or unstable. 

We shall show that if (4.1) admits a single stable or unstable limit cycle L' 
consists of exactly one closed trajectory. 

LEMMA 5.2. If Z is a stable or unstable limit cycle of L' then Z = L'. 
PROOF OF LEMMA 5.2. Suppose there exists a point p belonging to the compli- 

ment of Z in L'. We assume that Z is stable. Then there exists an open neighbor- 
hood 0 of Z such that no negative trajectory through a point of 0 - Z remains 
in 0. 

Let F be a closed set such that 

(a) IZI cFcO 

(b) p e FC (the complement of F on T2). 
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Finally let U be an open set such that IZ) c U c F c 0. Then U and FC are 
disjoint open sets. U contains a complete trajectory of L'. Fi contains p e L'. 
Hence by Lemma 4.2 there exists p' e L' in I T2- U - f c) c 0 such that the 
negative semi-characteristic through p' remains in IT2 -FC c 0. This is a 
contradiction. 

LEMMA 5.3. Z1 and Z2 are two limit cycles of (4.1) on T2 which belong to L'. If 
B1,2 and C1,2 are the two components of I T2 - Z- Z21 there exist points of L' in 
both B1,2 and C1.2 . 

PROOF OF LEMMA 5.3. Suppose Lemma 5.3 is false. Say C1,2 n L' is empty. 
We shall assume that Z1 is stable on the B1,2-side (the converse case is handled 
identically). Then, there exists an open neighborhood 0 of Z1 such that every 
negative trajectory through a point of 0 n B1,2 leaves 0 n B1,2. Let F be a closed 
set such that 

(a) JZ1I CFCO 

(b) IZ2) C F' (compliment of F on T2). 

Finally let U be an open set such that IZ1I C U c F c 0. Then U and F 
are open sets of T2. U contains a complete trajectory of L'; Fc contains a point 
of L'. Hence by Lemma 4.2 there exists a point p' e IT2 - U - FPI C 0 such 
that the negative semi-characteristic through p' remains in T2 - P I n L'. 
Since p' e 0 n L' p' e B1,2 n 0, for by hypothesis C1,2 contains no points of L'. 
On the other hand since the negative semi-characteristic through p' remains in 
{ T2 - F?} it remains in B1,2 n 0. This is a contradiction in view of the way 0 
was chosen. 

LEMMA 5.4. If L' contains at least two limit cycles of (4.1) on T2, say Z1 and 
Z2, and if Z is any other limit cycle of (4.1) on T2 hen Z belongs to L'. 

PROOF OF LEMMA 5.4 Suppose Z does not belong to L'. Let B1.2 and C1,2 have 
the same meaning as in the preceding Lemma. We assume that Z C B1,2. By 
Lemma 5.3 there exists a point, p, of L' in B1,2. p is either between Z and Z, 
or between Z and Z2. In either case it is not possible for both semi-characteris- 
tics through p to tend to the set Z1 I u IZ2 j. Hence there exists a third limit 
cycle- of (4.1) which belongs to L', say Z3. Z3 divides B1,2 into B1,3 and B2,,. 
Z lies in B1,3 or B2,3. Let us assume B1,3. Hence repeating the argument there 
is a Z4 in B1,s belonging to L'. By repeating we can produce an infinity of limit 
cycles which is a contradiction. Hence Z must belong to L'. 

We are now in a position to prove that in Case, D, where there exists a stable 
or unstable limit cycle of (4.1), L' consists of a single limit cycle. If L' contains 
several limit cycles then by Lemma 5.4 it contains all the limit cycles on T2. 
By hypothesis in Case D this includes a stable or an unstable limit cycle. But 
then by Lemma 5.2 L' consists of exactly one limit cycle. Suppose some other 
trajectory, not a limit cycle belonged to L'. Then the limit set of this trajectory 
would also belong to L'. But since there are several limit cycles of (4.1) on T2 
all deformable into each other the limit set of a trajectory which is not a limit 
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cycle consists of two limit cycles. Since we assumed L' contained only one 
limit cycle it follows that L' can not contain any trajectories which are not 
limit cycles. So L' again consists of a single limit cycle. The following theorem 
follows. 

THEOREM IV. In Case D L' consists of exactly one limit cycle; hence in Case D 
S approaches a finite number of limiting directions in every surface of section of C 
(the number is independent of the section). 

CASE E: (The Exceptional Case) Bo 9 0. The rotation number of (4.1) on T2 is 
rational. The limit set of 4.1 on T2 consist8 of a finite number of limit cycles none 
of which is stable or unstable. 

It follows from Lemma 5.4 that L' either contains all the limit cycles of (4.1) 
on T2 or consists of a single limit cycle only. 

Suppose there are several limit cycles of (4.1) on T2 and they all belong to 
L'. If Z1 and Z2 are two successive limit cycles the trajectories of (4.1) through 
points between Z1 and Z2 tend in one direction to Z1 and in the other direction 
to Z2 . Then by Lemma 5.3 at least one of the points and hence one of the tra- 
jectories between Z1 and Z2 belongs to L'. In line with the previous results it 
would have been desirable to show that if L' consists of more than one closed 
curve solution all of T2 and in paiticular all points between Z1 and Z2 belongs 
to L'. But there seems to be no reason why an open set between Z1 and Z2 may 
not be outside L'. 

There remains a rather special subcase of Case E, where the limit set of (4.1) 
consists of a single stable-unstable limit cycle. Then this limit cycle certainly 
belongs to L'. But again there may be some other trajectories which belong to 
L' without all of T2 being contained in L'. Theorem V follows. 

THEOREM V. In Case E, L' either consists of a single closed curve trajectory or 
of the whole torus T2 or of all the limit cycles of (4.1) together with at least one spi- 
raling trajectory between any two limit cycles. Hence in Case E three possibilities 
arise for the behavior of S near C: 

(a) S tends to a limiting direction in every surface of section of C. 
(b) Every direction in every surface of section of C is a limiting direction. 
(c) In each surface of section of C there are an infinite number of directions 

which are limit directions of S and an infinite number of directions which are not 
limit directions of S. 

The results of Theorems I-V can be summarized in the following fashion. 
THEOREM VI. Suppose we are given the differential equation dX/dt = F(X) 

where F and X are 3-vectors and where the components of the right hand side are 
analytic functions of the components of X. Suppose in addition that this system 
admits a limit cycle C and a trajectory S which tends towards this limit cycle. Then 
except for an exceptional case (See below) S approaches C in one of two ways: 
Either S has a fixed finite number of limiting directions in every surface of section 
of C or every direction in every surface of section of C is a limit direction of S. 

The exceptional case is the case where Bo p 0 (See equation (2.4)), the rota- 
tion number of (4.1) is rational, and where in addition to these two conditions 
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the limit set of (4.1) on T2 consists of a finite number of closed curve trajec- 
tories all of which are semi-stable. A closer description of this case was con- 
tained in the discussion of Case E above. 

PRINCETON UNIVERSITY 

BIBLIOGRAPHY 

1. BIRKHOFF, G. D., Surface Transformations and Their Dynamical Applications, Collected 
Mathematical Papers, Vol. II, pp. 111-229. 

2. GOMORY, R. E., Trajectories tending to a critical point in 3-space, Ann. of Math., vol. 61 
(1955) pp. 140-153. 

3. LEFSCHETZ, S., Differential Equations, To appear. 
4. DILIBERTO, S. P. and HUFFORD, G., Perturbations Theorems for Non-Linear Ordinary 

Differential Equations, Contributions to Nonlinear Oscillations III. To appear. 
5. LEFSCHETZ, S., Lectures on Differential Equations, Princeton University Press, 1946. 


	Article Contents
	p. 152
	p. 153
	p. 154
	p. 155
	p. 156
	p. 157
	p. 158
	p. 159
	p. 160
	p. 161

	Issue Table of Contents
	The Annals of Mathematics, Second Series, Vol. 62, No. 1 (Jul., 1955), pp. 1-197
	Front Matter [pp. ]
	On the Characters of Finite Groups [pp. 1-7]
	Generic Splitting Fields of Central Simple Algebras [pp. 8-43]
	Self-Adjoint Groups [pp. 44-55]
	Integrals of the Second Kind on an Algebraic Variety [pp. 56-91]
	Abelian Varieties over P-Adic Ground Fields
[pp. 92-119]
	Sur L'Immersion des Variétés Algébriques
[pp. 120-127]
	A New Form of the General Relativistic Field Equations [pp. 128-138]
	Holonomy of Flat Affinely Connected Manifolds [pp. 139-151]
	A Study of Trajectories which Tend to a Limit Cycle in These-Space [pp. 152-161]
	Partial Ordering in the Theory of Martingales [pp. 162-169]
	Reduced Product Spaces [pp. 170-197]
	Back Matter [pp. ]



