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The group problem on the unit interval is developed, with and without continuous variables. 
The connection with cutting planes, or valid inequalities, is reviewed. Certain desirable proper- 
ties of valid inequalities, such as minimality and extremality are developed, and the connection 
between valid inequalities for P(I, u 0) and P+(I, u 0) is developed. A class of functions is shown 
to give extreme valid inequalities for P+ (I, u0) and for certain subsets UofI. A method is used 
to generate such functions. These functions give faces of certain corner polyhedra. Other func- 
tions.which do not immediately give extreme valid inequalities are altered to construct a class of 
faces for certain corner polyhedra. This class of faces grows exponentially as the size of the 
group grows. 

1. Review of  the problems 

This paper follows a previous paper [4] but will be self-contained 
except for proofs of  some theorems from [4].  

1.1. The problems P(U, u0) and P+(U, u0) 

Let I be the group formed by the real numbers on the interval [0, 1 ] 
with addition modulo 1. Let U be a subset of  I and let t be an integer- 
valued function on U such that (i) t(u) >_ 0 for all u ~ U, and (ii) t has a 
finite support, that is t ( u ) >  0 only for a finite subset U t of  U.  

We say that the function t is a solution to the problem P(U, u 0), for 
u o ~ /~  {0~, if 

u t ( u ) = u  o . (1.1) 
u ~ U  
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Here, o f  course, addition and multiplication are taken modulo  I. Let 
T(U, u o ) denote the set of  all such solutions t to P(U, u0). 

Correspondingly, the problem P+_(U, u0) has solutions t' = (t, s +, s - )  
satisfying 

u t ( u )  + Y ( s  + )  - 7 ( s - )  = u o , 
u ~ U  

(1.2) 

where t is, as before, a non-negative integer valued function on U with a 
finite support, where s ÷, s -  are non-negative real numbers, and where 
5r(x) denotes the element of  I given by taking the fractional part of  a 
real number x. Let T+_(U, u0) denote the set of  solutions t' = (t, s ÷, s - )  
to P+(U, u0). 

The notation u ~ I will mean that u is a member of  the group I so 
that arithmetic is always modulo 1. If we want to consider u as a point  
on the real line with real arithmetic, we will write [ul. Thus, lul and 
9r(x) are mappings in opposite directions between I and the reals and, 
in fact, 5r(lui) = u but  x and lY(x)l may differ by an integer. 

1.2. Inequalities 

1.2.1. Valid inequalities 
For any problem P(U, u0), we have so far defined the solution set 

T(U, uo). A valid inequality for the problem P(U, u0) is a real-valued 
function lr defined for all u ~ I such that 

and 
r r (0)=0,  n(u)>_0, u ~ I ,  (1.3) 

rr(u) t(u)>_ 1, t 6  T(U,u o). (1.4) 
u ~ U  

For the problem P+(U, u0) , rr' = (rr, rr +, 7r- ) is a valid inequality for 
P+__ (U, u o) when ~r is a real-valued funct ion  on I satisfying ( 1.3), and rr + , 
n -  are non-negative real numbers such that 

rr(u) t(u)+rr+s+ +rr-s-  >_ l , t'~T+_(U, uo).  (1.5) 
u E U  

A valid inequality (rr, rr +, rr- ) for P+_ (I, u o) can be used to give a valid 
inequality for P(U, u o) or P+_ (U, Uo) for any subset U o f / .  For example, 
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ETr(u) t(u) >_ 1 is clearly true for any t ~ T(U, u o) since that t can be 
extended to a function t' belonging to T(I, u o) by letting t'(u) = 0 for 
u ~/~U. Thus, the problem P+_(L u0) acts as a master problem forall  
cyclic group problems in the same way that the master problem in [3] 
was a group problem with all group elements present. This fact is the 
main reason for studying the case U =  I in such detail in Section 2. 
However, the next two properties of valid inequalities do not necessarily 
carry over to subsets U of I. 

1.2.2. Minimal valid inequalities 
A valid inequality lr for P(U, u 0) is a minimal valid inequality for 

P(U, u0) if there is no other valid inequality p for P(U, u 0) satisfying 
p(u) < ~r(U), where p(U) < lr(U) is defined to mean p(u) <_ 7r(u) for all 
u 6 U and p(u) < it(u) for at least one u 6 U. A valid inequality ~" for 
P+_(U, u 0) is a minimal valid inequality for P+(U, u0) if there is no 
other valid inequality p' for P+_ (U, u0) satisfying p'(U) < 7r'(U), where 
p',(U) < rr(U) is defined to mean 

p+<_Tr ÷ ,  p - < _ T r - ,  p(u)<_Tr(u), u ~ U ,  

with strict inequality holding for at least one of the above inequalities. 
The minimal valid inequalities are important  because a valid inequa- 

lity which is not  minimal is implied by some other valid inequality. 
Note that we have scaled the inequalities to have a right-hand side 
equal to one, and minimality is always with respect to that scaling. 

1.2.3. Extreme valid inequalities 
A valid inequality 7r for P(U, u 0) is an extreme valid inequality for 

P(U, u 0) if 7r can not be written as 7r = ½p + ½o for p v~ o, where P, o are 
valid inequalities for P(U, u 0). 

A valid inequality 7r'= (lr, 7r +, 7r-) for P+_ (U, u0) is an extreme valid 
inequality for P+_ (U, u 0) if 7r' cannot be written as 7r' = ~p+½o'l for 
p' 4: a', where p', a'  are valid inequalities for P+(U, u0). 

Theorem 1.1 [4, Theorem 1. ! ]. The extreme valid inequalities are 
minimal valid inequalities. 

These inequalities are in some sense "the best" possible since they 
cannot be derived from any other valid inequalities. 
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1.2.4. Subadditive valid inequalities 
A valid inequality rr for P(U, u o) is a subadditive valid inequality for 

P(U, u 0) if 

rr(u) + lr(v) >_ rr(u + v) whenever u, v, u + v ~ U.  (1.6) 

For a valid inequality rr' for P+__ (U, Uo) to be subadditive, we require, 
in addition to (6), 

~(u)+Tr+lv-ul>_Tr(v) wheneveru,  v ~ U a n d l u l <  Ivl, (1.7) 

l r (u)+Tr- lu-v l>_Tr(v)  wheneveru,  v ~ U a n d  lu l>  Ivl. (1.8) 

Theorem 1.2 [4, Theorem 1.2]. The minimal valid inequalities are 
subadditive valid inequalities. 

Thus Theorems 1.1 and 1.2 prove the following sequence of inclu- 
sions: The set of  valid inequalities include the subadditive valid inequa- 
lities which include minimal valid inequalities which include extreme 
valid inequalities. The subadditive valid inequalities form a convex set 
contained in the larger convex set of  valid inequalities. 

Theorem 1.3 [4, Theorem 1.3]. I f  Tr (or lr') is extreme among the sub- 
additive valid inequalities for  P(U, u 0) (or P+_(U, Uo)), that is, lr (or It') 
is no t the midpoint  o f  any two different subadditive valid in equalities, 
and i f  lr (or lr') is also a minimal valid inequality, then it is an extreme 
valid inequality. 

Thus Theorem 1.3 says that the extreme points of  the set of  subad- 
ditive valid inequalities include all the extreme valid inequalities. Fur- 
ther. among the extreme subadditive valid inequalities those which are 
extreme valid inequalities are the minimal ones. This fact allows us to 
actually find the extreme valid inequalities for some problems. 

1.3. Subadditivity for  subgroups U 

The problems for which we can find extreme valid inequalities are 
P(U, u o) or P+_ (U, u o) where U isa  nonempty  subgroup of I. We permit 
U = I and note that 0 is always in U. We will say that a function lr de- 
fined on I is subadditive on a Subgroup U o f / i f  
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I t ( 0 ) = 0 ,  ~r(u)>_0,  u ~ I ,  
~(u) + 7r(v) > ~r(u + v) ,  u, v ~ U.  

The funct ion 7r is not  assumed to be a valid inequality. 

Theorem 1.4 [4, Theorem 1.5]. I f  ~r is a subadditive function on a 
subgroup U o f  I and i f  Tr(Uo) >- 1 for  some u o ~ U, u o4= O, then rr 
is a valid inequality for  P(U, Uo). In fact, the subadditive valid inequa- 
lities for  P(U, u o) are precisely the subadditive functions 7r satisfying 
7r(u o) >- 1. Furthermore, i f  7r is a subadditive function on U and 
~r(Uo) > O for  some u 0 ~ U, then 7r* defined by 

u*(u) = ~(u)/~(Uo), u ~ I ,  (1.9) 

is a valid inequality for  P(U, u o). 

Thus Theorem 1.4 establishes the close connect ion between subad- 
ditive funct ions on U and valid inequalities. 

The analogous theorem for P+ (U, u 0 ) will now be developed. Define 
rr' --- Or, rr + , lr- ) to be an extended subadditive function on a subgroup 
U o f  I if ~r is subadditive on U and if, in addition, 

rr+ [ul >_ rr(u), u ~  U ,  (1.10) 

r r - lu l>_Tr ( -u ) ,  - u ~ U .  (1.11) 

Theorem 1.5 [4, Theorem 1.5']. I f  ~r' is an extended subadditive 
function on a subgroup U o f  L i f  u o ~ L u o ~ O, and i f  both o f  the 
following hold: 

i r ( u ) + r r + l u 0 - u l > _  1 w h e n e v e r u ~ U a n d l u l  <- lu0l ,  (1.12) 

7 r (u )+Tr- lu -u0 l>__  1 w h e n e v e r u ~ U a n d l u [  <- lu0i .  (1.13) 

then lr' is a valid inequality for  P+ (U, u o ). In fact, the subadditive valid 
inequalities are precisely the extended subadditive functions which 
satisfy (1.12) and (1.13). 
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1.4. Minimality for  subgroups U 

Theorem 1.6 [4, Theorem 1.6]. I f  U is a subgroup o f  I with u o ~ U 
and i f  ~r is a valid inequality for  P(U, u0), then lr is a minimal valid in- 
equality i f  and only i f  

7r(u)+rr(u o - u ) =  1, u ~ U .  (1.14) 

This condition imposes a peculiar symmetry  on rr so that rr(u) for 
½u 0 < u < u 0 is determined by rr(u) on [0, ½u0] , for example. 

1.5. The problem P(Gn, Uo) , u o ~ G n 

Let G n denote the subset 

- -  - -  , o .  Gn= O' n ' n '  ' n 

of  I. The elements of G n will be denoted gi = 5r(i/n) • Each set  G n for 
n >_ 1 is a subgroup of  I. By virtue of G n being a subgroup, the results 
of  Sections 1.3 and 1.4 apply to the present section. 

The results from Sections 1.3 and 1.4 are specialized in the following 
theorem: 

Theorem 1.7 [4, Theorem 2.2]. The extreme valid inequalities for  
P(Gn, Uo) , u 0 E Gn, are the extreme points o f  the solutions to 

rr(O) = O, rr(&) >_ O, 

rr(g i) + rr(gj) >_ rr(g i + gj) , 

rr(u o) >- 1 ,  

(1.15) 

(1.16) 

(1.17) 

which satisfy the additional equations 

7r(gi)  + l r ( u o  - -  g i )  = 1 , g i  e G n . (1.18) 

In particular, (1.18) implies rr(u o) = 1 since ~r(O) = O. 

1.6. Theprob lem P+_(G n, u0), u o e l  

The condition (1.2) now becomes 
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gl t(gl ) + "'" + gn-1 t(gn-1 ) + fir(s+) - fir(s- ) = u 0 , 

where gi = Sr(i/n) as before and where the t(g i) must be nonnegative in- 
tegers and s +, s -  must be nonnegative real values. We no longer confine 
u 0 to be in G n . Let L(u o) and R ( u  o) denote the points of  G n immedia- 
tely to the left and to the right of  u 0, respectively. If  u o happens to be 
in Gn, then L(uo)  = R ( u o )  = u o. 

Theorem 1.8 [4, Theorem 2.2'1. The ex treme valid inequalities lr' for  
P+-(Gn, Uo), uo ~ L are the ex treme points  o f  the solutions to the sys- 
tem o f  linear equations and inequalities (1.15) and (1.16) and all o f  the 
fol lowing: 

zr+(1/n) >- "t/'(gl ) ,  gl  -- c"J'(1/n) , 

7r- ( 1 /n )  ~ 7r(gn_ 1 ) ,  gn-1  = f i r ( (n-  1 ) / n ) .  

~(L(uo))  + ~+lu o - L(uo)l  = 1 , 

7r(R(uo) ) +Tr- IR(Uo) - uol = 1, 

7r(gl) + 7r (L(uo)  - gi)  = 7 r (L (uo ) )  , gi ~ Gn , 
or (1.22) 

fr(gi) + l r ( R ( u o )  - g~) = l r ( R ( U o ) )  , gi ~ Gn " 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

1.7. Valid inequalities for  P(U, Uo) 

We now connect the results about  P(Gn, u 0) with the general problem 
P(U, u0). Here, U-can be any subset of  the unit interval, including the 
interval I itself. 

Theorem 1.9 [4, Theorem 3.1 ]. L e t  1r be a subadditive func t ion  on 
G n. Define 

7r(u) = n ( l u - L ( u ) l  zr(R(u)) + I R ( u ) - u l  7r(L(u)) , u E I~G n . 

(1.23) 

Then 7r is a subadditive func t ion  on L and 7r* def ined on I by 

r * ( u )  = T r ( u ) / ~ ( u o )  , u ~ I , 

is a valid inequality for  any P(U, u o ), U a subset  o f  L provided 7r(u o ) > O. 
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Thus Theorem 1.9 says that valid inequalities can be obtained simply 
by connecting the points (gn, ~r(gn )) by straight line segments. 

1.8. Valid inequalities for  P+ (U, u o ) 

From valid inequalities for P+__ (Gn, u 0), a different method for gene- 
rating valid inequalities for P+__ (U, Uo) is available. This method will be 
referred to as the two-slope fill-in: 

Theorem 1.10 [4, Theorem 3.3]. L e t  lr' = Or, 7r +, r r-)  be an ex tended  
subadditive func t ion  on G n. Define 7r(u) for  u c I \ G  n by 

7r(u) = min(rc(L(u)) + 7r + lu - L(u) l ,  7r(R(u)) + lr- IR(u) - ul} . 

(1.24) 

Then 7r' is an ex tended  subadditive func t ion  on I, and p' def ined by 

p' = (~, ~+, ~ -  )/~r(u o) 

is a valid inequality for  P+(U, u0) provided rr(Uo) > O. 

Theorem 1.8 shows how to compute faces for P+_ (Gn, Uo) and Theo- 
rem 1.10 shows how to use them to generate valid inequalities for any 
U. Table 2 of  [4] was obtained using Theorem 1.8, and we will fre- 
quently refer to the two-slope fill-in of those faces. 

2. The problems P(L Uo ) and P+_ (I; u o ) 

2.1. Problem definit ions 

Let the set U now be the entire interval I. The problem P(/, u o) in- 
volves the congruence 

u t(u) = u o , (2.1) 
u E I  

and P+_ (L u0) has the constraint 

u t(u) + 7 ( s  +) - 8r(s - ) = u o , (2.2) 
u ~ I  
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where t is a non-negative integer valued function on I having finite 
support. 

The present section intends to reveal something about the extreme 
valid inequalities for those problems. Such information could be useful 
in dealing with problems involving subsets of  I. The relation to P(U, u o) 
is the same as the relation between the master polyhedra and the corner 
polyhedra corresponding to subsets of  a group [3 ] .  Here, every finite 
cyclic group G n is a subset of  I. In particular, if rr is a valid inequality 
for P(I, Uo) , then trivially rr is also a valid inequality for P(U, Uo) for 
every subset U of  I, including all cyclic groups U-- G n or subset U of  
G n . Furthermore,  if rr' is a valid inequality for P+_ (/, u 0), then lr is a 
valid inequality for P(U, u0) , (rr, rr +) is a valid inequality for P+(U, u0) , 
(~r, rr- ) is a valid inequality for P_ (U, uo),  and rr' = (rr, lr +, 7r- ) is a valid 
inequality for P+_ (U, u o ) for any subset U of  I. 

The property of  being a valid inequality is hereditary, that is, if rr is a 
valid inequality for P(& u 0), then it is also valid for any P(S', u o) with 
S' c S. Subadditivity for a valid inequality is also hereditary. However, 
minimality and extremeness are no t  hereditary properties. That is, rr can 
be a minimal or extreme valid inequality for P(U, Uo) and still not be 
for P(U', Uo) with U' c U. 

2.2. Propert ies  and relations be tween  P(I, u o ) and  P+_ (L u o ) 

Proper ty  2.1. I f  7r' = (Tr, rr + , 7r- ) is a valid inequali ty  f o r  P+_ (I, u o), 
then 7r is a valid inequali ty  f o r  P(I, Uo). 

P r o o f  i f  rr is not  a valid inequality for P(/, u 0), then there is a t satis- 
fying (1) with Err(u) t (u)  < 1. Clearly (t, 0, 0) solves (2.2) as well, con- 
tradicting rr' being a valid inequality for P+_ (I, u 0 ), and completing the 
proof. 

Recall that we define lul as the real number corresponding to u ~ I. 
We can then define right and left limits, 

lim , lim , 
u ~ u  0 u t u  0 

as the point [ul approaches lu01 on the real line from the right ( lu l>  
lu 0 I) or from the left (lul < [u 0 I), respectively. 
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Property 2.2. I f  zr is a valid inequality for  P(I, Uo) and i f  

l + = lim rr(u)/lul , l -  = lira {zr(u)/(1 - lul)) 
u~O u ~ l  

both exist  ( that  is, i f  zr has right and lef t  "derivatives" at 0 and 1, res- 
pect ively) ,  then rr '=(rr ,  l+ , l  - )  is a valid inequality for  P+_(I, uo). 

Proo f  Suppose t' = (t, s +, s -  ) solves (2.2) but  

7r(u)  t ( u )  + I + s + + l -  s -  = 1 - e ,  e > 0 .  

u ~ I  

We can assume that  only  one o f  s ÷, s -  is positive, say s + > 0 and s -  = O, 
since otherwise bo th  s ÷ and s -  could be reduced unti l  one reaches zero. 
Choose an integer M large enough that  

l + - 7r(CY(s+/M)) I <  e__ 

I s +/m s + 

which can be done since I + exists. Let  

t(u) u 4= s+/M,  
tl  (U) = t(u) + M , u = s+ /M . 

Clearly t 1 satisfies (2.1) since t' satisfied (2.2). But  

"~ ~r(u) q (u) = ~ 7r(u) t(u) + M 7r(s+/m) 
u ~ I  u ~ I  

< r r (u)  t ( u )  + l + s + + e = 1 ,  

u ~ I  

contradict ing ~r being a valid inequal i ty  for P(/, u 0). 

L e m m a  2.3. I f  zr is a subadditive func t ion  on I and i f  

then 

l imsup {rr(u)/lul} = ~ < oo , 
u~O 

lira (rr(u)/ lul) = (3. 
u~O 
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Proof. I f  the limit does  no t  exist, then 

l iminf (rr(u)/iul} 4= fl , 
u~0  

that  is, there  are points  v arbitrarily close to 0 wi th  7r(v)/Ivl <_ a < 13. 
By the l imsup being/3, there are also points  u arbitrari ly close to 0 with 
rr(u)/lul > a. Choose  any such u and choose  0 < v < u with rr(v)/Ivl <_ 

< 13. Then lui can be wr i t ten  as an integer mult iple  o f  Ivr and a re- 
mainder  

luf = [u/vJ I v l + 7 ( u ) ,  0 < - 7 ( u ) <  Ivl. 

Since rr is subaddi t ive  on I, 

zr(u) <_ ~(ku/vA v) + 7r(7(u)) <- ku/vJ 7r(v) + 7r(~,(u)). 

Hence,  by  w(v)/ivl <_ a , 

7r(u) <_ tu/vJ ~Jvl + rr(~,(u)) <_ ~lul + ~r(v(u)). 

Since the l imsup exists, 

~(~(u)) <_ (~ + 8) I~(u)J <_ (~ + 8) fvl 

for  some 6 > 0, provided  v is small enough.  Hence  

7r(u) <_ ~lul  + (13 + 8 ) I v i ,  

and as v--, 0, we have 7r(u)/lul <_ a, a cont rad ic t ion  to rr(u)/lul > ~. 
Thus the l emma is proven.  

Clearly, we have the same p rope r ty  for  limsup{rr(u)/(1 - lul): u t 1} 
and lim{rr(u)/(1 - lul): u 1' 1}. 

L e m m a  2.4. I f  Tr is a subadditive func t ion  on I and i f  

lim {rr(u)/lul) = t3, 
u ; 0  

then 
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limsup ((7r(u) - 7 r ( o ) ) / ( l u l -  Ivl)} ~ /3  
u¢o 

f o r  any o E L 

P r o o f  By subaddit ivi ty,  rr(u) <_ 7r(v) + rr(u - v). By/3 = lim(rr(u)/lul: 
u ,~ 0} for any  e > 0, there is a 6 > 0 such tha t  

~(u - v) ~ (/3 + e) (lul - Iol) 

for l u l >  Ivl and l u l -  Iv l~  6. For  such u, v E I ,  

o r  

~(u) <_ ~(v) + (¢~ + e) (lul - Ivl) ,  

(~(u) - ~(o))/(lul  - Iol) ~ /3  + e .  

The lemma is thus proven. 

Clearly a similar s ta tement  holds for lim(cr(u)/(1 - l u l ) :  u t 1} and 

limsup { ( r r (u ) -  r r (v ) ) / ( Iv l -  lul): u t' v}.  

Property  2.5. I f  7r'= (lr, 7r + , 7r-) is a min imal  valid inequal i ty  fo r  

P+_(L u0), then 

rr + = lim {Tr(u)/ lul) ,  rr- = lim {Tr(u)/(1 - lul)} 
u*O u t l  

P r o o f  By subaddit ivi ty o f  zr', lr(U) <_ ~r + lu [, so 

limsup (Tr(u)/lu l} <_ rr + . 
u*O 

Then L e m m a  2.3 implies that  lim{rr(u)/lul: u J, 0} exists and is less than  
or equa l  to lr +. Similarly, lim(rr(u)/(1 - lul): u t 1) exists and is less 
than  or equal to ~r-. I f  ei ther the limit is less than  rr + or rr- ,  respectively, 
then  Proper ty  2.2 implies that  7r' is no t  a minimal  valid inequal i ty ,  and 
the p roof  is complete.  

Property  2.6. I f  zr is a subaddit ive f unc t ion  on I and  i f  i t(u) -+ 0 as 
u ~ 0 and 7r(u) -+ 0 as u ~ 1, then zr is con t inuous  at every u ~ I. 
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Proof  For  any u E L 

o r  

~r(u + 6) - 7r(6) < 7r(u) < rr(u + 6) + 7 r ( -5 ) ,  

-1r(6) <_ 7r(u) - rr(u + 6) < r r ( - 6 ) .  

As 6 + 0, we have - 6  t 1 (since 6 is a group e lement  and - 6  = 1 - 6), 
and u + 6 + u. Therefore,  rr(u + 6) -+ rr(u) as u + 5+  u. Now, lett ing 
6 t  1 gives - 6 + 0  and u + 6 t u ,  so t h a t r r ( u + 6 ) - , r r ( u ) a s u + 6 t u .  

Theorem 1.6 applies here, since I is trivially a subgroup of  itself, and 
says tha t  a valid inequal i ty  7r for P(I, u 0) is minimal  if  and only  i f  
rr(u) + rr(u 0 - u) = 1 for  all u ~ I. The analogous results for P+_(I, u o) 
will now be given. 

Property 2.7. A valid inequality lr' = (rr, rc +, 7r- ) for  P+_(L u 0) is mi- 
nimal i f  and only i f  

rr(u) + rc(u 0 - u) = 1 , u ~ I ,  (2.3) 

,r + = lim {rr(u)/lu[}, (2.4) 
u~O 

~ -  = lim { lr (u) / (1  - lu l ) } ' .  ( 2 . 5 )  
u t l  

Proof  Suppose rr' is a minimal  valid inequali ty.  Then by Proper ty  2.5, 
(2.4) and (2.5) hold. Fur the rmore ,  Proper ty  2.1 implies tha t  rr is a valid 
inequal i ty  for  P(I, u 0 ). I f  ~r is no t  a minimal  valid inequal i ty  for  P(I, u 0 ), 
then  there is a valid inequal i ty  P < lr, and (P, rr+, 7r- ) is a valid inequa- 
l i ty for  P+__ (/, u 0 ) by  

p(u) t(u) + rr + s + + ~r- s -  
u E I  

>- ~_j p(u) t(u) + rr(Sr(s+)) + r r ( 7 ( - s -  )) 
u E I  

>- ~ p(u) t(u) + p(9"(s+)) + p ( ~ ( - s - ) )  > 1,  
u E I  

since p is a valid inequal i ty.  We can use 7r + s + >- rr(~7(s+)), and similarly 
for I t-  s - ,  because 7r' is minimal  and hence subaddit ive by Theorem 1.2. 
Therefore,  7r must  be minimal,  and ( Z 3 )  must  hold. 
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We have shown that  if rr' is a minimal valid inequal i ty  for  P+ (I, u 0), 
then ( 2 . 3 ) - ( 2 . 5 )  must  hold. As a corollary,  we have seen that  rr must  be 
a minimal valid inequal i ty  for  P(L u0). 

N o w  suppose  ( 2 . 3 ) - ( 2 . 5 )  hold for  a valid inequal i ty  lr' for  P+ (/, u 0). 
If  p' < Tr' for  p' = (p, p+, p - )  a valid inequal i ty  for  P+(I ,  Uo), then at 
least one  o f  p+ < rr +, p -  < 7r- or p(u)  < rr(u) for  some u e I mus t  hold. 
The lat ter  possibil i ty is ruled ou t  by  (2.3),  jus t  as in the p r o o f  o f  Theo-  
rem 1.6 in [4 ] .  Hence  p ( u ) =  rr(u) for all u ~ I. Hence  at least one o f  
p+ < rr +, p -  < rr- must  hold. We will reach a cont rad ic t ion  b y  suppos- 
ing p+ < 1r + , and the p r o o f  is similar if p -  < 7r-. 

Suppose  p+ < 7r +. By (2.4),  there is some v ~ I with p+ < 7r(v)/Ivl, 

and, hence,  p+ Ivl < rr(v). But  then t(u o - v) = 1, s + = Ivl is a solut ion 
for  P+_ (/, u 0 ) satisfying 

p(u 0 - v) t(u 0 - v) + p+ s + = 7r(u 0 - v) + p+ Iv[ < rr(u 0 - v )  + Tr(V) = 1 

by (2.3).  Hence  O' is not  a valid inequal i ty  for  P+_ (L u0), comple t ing  the 
proof .  

Property  2.8. I f  7r is an ex t reme  valid inequali ty  for  P(L u 0 ) and rr + , 
rr- are given by (2.4) and (2.5),  then 7r'= (rr, rr +, rr-)  is an ex t reme  

valid inequali ty fo r  P+_ (I, u o ). 

Proof. By Proper ty  2.2, rr' is a valid inequal i ty  since we are assuming 
the existence o f  the limits in (2.4) and (2.5). By Theorem I. 1, rr is mi- 
nimal, so (2.3) holds. Hence,  by  the previous proper ty ,  rr' is a minimal  
valid inequal i ty  for  P+ (I, u 0 ). 

Suppose  7r' is no t  extreme.  Then there are valid inequali t ies  O' and o' 
for  P+__ (L u0 ) with 

~' = ½p' + ½o" = -~(p, p+, p - )  +½(o,  o "+, o ' - ) .  

Now, p' and o' must  bo th  be minimal by  [4, L e m m a  1.4] since rr' is mi- 
nimal. By Proper ty  2.1, p and ~ are valid inequalit ies for  P(L u 0). By 
hypothesis ,  rr is an ex t reme  valid inequal i ty  for P(/, u 0), so i5 = ~ = rr. 
By O' and o' being minimal  valid inequalit ies for  P+(L u 0) and b y  
P rope r ty  2.5, p+ = o + = rr + and p -  = o -  = rr- because p = o = rr. Thus,  
rr' is extreme.  
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Property  2.9. I f  7r' = (Tr, 7r +, 7r- ) is an ex t r eme  valid inequali ty  f o r  
P+_ (L u o ), then 7r is an ex t reme  valid inequali ty  f o r  P(L u 0 ). 

Proof. Since rr' is extreme, it is also minimal, and by Properties 2.1 
and 2.7, rr is a minimal valid inequality for P(I, Uo). It is, therefore, a 
subadditive function on I by Theorems 1.2 and 1.4. Suppose rr is not an 
extreme valid inequality for P(I, u o ). Then 

7r = ½p + ½o , p ¢ e , 

where p and o must be minimal valid inequalities for P(L u 0) by  [4, 
Lemma 1.41. Then ½ p <_ rr and 

limsup {p(u) / lu l}  <- limsup ( 2 n ( u ) / l u l }  = 2rr + . 
uS0 u * 0  

Hence l im(p(u) / lu l :  u $ 0} exists by Lemma 2.3; call it l~. Similarly, 
l im{p(u) / (1  - lul): u f 1) exists; let us call it li-. Obviously, the same 
limits exists for o; let us call them l~ and l~. By Property 2.5 and by 
7r = ½p +½p, it follows that rr + = 1 + 1 + ~l I +~-I 2 and rr- =½l 1 +½l~-. Hence 
p' = (Tr, l~, I i- ) and a' = (o, l~, l~ ) are valid inequalities for P+_ (L u 0 ) by 

1 ' Property 2.2. But rr' -- ½p' + ~ o ,  which is a contradiction to ~r' being ex- 
treme. Thus the property is proven. 

These nine results give a fairly complete picture of  the relation be- 
tween extreme valid inequalities for the two problems P+__(I, u0) and 
P(I, u o). In addition, the results give some idea as to what these extreme 
valid inequalities are like. 

3. Extreme valid inequalities 

3.1. Construct ion  o f  some  ex t reme  inequalities f o r  P+_ (U, u o) 

We will see how to construct some extreme valid inequalities for 
P(L u0) and P+_ (L u 0) from extreme valid inequalities for P+_ (Gn, u o ). 
Let rr' = Or, rr ÷, rr- ) be the valid inequality for P+_ (I, u o) obtained by  a 
two-slope fill-in of  an extreme valid inequality for P+_ (Gn, u o). 
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Theorem 3.1. 7r' is an ex treme valid inequality for  P+_ (U, u o ) for  any 
subset U o f  1 which contains G n and for  which 

7r(u) + ~(u o - u )  = l , u ~ U .  

Proof. We know by Theorem 1.10 that  rr' is a valid inequal i ty  for  

P+_ (U, Uo). 
(i) We first show that  it  is also a minimal  valid inequal i ty  for 

P+_(U, u0). Suppose it is no t  minimal.  Then there is a valid inequal i ty  p' 
for P+_(U, u o) wi th  p' < rr'. By the cons t ruc t ion  o f  rr', it is an ext reme 
valid inequal i ty  for P+_(G n, Uo), and hence lr' is a minimal  valid in- 
equal i ty  for P+(Gn, Uo). Since P' is a valid inequal i ty  for P+(Gn, u o) 
because G n c_ S, we must  have p' = ~r' on  Gn, and p+ = 7r +, p -  = 7r- as 
well. Hence p ( v ) <  rr(v) for some v ~ UX, Gn . By the cons t ruc t ion  of  rr', 
for the complementa ry  point  u 0 - v, 

rr(u o - v) = min (Tr(L(u 0 - v)) + rr+( lu 0 - v l -  IL(u 0 - v ) l ) ,  

7r(R(u o - v )  + 7r-(IR(u 0 - v )  l -  tu 0 - v l ) } .  

Suppose the first term in brackets gives rr(u 0 - v). Then s + = lu 0 - vl - 
IL(u 0 - v ) l ,  t(v) = 1, t (L(u o - v ) )  = 1 is a solut ion to P+_(S, u0), bu t  

p(u) t(u) + p+ s + + p -  s -  
uES 

= p(v) + rr(L(u o - v )  + 7r+(luo - v l -  IL(u o - v)l) 

= rr(u 0 -- v) + p(v) 7r(u 0 - v) + zr(v) = 1 , 

contradict ing p' being a valid inequal i ty  for  P+ (U, u o). When rr(u o - v) 
is equal to the second term in brackets,  the p roo f  is similar bu t  uses the 
solution s -  = IR(u o - v)l - lu 0 - vl, t (R(u  o - v)) = 1, t(v)  = 1. 

(ii) Next  we show tha t  rr' is ex t reme among the subaddit ive valid in- 
equalities for  P+(U, u0). This result, together  with' minimal i ty ,  will 
show that  rr' is an ext reme valid inequal i ty  for P+_(U, u o) by  Theorem 
1.3. 

Suppose zr' is no t  an ex t reme subaddit ive valid inequal i ty.  Then 
~.r  1 F 1 t = ~ p + ~ a for subadditive valid inequalit ies p' and a'.  Jus t  as in the 
p roo f  o f  minimal i ty ,  7r' is an extreme valid inequal i ty  for P*_ (G n , u 0 ), so 
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?r + = p +  = o  + , ~ -  = p -  = G -  

7r(g ) = p(g ) = 

and hence p ' ¢  o' means that p(v)4= o(v) for some v e U\G n. Since 
r(v)  = ½p(v)+ ½o(v), one of p(v),  a(v) is larger than 7r(v) and one is 
smaller. Without loss of  generality, we can assume p(v) > lr(v) > o(v). 
Again, by the construction of It(v), we have either 

o r  

~r(v) = 7r(L(v) )  + r+(Ivl  - IL(v)l) 

7r(v) = l r ( R ( v ) )  + ~ - ( I R ( v ) l -  Jvl). 

Let us assume that lr(v) is given by the first expression, and the proof  in 
the second case is similar. By the subadditivity of p' and by p+ = lr +, 

p(L(v))  + ~+([vl - IL(v)l) ~ p ( v ) .  

But p(L(v))  = 7r(L(v)) since L(v)  ~ G n . Hence 

lr(L(v)) + ~r+(Ivl-  IL(v)l) >_ p(v) . 

But here the left-hand side is equal to 7r(v) by our assumption of case 
(i) above. Hence ~r(v) >_ p(v), contradicting p(v) > 7r(v). The proof  is 
thus completed. 

We can apply this theorem to Table 2 of the appendix of [4].  Corres- 
ponding to each extreme valid inequality for P+ (Gn, u o), n = 1 . . . .  , 6 ,  
we can easily give the set U c on which ~r(u)+ 7r(u 0 - u ) =  1, u E S c. 
Then for any set U, G n c U c  Uc, the inequality given by Theorem 1.10 
is an extreme valid inequality for P+(U, u0). For  Go, G1, G2, G3, G 4 
and G6, U c = I for all extreme valid inequalities 0f  P+_ (Gn, u 0 ); the first 
exception occurs at G s . There are four  exceptions for G s among the 6 
faces given by [4, Table 2] and the reflections. These exceptions are 
discussed further following Corollary 4.4. 

The unique extreme valid inequality for P+ (Go, u 0), where G o is the 
subset consisting of  only the point 0, is of  particular interest. It is readily 
seen that this inequality 7r' when used in conjunction with a mapping ~0 
gives Gomory 's  mixed integer cut [ 1, p. 528]. We see at once that for 
this 7r', lr(u) + 7r(u 0 - u) = 1 for all u so that lr' is an extreme valid in- 
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equality for P+_(U, u0) for any set S c I provided 0 ~ S, which is ac- 
tually not  a restriction since 0 can always be adjoined to S without  
changing the problem. 

3.2. Some extreme inequalities for  P( Gm , u o) 

When the inequalities rr' given by the two-slope fill-in (Theorem 1.10) 
satisfy rr(u) + rr(u 0 - u) -- 1, then the theorem just proven says thatTr' is 
an extreme valid inequality for P+_(L u0). By Property 2.9, rr is an ex- 
treme valid inequality for P(I, u o). For subsets U of I, we know that rr 
is a valid inequality for P(U, Uo) , but we do not know that lr is extreme 
for P(U, Uo). The following theorem establishes that result for some U 
and, in fact, applies for any extreme valid inequality for P(I, u o), not 
just those given by  the two-slope fill-in. 

Theorem 3.2. I f  lr is an extreme valid inequality for  P(L Uo) and 
consists' o f  straight line segments connected at values u belonging to a 
regular grid G m with u o ~ Gm, then 7r is an extreme valid inequality for  
P(U, Uo) whenever U is a subset o f  I including G m . 

Proof. Since lr is extreme for P(/, u 0 ), it cannot be written as ½ p + ½ o 
for different valid inequalities p, o for P(I, u o). Certainly rr is a valid in- 
equality for P(U, Uo), and if it is not  extreme for P(U, Uo), then 
lr = ½p +½o for different valid inequalities p, a for P(U, Uo). If both p 
and o are valid inequalities for P(I, u 0), a contradiction is reached. How- 
ever, both can be extended to valid inequalities for P(L u 0) by the 
straight-line fill-in from Gin as in Theorem 1 10. Furthermore,  such a 
construction maintains rr = ½p + ½a on all o f / s i n c e  rr also consists of  
straight line segments joined at points of. Gin. The proof is thus com- 
pleted. 

This theorem enables us to construct some extreme valid inequalities 
(faces) of  the polyhedra P(G, go) of [ 3 ]. It is of  particular interest when 
one extreme inequality of P+_ (G n , u O) gives rise to many slight variants, 
all of  which are extreme for P(L u 0) and all of  which in turn give rise to 
apparently unrelated faces of  P(G, Uo). Before showing that  possibility, 
we digress to give some results related to the two-slope construction of 
Theorem I. 10. 
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3.3. Extremal i t y  o f  two-slope func t ions  

Theorem 3.3. L e t  zr be a cont inuous func t ion  on I consisting o f  a 
f ini te  number  o f  straight line segments, each line segment  having a slope 
7r + > 0 or else -Tr-  < O. I f  7r is a subadditive func t ion  on I with 
zr(u o) = I for  some u o c L then zr is ex t reme among the subadditive 
valid inequalities p for  P(I, u o ) which have p(u o ) = 1. 

Proo f  The theorem asserts that  if rr = l p  + ½ o, where p and o are 
subaddit ive valid inequali t ies for  P(I, u 0) wi th  p(u o) = o(u 0) = 1, then  
p(u)  = o(u) for all u ~ I. We k n o w  f rom Theorem 1.4 tha t  7r is a sub- 
additive valid inequal i ty  for  P(L u0 ). 

Suppose tha t  rr = ½p + ½o for  subaddit ive valid inequali t ies p, o for 
P(I, u 0) wi th  p(u o) = o(u 0) = 1. Since zr has a r ight-hand derivative 7r + 
at 0, 

l imsup {p(u)/lul)<_ limsup {2rc(u)/lul} = 2 r e  + , 
u~O u~O 

and similarly for u. By L e m m a  2.3, O and o bo th  have r ight-hand deri- 
vatives p+ and o + at 0. Similarly, the lef t-hand derivatives p -  and a -  at 
1 exist. 

We nex t  show tha t  p and a have the same form as rr; tha t  is, cont inu-  
ous line segments o f  slope p+ or p -  (a + or a -  ). Choose a poin t  u within 
an interval where rr has slope rr + . Le t  8 > 0 be small enough tha t  u + 8 is 
in the same interval and that  6' i tself  lies in the very first interval. Then,  
zr(u) + rr(8)= rr(u + 8) by  the fact tha t  7r has the same slope zr + on 
(0, 8) and (u, u + 6). Hence 

o r  

½p(u) + ~ o(u)  + ~p(8)  + ½~(8) = ½p(u + 8) + ~a(u  + 8) , 

½(p(u) + p(6)  - p(u  + 8)) + ½(a(u) + a(8)  - o(u + 6)) = O . 

By subaddit ivi ty,  each o fp (u )  + p(6)  - p(u + 6) and o(u) + a(6) - a(u + 6) 
is non-negative. Since t hey  sum to zero, each mus t  be zero. Hence 

lira { (p(u + 6) - p(u))/16 l}  = l i r a  (p(6) /18 I} = p +  , 
840 a~0 

lim ((o(u + 6) - a(u))/161} = lim {a(6)/J61) = a + . 
6~0 ~ 0  
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Similarly, we can show tha t  the left-hand derivatives o f  p and a at u are 
p+ and o + . Therefore,  p (resp. a) has a cons tant  derivative p+ (resp. o +) 
on the interval, and so it is a straight line wi th  this slope. A similar 
result is obta ined for  any x on an interval where 7r has slope - r r - .  Here 
one works wi th  subaddit ivi ty through the inequal i ty  p ( - 6 )  + p(u + 5) >- 

p(u),  and concludes tha t  bo th  the left  and right derivatives at u are p - .  
Hence bo th  p and a are of  the same form as r wi th  two slope straight 
line segments over the same intervals. 

We now show tha t  p+ = o + = lr + and p -  = ~ -  = l r - .  Le t  ~L be the 
total  length o f  the intervals on which the slope o f  7r is rr + and which lie 
to the left  of  u 0 . Similarly, let l~ be the length of  those intervals to the 
right of  u 0 on which rr has slope 7r +, and let l~ and l~ be the corres- 
ponding lengths  o f  intervals on which 7r has slope - r r - .  Since rr(u 0 ) = 1, 

1r + l ~ - n -  l~ = 1,  zr + l ~  - z r -  l~ = -  1 ,  

and the same equat ions hold for p+, p -  and o +, o - .  But  these two equa- 
t ions have on ly  the solution rr +, rr- because in order  for them to have 
more than  one solution, one equat ion  would have to be a l inear mul- 
tiple o f  the other.  But  then ~L + FR = 0 and - l ~  - l~ = 0, implying tha t  
all of  F L, l~,  l~ and l~ are zero. Hence p+ = lr +, p -  = # - ,  and a + = rr +, 
O-- = ? r - .  

We have two immedia te  corrolaries. 

Corollary 3.4. I f  7r meets  the condi t ions  Of Theorem 1.10 and i f  

7r(u) + rr(u o - u) = 1 for  all u E L then 7r is an ex t reme  valid inequali ty  

fo r  P(I, u0). 

P r o o f  If  ~r(u) + 7r(u 0 - u) = 1 for all u E I, then  by Theorem 1.6, 7r is 
a minimal  valid inequal i ty  for P(I, u 0 ). The subaddit ive valid inequali t ies 
p for  which p(u o) = 1 inc lude  the minimal  valid inequalities by  Theorems 
1.2 and 1.6. Since by Theorem 1.10, rr is ext reme among those inequa- 
lities, Ir cannot  be wri t ten as a mid-point  o f  two other  minimal  valid 
inequalities. By [4, L e m m a  1.4] and the minimal i ty  o f  rr, Ir is an ex- 
t reme valid inequal i ty  for P(L u0). 

Corollary 3.5. I f  lr meets  the condi t ions  o f  Theorem 1.10, i f  it(u) + 
7r(u o - u) = 1 for  all u c L and i f  1r +, - l r -  are the two  slopes o f  ,r wi th  
lr + > O, I t -  > O, then lr' = Or, Ir + , I t-  ) is an ex t reme  valid inequal i ty  fo r  

P+(I,  u0). 
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P r o o f  This is immediate from Corollary 3.4 and Property 2.8. 

Before leaving this section, let us point  out  the difference between 
Theorem 3.1 and Corollary 3.4. Corollary 3.4 and Theorem 3.2 would 
prove that rr of  Theorem 3.1 is extreme when U includes the cyclic 
group including all of  the break points of  It, not  just  G n . However, 
Theorem 3.1 applies only to those rr constructed using the two-slope 
fill-in, whereas Corollary 3.4 applies to arbitrary two-slope functions 
which are subadditive and minimal. 

4. Generating extreme inequalities and exponential growth for faces of  

some P(G, u o) 

We begin by discussing some of  the possibilities for creating extreme 
inequalities for P(I, u o) from extreme inequalities of  P+_ (G n, u o) when 
the condition rr(u) + rr(u 0 - u) = 1 does not  hold for all u ~ I for the rr 
constructed by the two-slope fill-in. 

By way of  background, we observe that the rr given by the two-slope 
fill-in of  Theorem 1.10 does satisfy rr(u) + rr(u 0 - u) = 1 when u ~ G n . 
This fact is a consequence of  (1 .20) - (1 .22)  because they imply 

Hence 

rc(g i) = min {rr(L(u o )) - rr(L(u o ) - N ) ,  

r r ( R ( u o ) )  - ~r (R(u  o )  - &)) 

= rain (1 - zr + (lu o - L ( u  o )1) - rc(L(u o) - g i ) ,  

1 - 7r- ([R(u o) - u o I) - lr (R(u o) - g i ) }  . 

rr(gi) + min{Ir(L(u0) - g i )  + rr+(lu0 - L ( u 0 ) l ) ,  

7r(R(uo) - g i )  + l r - ( I R ( u o )  - U o  I)) = 1. 

By the construction of  rr on I \ G  n and by L ( u  0 - gi) = L (uo  ) - gi and 
R ( u o  - gi) = R ( u o  ) - gi, the minimum in the equation above is precisely 
rr(uo - gi).  Since lr(u) + Ir(u 0 - u) = 1 for u ~ Gn,  equality also clearly 
holds for u = u o - gi, gi ~ Gn" These points are located between con- 
secutive grid points L ( u ) ,  R ( u )  in the same relative position as u 0 is be- 
tween L ( u  o)  and R ( u o ) .  
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(a} 

I I ' 
I I i 
t I"  a - - ~  I I 
g i-I u. gi u g i i+l i+l  

(b) 

I I I 
I I I 
I _1 I 

u - g i + l  Uo-Ui+l Uo'gi Uo'Ui Uo'gi-I 

uj gj  U j + l  g j + l  u j + 2  

Fig. 1. 

Figs. l (a)  and (b) i l lustrate the possibilities for  rr on  the intervals g i - 1 ,  

gi,  gi+l and the c o m p l e m e n t a r y  intervals u 0 - ui+ 2, u 0 - ui+ 1 , u o - u i, 

u o - u i _ l ,  where  we let ui+ 1 = gi + Uo - L ( u o )  and u i = gi - R ( u o )  + Uo. 

Then  u 0 - ui+ 1 E G n ,  say g! = u o - ui+ 1 and gi+l = Uo - ui  ~ Gn" If, as 
in Fig. 1, the m a x i m u m  o f  rr in (gi ,  g i+ l )  occurs  at u = u i+ l ,  then  
7r(u) + rr(u 0 - u ) =  1 for  all u ~ (gi,  gi+l)" In o rder  to  see this result,  

consider  any interval  (u i+ l ,  gi+l ) where  ui+ 1 = gi + Uo - L ( u o )  = gi+l - 

R ( u  o )  + Uo, and the c o m p l e m e n t a r y  interval  (u 0 - gi+l , Uo - Ui+l ). 

The  d i f fe rence  rr(ui+ 1 ) - r r ( g i +  1) must  be the same as lr(u 0 - g i + l ) -  

rr(u 0 -- ui+ 1 ) because rr(gi+ 1 ) + 7r(u 0 --  gi+l ) = 1 and rr(u i) + rr(u o - u i) = 

1. Since rr can have on ly  two slopes, rr mus t  be the  same, e x c e p t  for  a 

cons tan t  d i f fe rence  in height,  in the two intervals ( u i + l ,  g i+ l )  and 

(Uo -- gi+l , UO -- Ui+I)"  
The  second possibil i ty is i l lustrated in Fig. 1 by  the  interval  (u i ,  gi)  

and its c o m p l e m e n t a r y  interval  (u 0 - gi,  Uo - u i ) .  In b o t h  intervals,  rr 
has two slopes and a relative m a x i m u m  occurs  wi thin  the interval,  In 
this case, we must  have lr(u) + rr(u 0 - u) > 1 for  all u wi th in  e i ther  in- 

terval. F o r  at u = u i, rr(u) + rr(u 0 - u) = 1, bu t  as u is increased,  b o t h  
rr(u) and rr(u 0 - u) increase unt i l  one  o f  rr(u), rr(u 0 - u) reaches  a maxi- 
ma. Then  rr(u) + rr(u o - u) remains cons tan t  as u increases since one  o f  
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7r(u), ~r(u 0 - u) is increasing while the other  is decreasing at the same 
rate. When the o ther  lr(u), 7r(u 0 - u) reaches its maxima,  then  lr(u) + 
7r(u 0 - u) decreases unt i l  u reaches gi and u 0 - u reached u o - gi at 
which point  7r(u) + 7r(u 0 - u) = 1. 

An interval (u i, gi) o r  (gi, Ui+l ) with only  one slope for 7r will be 
called an interval o f  the f irst  type;  here, ui+ 1 = gi + Uo - L ( u o ) .  The 
complemen ta ry  interval will also be an interval o f  the first type,  and for 
u in an interval o f  the first type,  7r(u)+ ¢r(u 0 - u ) =  1. An  interval 
(Ui-1, gi) o r  (gi, Ui+l ) with two slopes for lr will be called an interval o f  
the second type. Then its complementa ry  interval is also of  the second 
type, and for u within an interval o f  the second type,  ~r(u) + r.(u 0 - u) > 
1. We note  tha t  the intervals (L(uo) ,  u o) and (u 0, R ( u o ) )  are o f  the 
first type, and so are their  complemen ta ry  intervals (0, u o - L ( u o ) ) ,  

(1 - R ( u o ) + U  o, 1). 
An interval (ui, gi) will be its own complement  i f  g i + gi = R ( u o )  since 

then  u o - gi = Uo - R ( u o )  + gi = ui" The interval (gi, Ui+l) will be its 
own complement  if  gi + gi = L ( u o )  since then  u o - gi = Uo - L(uo)  + 
gi = Ui+l. These se l f -complementary  intervals may  be o f  ei ther  the first 
or second type. In what  follows, we will exclude the se l f -complementary  
intervals in the discussion of  intervals o f  the second type. 

With this background,  we can construct  a funct ion  ~r~ f rom 7r which 
will lead to some interest ing results. Let  ~ = (gi, Ui+l ) be an interval o f  
the second type  and let t3 be its complemen ta ry  interval. We assume tha t  
o~ is no t  its own complement ,  so o~ ¢ ~. Then 7r(u) + 7r(u 0 - u) > 1 for u 
within ei ther  ~ or 13. Define ~r~ on I by 

[ 7r(u), u ~ I \ e ,  
%(u)= [ l _ l r ( u  0 - u ) ,  u E ~ .  

Fig. 2 illustrates % in this case. Let  ua denote  the u where lr~(u) is 
smallest in a. 

First, two lemmas are needed. The first applies to any  7r and does 
no t  depend on the part icular  cons t ruc t ion  here. 

Lemrna 4.1. L e t  S be a subset  o f  I and  let  lr be a subaddi t ive  valid 

inequali ty  f o r  P(S, u o ), I f  

~r(u) + lr(u o - u) >- 1 , 

~(u) + ~(v) >- ~(u + v) ,  

then lr is a valid inequali ty  f o r  P(L u 0 ). 

u E l k S ,  

u ~ I \ S ,  v ~ I \ S ,  
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Proof  Consider any t solving P(/, u0). If t (u )>  0 and t ( v )>  0 for 
both u and v in I~S, then we can change t by reducing t ( u ) b y  1, redu- 
cing t(v) by 1, and increasing t(u + v) by 1. The new t is still a solution, 
and since 7r(u) + ~r(v) >_ 7r(u + v), Z u ~flr(u) t(u) has not increased. This 
process can be continued until Eu ~1\s t(u) <_ 1. At that point, 

~(u) t(u) = ~(v) + ~ ~(u) t(u) , 
u ~ I  u ~ S  

where v c I \S.  By subadditivity of  rr on S, 

u ~ I  u ~ S  

=r(v) +~(u 0 -v)>_ 1, 

by lr(u)+ rr(u 0 - u ) > _  1 for u ~ I \S.  The lemma is therefore proven. 

The second lemma applies to the particular function rr~ constructed 
here. It actually applies to any two-slope function 7r in an interval in 
which the function first decreases and then increases. 

Lemma 4.2. I f  27ra(u~) >_ 7r(2u~), then Try(u) + rr~(v) >_ 7r~(u + v) for  
all u, v e ~ .  

Proof  For any u 6 a ,  u ¢  us,  either lu[< lu~[ or lu l> lull. Let us 
assume lul > lu~ I. The other case is similar. Then 
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Try(u) = 7rs(u~) + 7r+( lu l -  lusl ) 

and for v ~ a, 

by 

V~(u, o) = % ( u )  + %(0)  - % ( u  + o) 

= 7rs(u s)  + 7r+( lu l -  lu l l )  + 7r~(v) - 7rs(u + v) 

= 7rs(u s )  + ~ ( v )  - ( ~ ( u + v )  - ~ + ( u  + v l -  lu~ + vl)) 

> 7rs(u~) + 7rs(v) - % ( %  + v) = V~(u s ,  v ) ,  

7rs(u ~ + v) + ~r+(lu + ol - I% + ol) >_ % ( %  + o ) .  

Similarly, we can show 7s(us, v) >_ 7a(us, us). Hence if 7s(ua, us)  >_ 0, 
then 7 s (u, v) >__ 0 for all u, v ~ a. 

These two lemmas suffice to prove the following theorem. 

Theorem 4 . 3 . / f  21r~(ua) >_ 7r~(2ua), then lr~ is a valid inequality for 
P(I, u0). 

Proof By Lemma 4.1, we need only show that 7ra(u)+ 7rs(u 0 - u)>_ 1 

for all u ~ ot and ~r(u) + It(o) >_ 7r(u + v) for all u, v ~ a. The first inequa- 
lity is true, in fact with equality, by the construction of  7r~. The second 
is true by 27rs(u~) >_ lrs(2U~) and Lemma 4.2. 

Corollary 4.4. l f  a and its complement {3 are the only two intervals o f  
the second type, then ira is an extreme valid inequality for P(I, u O) i f  
and Only i f  2rrs(us) 7> rr(2us). 

Proof. If  2~r~(us) >_ 7rs(2u~) ' then by Theorem 4.3, rr s is a valid in- 
equality for P(I, u 0). Furthermore,  if a and/3 are the only two intervals 
of  the second type, then rr s (u) + rr s (u 0 - u) = 1 for all u ~ / ,  so Ir s is 
minimal. By Corollary 3.4, ~r~ is an extreme valid inequality for P(I, u 0 ). 

We now consider in more detail the case described in Corollary 4.4. 
To begin, two cases will be shown from [4, Table 2]. When n = 5 and 
u 0 ~ (0, ~), face 2 from [4, Table 2] is illustrated in Fig. 3. Of  course, 
when u 0 ~ (~, 1), the reflection is also a face ofP+_(Gs, u0). Fig. 3 ac- 
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tually shows the construction of  Theorem 1.10 for u 0 = N. It is easily 
verified directly that the two complementary intervals a and/3 are the 
only two on which 7r(u) + 7r(u 0 - u) = 1 does not  hold and that 21r~(u~ ) >_ 
Ir(2u~). Here, u s = 2~. 

Fig. 4 shows another example for n -- 5 and u 0 ~ (k, z). Its reflection 
is, again, another example. This figure is face 6 from [4, Table 2.2]. 
As in Fig. 3, a and ~ are the only two intervals of  the second type, and 
2rr~(u~) >_ Tr(2U~). 

in both Figs. 3 and 4, the role of a and/3 can be reversed, and we still 
have 2%(u~)  >_ 7r(2u~). In other words, if rr~ is defined analogously to 
rr~ with u~ = ~13 in Fig. 3 and u~ = ~ in Fig. 4, then 2~r#(u#) >_ rr(2u~). 
The next theorem shows that in this case a great many extreme valid 
inequalities can be generated which differ from 7r only in the intervals 

and ~. 
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Fig. 4. 
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Theorem 4.5. I r a  and/3 are the only two complementary  intervals o f  
the second type and i f  lr~ and Ir~ are each valid inequalities for  P(L u o ), 
then any continuous,  piecewise linear func t ion  p on I having only the 
two slopes 7r + and 7r- satisfying 

p(u)  = ~(u) ,  u ~ I \ (~  u D ,  

p(u) = l - p(u o - u ) ,  u ~ ~ , 

is an ex treme valid inequality for  P(/, Uo). 
Fig. 5 illustrates such a function p in the example shown in Fig. 3. 

Proo f  We will consider only the case previously considered; that is, 
a = (gi, ui+l ) so that the left end-point of  a is in G n . Fig. 3 is this case, 
but  Fig. 4 is not. The case a = (u i ,g i )  is similar and will not  be con- 
sidered. 

First, we will show that neither o~ nor/3 is a subinterval of  (0, gl) or 
(gn-1, 1). Since a and /3 have an element of  G n as left end-point, if 
either was a subinterval of  (0, gl ), then it would have to be (0, u 1 ). 
However, this interval is o f  the first type as was remarked before Lemma 
4.1. Hence the only possibility is that a or/3 is (gn-1, Un)" We will now 
exclude that possibility. 

Corollary 4.4 says that rra is extreme and hence subadditive. We will 
show that rr then is linear on (gn-1, 1) with a slope - r r - ,  and hence 
neither a nor ~ could be (gn-1, Un)" To see that Ir is linear o n  (gn-1, 1), 
recall that 

%(gi)  + %(Uo - gi) = ~r(gi) + ~r(Uo - gi) = 1 = 7r(u o) 
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and tha t  rr~ and rr are decreasing on  (u 0 - gi, Uo - ui) because o f  the  
shape o f  rr in/3. Hence,  

But  

7ra(g i )  + 7ra(u 0 --  u i )  = rrc,(R(uo) ) . 

7ro~(uo~ ) = 7ra(gi )  - ~ - - ( [ u c  ~ - g i [ )  , 

and by  subaddit ivi ty,  one  o f  the fol lowing inequali t ies holds:  

rc~, (u~) + rrc, (u 0 - ui) >_ rr,~ (R(u O) - (u~, - gq)) , 

rre,(gi) - rr- ([u - g/I) + rra(u 0 - u i )  >_ rcc~(R(uo) -(ue~ - g i ) ) ,  

zr,~ (R (u o )) - rr-  ( l uc~ - gi I) >_ rr a (R (u o ) - (u,~ - gi)) • 

By rr~ having on ly  two slopes, the reverse inequal i ty  also holds,  and 
hence  rr~ is decreasing on  the ent ire  interval  (R(uo) ,  R ( u o ) + g l ) "  This 
fact  and subaddi t iv i ty  imply  that  zr~ is decreasing on  the ent i re  interval  

(gn-1,  1), comple t ing  the p r o o f  tha t  ne i ther  ~ nor /3  is a subinterval  o f  

(gn-1,  1) or (0, g l ) -  
To  re tu rn  to the p r o o f  o f  the theorem,  by  L e m m a  4.1 we can prove 

that  p is a valid inequal i ty  by  showing p(u) + p(u o - u) >- 1 and p(u) + 
p(o) >_ p(u + v) fo r  u, v ~ ~ u/3. The  first inequal i ty  is obvious  f rom the 

cons t ruc t ion  o f  p. What remains is to  establish p(u) + p(v) >- p(u + u) 
for  u, u ~ a u/3.  There  are two cases: (i) u, v b o t h  in a (or  b o t h  in/3), 
and (ii) u G a and v ~/3. 

In case (i), we only  consider  u, v b o t h  in a since b o t h  in/3 is exac t ly  
similar. By p being con t inuous  wi th  the same two slopes as rG, 

p(u) + p(v) >_ %(u)  + %(v)  . 

By 7r~ being valid, and hence  ex t reme,  

%(u) + %(v) >- 7r(u + v).  

I f  u + v ~ I \ ( a  U/3), then  zra(u + v) = p(u + v), so p(u) + p(v) >- p(u + v). 
I f  u + v ~/3, then  rr (u + v) = Ir(u + v) >- p(u + v), so again p(u)  + p(v) >- 
p(u + v). The  third subcase u + v ~ a is exc luded  by  a no t  being a sub- 
interval  o f  (0, g l )  o r  ( g n - 1 ,  1).  For  any a which  is a subinterval  o f  
(gi, gi+l ), bu t  no t  (0, gl ) or (gn-1,  1), u + v q~ a when  u ~ ~ and v ~ a. 
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N e x t  we cons ider  case (ii), u ~ a and  v c/3.  In  this case the re  are two  

subcases:  Iv] >- [u o - uf, and  iv[ < lu o - u[. First ,  cons ider  ivl >- fu o - ul.  

Since v and  u o - u are b o t h  in/3, 

f v -  ( u  0 - u ) [ < _  I R ( u o )  - u01 

p(u + v) = p(u o + ( v -  (u 0 - u ) ) ) =  1 - ~ r - ( I v -  ( u 0 - u ) l ) .  

Hence  we need  on ly  show 

p(u)  +p (v )  >- 1 - 7 t - ( iv  -- (u 0 -- u) l )  . 

But  p has on ly  two  slopes, so 

p ( v )  >- p(u o - u )  - ~ - ( f v  - ( %  - u ) l ) ,  

p(u)  + p(v)  >_ p(u)  + p(u  o - u) - zr- (Iv - (u o - u ) l )  

> 1 - 7 t - ( Iv  - (u o - u ) l ) ,  

c o m p l e t i n g  the  p r o o f  in this subcase.  N e x t  cons ider  lul < lu 0 - ul. In  a 

similar  way,  we can n o w  show tha t  

p(u + v) = 1 - zr+(l(u0 - u) - v l ) ,  

p(v)  >- p(u o - u) - lr+(l(u0 - u) - v l ) .  

Hence ,  as before ,  

p(u)  + p(v)  >_ p(u)  + P(Uo - u) - ~r+(l(Uo - u) - vl)  

= I - ¢ r + ( l ( u 0  - u )  - v l )  = p ( u  + v ) .  

Hence  p is a valid inequa l i ty  fo r  P(I, u 0). To  show tha t  i t  is an  e x t r e m e  
valid inequal i ty ,  we need  on ly  r e m a r k  tha t  p ( u ) +  p(u o - u ) =  1 and 

a p p l y  Coro l l a ry  3.4. The  t h e o r e m  is thus  proven.  

The  d e v e l p p m e n t  here  can be e x t e n d e d  to the case where  there  are 
several intervals  o f  the  second  type .  However ,  its p resen t  f o r m  suff ices 

to  show an e x p o n e n t i a l  ra te  o f  g r o w t h  fo r  some  o f  the p o l y h e d r a  
P(G n, g) o f  [3 ] .  We show this fac t  b y  means  o f  the  fo l lowing example .  
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Example  4.6. Consider the group G n for n = 20K, K >_ 1, and let 
Uo = ~o c G n . We said that  the function 0 in Fig. 5 gives an extreme 
valid inequality for P(I, Uo). The same is true for a great many func- 
tions p. In Fig. 6 we illustrate the intervals a and/3 from Fig. 5. Let us 
restrict p to be straight lines with breaks at points k/2OK. In Fig. 6, 
K = 3, and we are perfectly free to let p have slope rr + or - r r -  in the 
3 intervals ( ~ ,  2s 2s 26 26 ~ ) ,  ( ~ ,  ~ ) ,  ( ~ ,  ~ ) .  The only restriction on P here is 
that it must have slope rr + on as many intervals between ~ and 1o ~-6 a s  

on which it has slope lr- .  Since p has been determined on ~o to ~,1° it is 
given on ~o to ~ by 7r(u) + 7r(u 0 - u) = 1. In general, there will be K 
intervals between ~o and ~ on which p can have either slope. Thus there 
are at least 2 K such functions p. By Theorem 3.2, each one is a face for 
the problem P(G20 K, ~ ) .  In fact, there are more than 2 K , namely 
(2 IO! / (K!K[) ,  such functions p. This number results from the fact that 
we can choose any K of  the 2K intervals between ~0 and ~1° for p to 
have slope rt + . As K becomes large, this number approaches 2 2K/x/(rrK) 
by Stirling's approximation of n!. 

There is an abundance of such examples from [4, Table 2]. In parti- 
cular, for n = 7, there are several similar cases. A similar construction 
works as long as there are two complimentary intervals ~ and/3 with 7r~ 
and rr~ valid and provided the u 0 and all other break-points of  lr fall on 
group elements. 
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