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The group problem on the unit interval is developed, with and without continuous variables.
The connection with cutting planes, or valid inequalities, is reviewed. Certain desirable proper-
ties of valid inequalities, such as minimality and extremality are developed, and the connection
between valid inequalities for P(J, u ) and pt T, uO) is developed. A class of functions is shown
to give extreme valid inequalities for pt T, u )and for certain subsets U of I. A method is used
to generate such functions. These functions g1ve faces of certain corner polyhedra. Other func-
tions which do not immediately give extreme valid inequalities are altered to construct a class of
faces for certain corner polyhedra. This class of faces grows exponentially as the size of the
group grows.

1. Review of the problems

This paper follows a previous paper [4] but will be self-contained
except for proofs of some theorems from [4].

1.1. The problems P(U, uy) and P* (U, uy)

Let I be the group formed by the real numbers on the interval [0, 1]
with addition modulo 1. Let U be a subset of I and let # be an integer-
valued function on U such that (i) #(u) 2 0 for all u € U, and (ii) ¢ has a
finite support, that is #(u)> 0 only for a finite subset U, of U.

We say that the function ¢ is a solution to the problem P(U, uy), for
ug € N0}, if

2 utu)=ug . (1.1

uclU
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Here, of course, addition and multiplication are taken modulo 1. Let
T(U, uy) denote the set of all such solutions ¢ to P(U, u).

Correspondingly, the problem P* (U, uy) has solutions t' = (¢, s*, s™)
satisfying

20 utu)+ FT) — Fsm) = uy (1.2)

uelU

where 7 is, as before, a non-negative integer valued function on U with a
finite support, where s*, s~ are non-negative real numbers, and where
F(x) denotes the element of [ given by taking the fractional part of a
real number x. Let 7% (U, uy) denote the set of solutions ¢' = (#, s*, 57)
to P*.(U, uy).

The notation # € 7 will mean that u is a member of the group I so
that arithmetic is always modulo 1. If we want to consider # as a point
on the real line with real arithmetic, we will write lul. Thus, lul and
F(x) are mappings in opposite directions between I and the reals and,
in fact, F(lul) = u but x and | F(x)! may differ by an integer.

1.2. Inequalities

1.2.1. Valid inequalities

For any problem P(U, u,), we have so far defined the solution set
T(U, uy). A valid inequality for the problem P(U, uy) is a real-valued
function w defined for all € I such that

m0)=0, n(u)=0, uecl, (1.3)
and

2 mw)y w21, te T(U, uy). (1.4)

ucslU

For the problem P* (U, uy), n' = (n, #*, ) is a valid inequality for
P* (U, uy) when 7 is a real-valued function on I satisfying (1.3), and 7t
7~ are non-negative real numbers such that

2 mw) ) ratst s 21, £ eTHU uy). (1.5
ucslU

A valid inequality (w, 7*, 7—) for P* (/, uy) can be used to give a valid
inequality for P(U, ug) or P* (U, ug) for any subset U of 1. For example,
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Im(u) t(u) > 1 is clearly true for any ¢ € T(U, uq) since that ¢ can be
extended to a function ¢ belonging to T(/, uy) by letting t'(u) =0 for
u € \U. Thus, the problem P* (/, u,) acts as a master problem for all
cyclic group problems in the same way that the master problem in [3]
was a group problem with all group elements present. This fact is the
main reason for studying the case U =17 in such detail in Section 2.
However, the next two properties of valid inequalities do not necessarily
carry over to subsets U of I.

1.2.2. Minimal valid inequalities

A valid inequality w for P(U, u,) is a minimal valid inequality for
P(U, uy) if there is no other valid inequality p for P(U, u) satisfying
(1) < w(U), where p(U) < n(U) is defined to mean p(u) < mw(u) for all
u € U and p(u) < m(u) for at least one u € U. A valid inequality 7' for
Pt (U, uy) is a minimal valid inequality for P* (U, u,) if there is no
other valid inequality p’ for P* (U, u,) satisfying p'(U) < '(U), where
p'(U) < n(U) is defined to mean

pt<wt, pm <77, pwSww), uclU,

with strict inequality holding for at least one of the above inequalities.

The minimal valid inequalities are important because a valid inequa-
lity which is not minimal is implied by some other valid inequality.
Note that we have scaled the inequalities to have a right-hand side
equal to one, and minimality is always with respect to that scaling.

1.2.3. Extreme valid inequalities

A valid inequality = for P(U, uy) is an extreme valid inequality for
P(U, uy) if m can not be written as 7 =4 p + 10 for p # o, where p, o are
valid inequalities for P(U, u,).

A valid inequality 7' = (w, 7%, n~) for P (U, u,) is an extreme valid
inequality for P* (U, u,) if n' cannot be written as 7' =4p +30' for
p' # o', where p’, 0" are valid inequalities for P* (U, u,).

Theorem 1.1 [4, Theorem 1.1]. The extreme valid inequalities are
minimal valid inequalities.

These inequalities are in some sense ‘‘the best” possible since they
cannot be derived from any other valid inequalities.
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1.2.4. Subadditive valid inequalities
A valid inequality 7 for P(U, uy) is a subadditive valid inequality for
P(U, ugy) if

w(u) + n(v) = m(u +v)  wheneveru,v,u+veU. (1.6)

For a valid inequality ' for P* (U, uq) to be subadditive, we require,
in addition to (6),

7(u) + 7t lv—ul> n(v) whenever u, v € U and lul < lvl, 1.7

w(u) + 7 lu—vl = m(v) wheneveru,v € Uand lul> lvl. (1.8)

Theorem 1.2 [4, Theorem 1.2]. The minimal valid inequalities are
subadditive valid inequalities.

Thus Theorems 1.1 and 1.2 prove the following sequence of inclu-
sions: The set of valid inequalities include the subadditive valid inequa-
lities which include minimal valid inequalities which include extreme
valid inequalities. The subadditive valid inequalities form a convex set
contained in the larger convex set of valid inequalities.

Theorem 1.3 [4, Theorem 1.3].If 7 (or ©') is extreme among the sub-
additive valid inequalities for P(U, uy) (or P*(U, uy)), that is, @ (or ')
is not the midpoint of any two different subadditive valid inequalities,
and if n (or ©') is also a minimal valid inequality, then it is an extreme
valid inequality.

Thus Theorem 1.3 says that the extreme points of the set of subad-
ditive valid inequalities include all the extreme valid inequalities. Fur-
ther. among the extreme subadditive valid inequalities those which are
extreme valid inequalities are the minimal ones. This fact allows us to
actually find the extreme valid inequalities for some problems.

1.3. Subadditivity for subgroups U

The problems for which we can find extreme valid inequalities are
P(U, uy) or P* (U, uy) where U is a nonempty subgroup of /. We permit
U =1 and note that O is always in U. We will say that a function = de-
fined on [ is subadditive on a subgroup U of I if
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1(0)=0, n(uw)20, uel,
r(W)+r@) 2 r(u+v), uwvel.

The function 7 is not assumed to be a valid inequality.

Theorem 1.4 [4, Theorem 1.5]. If © is a subadditive function on a
subgroup U of I and if n(ug) 2 1 for some uy € U, uy # 0, then m
is a valid inequality for P(U, uy). In fact, the subadditive valid inequa-
lities for P(U, uy) are precisely the subadditive functions n satisfying
m(ug) 2 1. Furthermore, if © is a subadditive function on U and
m(ugy) > 0 for some uy € U, then n* defined by

¥ (u) = w(u)/n(uy), u€l, (1.9)
is a valid inequality for P(U, u,).

Thus Theorem 1.4 establishes the close connection between subad-
ditive functions on U and valid inequalities.

The analogous theorem for P* (U, uy) will now be developed. Define
7' = (m, n*, 7~ ) to be an extended subadditive function on a subgroup
U of I if w is subadditive on U and if, in addition,

atlulZn(u)y, uel, (1.10)
Wl 2 a(-u), —ueU. (1.1D
Theorem 1.5 [4, Theorem 1.5']. If ©' is an extended subadditive

function on a subgroup U of I, if uy €1, ug # 0, and if both of the
following hold.:

m(u) + 7t lug —ul> 1 wheneveru € Uand lul < lugl, (1.12)

T+ lu—uyl2 1 whenever u € Uand lul'< lugl. (1.13)

then 7' is a valid inequality for P* (U, ug). In fact, the subadditive valid
inequalities are precisely the extended subadditive functions which
satisfy (1.12) and (1.13).
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1.4. Minimality for subgroups U

Theorem 1.6 [4, Theorem 1.6]. If U is a subgroup of I with uy € U
and if m is a valid inequality for P(U, uy), then w is a minimal valid in-
equality if and only if

m(uw) +auy —u)=1, uel. (1.14)

This condition imposes a peculiar symmetry on 7 so that m(u) for
suy < u < ug is determined by m(u) on [0, 3u,], for example.

1.5. The problem P(G,,, uy), uy € G,

Let G,, denote the subset

¢, = (oL 2  nd
n’'n n
of 1. The elements of G, will be denoted g; = F(i/n). Each set G,, for
n 21 is a subgroup of /. By virtue of G, being a subgroup, the results
of Sections 1.3 and 1.4 apply to the present section.
The results from Sections 1.3 and 1.4 are specialized in the following
theorem:

Theorem 1.7 [4, Theorem 2.2]. The extreme valid inequalities for
P(G,, uy), ug € G, are the extreme points of the solutions to

m(0)=0, w(Ee)=0, (1.15)
m(g;) + 7T(g]-) 2 m(g; + &), (1.16)
m(ug) 2 1, (1.17)

which satisfy the additional equations

n(g) tm(uy —g)=1, g€G,. (1.18)
In particular, (1.18) implies n(uq) = 1 since m(0) = 0.
1.6. The problem Pt (G,,, uy), ug €1

The condition (1.2) now becomes
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gtg)t...tg, g, )t F(T) - F(T)=uy,

where g; = F(i/n) as before and where the t(g;) must be nonnegative in-
tegers and s*, s~ must be nonnegative real values. We no longer confine
uy to be in G,. Let L(uy) and R(u) denote the points of G, immedia-
tely to the left and to the right of u,, respectively. If u, happens to be
in G, then L(ug) = R(uy) = uy.

Theorem 1.8 [4, Theorem 2.2']. The extreme valid inequalities 7' for
Pt (G,, ug), ug € 1, are the extreme points of the solutions to the sys-
tem of linear equations and inequalities (1.15) and (1.16) and all of the
Jfollowing:

mt(1/n) 2 n(gy), g =F(/n), (1.18)
ﬂ‘(l/n)Zw(gn_l), g -1 =F((n—1)/n). (1.19)
m(L(ug)) + atlug — L{ug)1=1, (1.20)
T(R(ug)) + 77 1R(uy) —ugl=1, (1.2D)
m(g) + m(L(uy) —g) =n(l(uy)), &€G,,

or (1.22)

n(g;) + m(R(ugy) — &) =n(R(uy)), &€G, .

1.7. Valid inequalities for P(U, u)
We now connect the results about P(G,,, uq) with the general problem

P(U, uy). Here, U-can be any subset of the unit interval, including the
interval [ itself.

Theorem 1.9 [4, Theorem 3.1]. Let n be a subadditive function on
G,. Define

() =n(lu— Lw)| 7(Rw)) + IR(w) —ul n(L(w)) , uel\G, .
(1.23)

Then 7 is a subadditive function on I, and n* defined on I by
) =rw)/n(uy), ue€l,

is avalid inequality for any P(U, u,), U a subset of I, provided m(ug)> 0.
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Thus Theorem 1.9 says that valid inequalities can be obtained simply
by connecting the points (g,, (g, )) by straight line segments.

1.8. Valid inequalities for P* (U, uy)

From valid inequalities for P* (G, 1), a different method for gene-
rating valid inequalities for P* (U, u,) is available. This method will be
referred to as the rwo-slope fill-in:

Theorem 1.10 [4, Theorem 3.3]. Let #' = (m, n*, 7~ ) be an extended
subadditive function on G,. Define w(u) for u € I\NG,, by

7(w) = min{a(L(u)) + 7t lu — L), #(RW))+ 7 {Rw) —ul}.
(1.24)

Then 7' is an extended subadditive function on I, and p' defined by

p'=(m, mt, w) m(ugy)
is a valid inequality for P* (U, uy) provided w(uy) > 0.

Theorem 1.8 shows how to compute faces for P* (G,,, uy) and Theo-
rem 1.10 shows how to use them to generate valid inequalities for any
U. Table 2 of [4] was obtained using Theorem 1.8, and we will fre-
quently refer to the two-slope fill-in of those faces.

2. The problems P(/, u) and P* (/; u;)
2.1. Problem definitions

Let the set U now be the entire interval /. The problem P(/, ugy) in-
volves the congruence

> outw) =u,, 2.1

uel

and P* (/, uy) has the constraint

2 utu)+ F(sT) — FGs™) =ug , (2.2)

uel
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where ¢ is a non-negative integer valued function on [ having finite
support.

The present section intends to reveal something about the extreme
valid inequalities for those problems. Such information could be useful
in dealing with problems involving subsets of /. The relation to P(U, u)
is the same as the relation between the master polyhedra and the corner
polyhedra corresponding to subsets of a group [3]. Here, every finite
cyclic group G, is a subset of /. In particular, if 7 is a valid inequality
for P(, uy), then trivially 7 is also a valid inequality for P(U, u) for
every subset U of 7, including all cyclic groups U = G, or subset U of
G,,. Furthermore, if #' is a valid inequality for P* (Z, u,), then 7 is a
valid inequality for P(U, ug), (w, «*) is a valid inequality for P*(U, u,),
(m, 7~ ) is a valid inequality for P_(U, uy), and n' = (7, 7+, 7~ ) is a valid
inequality for P* (U, u,) for any subset U of I.

The property of being a valid inequality is hereditary, that is, if 7 is a
valid inequality for P(S, u;), then it is also valid for any P(S’, uy) with
S’ C S. Subadditivity for a valid inequality is also hereditary. However,
minimality and extremeness are nof hereditary properties. That is, 7 can
be a minimal or extreme valid inequality for P(U, ug) and still not be
for P(U', uy) with U' C U.

2.2. Properties and relations between P(I, uy) and P* (I, u,)

Property 2.1. If n' = (m, n*, 7~) is a valid inequality for P* (I, u,),
then w is a valid inequality for P(I, u).

Proof. If 7 is not a valid inequality for P(Z, uy), then there is a ¢ satis-
fying (1) with Zw(u) t(u) < 1. Clearly (¢, 0, 0) solves (2.2) as well, con-
tradicting 7' being a valid inequality for P* (7, u,), and completing the
proof.

Recall that we define lul as the real number corresponding tou € 1.
We can then define right and left limits,

lim, lim ,
ulug uTuO

as the point lul approaches luyl on the real line from the right (ful>
lugl) or from the left (lul < lul), respectively.
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Property 2.2. If w is a valid inequality for P(I, uy) and if

* = Hm w(u)/lul = =lim {7(u)/(1 — lul)}
ui0 utl

both exist (that is, if ™ has right and left “derivatives” at 0 and 1, res-
pectively), then w'=(w,I*,1~) is a valid inequality for P* (I, uy).

Proof. Suppose t' = (t, s*, s~ ) solves (2.2) but

Symu) Hu)+Irst+l-s—=1—€, €>0.

uel

We can assume that only one of s*, s~ is positive, say s* > 0 and s~ =0,
since otherwise both st and s~ could be reduced until one reaches zero.
Choose an integer M large enough that

(F(s*/M)) < £
st/M st

" — ,

which can be done since I* exists. Let

Hu) u#+st/M,

fu) = {t(u)+M, u=s/M.

Clearly ¢, satisfies (2.1) since ¢’ satisfied (2.2). But

2 m@) ty(w) = 25 m(u) K(u) + M (st /M)

uel uel

< 2w Hu)+ st re=1,
uesl

contradicting 7 being a valid inequality for P(J, u,).
Lemma 2.3. If 7 is a subadditive function on I and if

limsup {m(u)/lul} =< o,
uil
then

im {m(u)/lul}=8.
ull
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Proof. If the limit does not exist, then

liminf {w(u)/lul} # 8,
ul0

that is, there are points v arbitrarily close to 0 with w(v)/Ivl < a < .
By the limsup being 8, there are also points u arbitrarily close to O with
m(u)/lul> «. Choose any such u and choose 0 < v < u with w(v)/lvl <
a < 3. Then lul can be written as an integer multiple of vl and a re-
mainder

lul = Lufv) ol +y(w), 0< y(u) < lul.
Since 7 is subadditive on /,

m(u) < w(Lu/v)v) + w(y()) < Lufvl n(v) + 7(y(w)) .
Hence, by 7(v)/IvI< «,

m(u) < lufv) alvl + 7(y(u)) < alul + 7(y(w)) .
Since the limsup exists,

(y(@)) < (B+8) Iy@)I < (B+5) vl
for some 6 > 0, provided v is small enough. Hence

n(u) < alul+ (B +6) lvl,

and as v~ 0, we have 7(u)/lul < «, a contradiction to m(u)/lul> a.
Thus the lemma is proven.

Clearly, we have the same property for limsup {m(x)/(1 — lul): u * 1}
and lim {m(u)/(1 — lul): u t 1}.

Lemma 2.4. If 7 is a subadditive function on I and if
lim {m(u)/lul}=§,

ul0
then
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limsup {(7(u) —n(0))/(lul — lWwH} < g

ulv
foranyvel

Proof. By subadditivity, m(u) < w(v) + m(u — v). By 8 = lim {m(u)/lu!:
u {4 0} for any € > 0, there is a 8§ > 0 such that

w(u —v) < (B+¢€) (lul — vl)
for lul> fvland lul — i< §. For suchu,v &1,

() < 7)) + (B +¢€) (lul — lvl),
or
(m(u) — n)/(lul — lwh < B+e.

The lemma is thus proven.
Clearly a similar statement holds for lim {w(u)/(1 — lul): u t 1} and
limsup {(w(u) — w(@))/(lvl — lul): utv}.

Property 2.5. If n' =(m,n*,n~) is a minimal valid inequality for
P* (I, uy), then

ot =lim {w()/lul}, 7 =Ilim {m(u)/(1 — lul)}
uil utl

Proof. By subadditivity of 7', m(u1) < 7+ lul, so

limsup {m(w)/lul} < 7+ .
ull

Then Lemma 2.3 implies that lim {w(z)/ul: u { 0} exists and is less than
or equal to w*. Similarly, lim {m(x)/(1 — lul): u t 1} exists and is less
than or equal to 7~ . If either the limit is less than #* or 7—, respectively,
then Property 2.2 implies that 7' is not a minimal valid inequality, and
the proof is complete.

Property 2.6. If w is a subadditive function on I and if w(u) - 0 as
ul Qandn(u) > 0asut 1, then w is continuous at every u € I.
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Proof. Forany u € [,

w(u +8) — m(8) < w(w) < w(u + 8) + m(—8),
or
—m(8) L w(u) — w(u + 8) < w(=9).

As 6 1 0, we have —8 1 1 (since § is a group element and —6 = 1 — §),
and u+ 8 | u. Therefore, m(u +8)~> m(u) as u+ 68 | u. Now, letting
811 gives ~64 0and u+861u, sothat m(u+8) > mu) asu+461u

Theorem 1.6 applies here, since [ is trivially a subgroup of itself, and
says that a valid inequality 7 for P(/, uy) is minimal if and only if
m(u) + m(ug —u) =1 for all u €1. The analogous results for P* (7, u,)
will now be given.

Property 2.7. A valid inequality ' = (m, 7%, n~) for PY.(I, uy) is mi-
nimal if and only if

n(u) +m(ug —u)=1, uel, (2.3)

7t = lim {w(u)/lul}, 2.4)
ui0

7~ =lim {m(@)/(1 — lul)}. 2.5)
utl

Proof. Suppose 7' is a minimal valid inequality. Then by Property 2.5,
(2.4) and (2.5) hold. Furthermore, Property 2.1 implies that 7 is a valid
inequality for P(Z, uy). If 7 is not a minimal valid inequality for P(/, u),
then there is a valid inequality p < m, and (p, 7%, 7~ ) is a valid inequa-
lity for P* (1, uy) by

35 p(w) tu) + ot st + = 5
uel

2 25 p(u) Hu) + m(F(s)) + m(F(—s))

uel

2 25 p(u) Hu) + p(F(s*)) + p(F(—s~) > 1,
uct
since p is a valid inequality. We can use n* st 2 w(F(s*)), and similarly
for #— s—, because 7' is minimal and hence subadditive by Theorem 1.2.
Therefore, # must be minimal, and (2.3) must hold.
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We have shown that if 7’ is a minimal valid inequality for P* (Z, u,),
then (2.3)—(2.5) must hold. As a corollary, we have seen that m must be
a minimal valid inequality for P({, u).

Now suppose (2.3)—(2.5) hold for a valid inequality =’ for P* (7, u,).
If p' <a'-for p' =(p, p*, p~) a valid inequality for P* (/, uy), then at
least one of pt < #*, p— < 7~ or p(u) < w(u) for some u € I must hold.
The latter possibility is ruled out by (2.3), just as in the proof of Theo-
rem 1.6 in [4]. Hence p(u) = w(u) for all u € I. Hence at least one of
pt <7*, p~ <7~ must hold. We will reach a contradiction by suppos-
ing p* < %, and the proof is similar if p— < 7.

Suppose pt < at. By (2.4), there is some v € [ with p* < w(v)/Ivl,
and, hence, p* vl < m(v). But then #(uy —v) =1, s* = lvl is a solution
for P* (1, u,) satisfying

p(ug —v) tuyg —v) + p* st =m(uy —v) +p*lvl<w(uy —v) +n(v) =1

by (2.3). Hence p' is not a valid inequality for P* (/, u,), completing the
proof.

Property 2.8. If m is an extreme valid inequality for P(, uy) and ©*,
7~ are given by (2.4) and (2.5), then 7' = (n, 7", 7)) is an extreme
valid inequality for P* (I, u,).

Proof. By Property 2.2, n’ is a valid inequality since we are assuming
the existence of the limits in (2.4) and (2.5). By Theorem 1.1, 7 is mi-
nimal, so (2.3) holds. Hence, by the previous property, 7' is a minimal
valid inequality for P* (7, u).

Suppose 7' is not extreme. Then there are valid inequalities p’ and o’

for P* (1, uy) with
' =3p' +30" =5(p, p*, p7)+1(0,0%,07).
Now, p' and ¢' must both be minimal by [4, Lemma 1.4] since 7’ is mi-
nimal. By Property 2.1, p and o are valid inequalities for P(Z, u,). By
hypothesis, m is an extreme valid inequality for P(/, u), so p=¢ = m.
By p' and o’ being minimal valid inequalities for P* (Z, uy) and by
Property 2.5, p* =o* =7 and p~ =0~ =a~ because p =0 = 7. Thus,
n' is extreme.
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Property 2.9. If n' =(m, n*, n~) is an extreme valid inequality for
Pt (I, uy), then m is an extreme valid inequality for P(I, u;).

Proof. Since 7' is extreme, it is also minimal, and by Properties 2.1
and 2.7, m is a minimal valid inequality for P(/, ug). It is, therefore, a
subadditive function on 7 by Theorems 1.2 and 1.4. Suppose 7 is not an
extreme valid inequality for P(/, u,). Then

m=iptio, p#o,

where p and ¢ must be minimal valid inequalities for P(/, u,) by [4,
Lemma 1.4]. Then $p < 7 and

limsup {p(w)/lul} < limsup (27(u)/lul} =27 .
uil ull

Hence lim{p(u)/lul: u I 0} exists by Lemma 2.3; call it /{. Similarly,
lim{p(u)/(1 — lub: u t 1} exists; let us call it /7. Obviously, the same
limits exists for o; let us call them /5 and /3. By Property 2.5 and by
T=%p +3p, it follows that 7+ =4/ + 414 and 7~ =4Iy +3/; . Hence
p'=(m i, 17) and o' = (0, I%, [3) are valid inequalities for P* (/, uy) by
Property 2.2. But #' = {p’ + }¢', which is a contradiction to 7’ being ex-
treme. Thus the property is proven.

These nine results give a fairly complete picture of the relation be-
tween extreme valid inequalities for the two problems P (/, uy) and
P(Z, uy). In addition, the results give some idea as to what these extreme
valid inequalities are like.

3. Extreme valid inequalities
3.1. Construction of some extreme inequalities for P* (U, u)

We will see how to construct some extreme valid inequalities for
P, uy) and P* (Z, uy) from extreme valid inequalities for P* (G, uy).

Let 7' = (m, 7%, 7~ ) be the valid inequality for P* (Z, u,) obtained by a
two-slope fill-in of an extreme valid inequality for P* (G,,, ug).
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Theorem 3.1. @' is an extreme valid inequality for P* (U, u) for any
subset U of I which contains G, and for which

() +a(uy —w)=1, uel.

Proof. We know by Theorem 1.10 that #' is a valid inequality for
P* (U, uy).

(i) We first show that it is also a minimal valid inequality for
P* (U, uy). Suppose it is not minimal. Then there is a valid inequality o'
for P* (U, uy) with p' < n'. By the construction of ', it is an extreme
valid inequality for P* (G,, uy), and hence 7' is a minimal valid in-
equality for P* (G, u,). Since p' is a valid inequality for P* (G, ug)
because G, € S, we must have p'=7" on G,, and p* =7+, p~ =7~ as
well. Hence p(v) < m(v) for some v € U\G,,. By the construction of 7',
for the complementary point u, — v,

m(uy —v) = min {7(L(uy — v)) + 7 (lug —vl—1L(uy —v)1),
T(R(uy —v) + 7~ (IR(uy —v)I — lug —v)}.

Suppose the first term in brackets gives m(u, — v). Then s* = luy — vl —
IL(ug —v)l, t)=1, {(L(uy —v)) =1 is a solution to P* (S, 4y), but

2o p(u) o(u) + p* st +p~ s~
uces

= p() + m(L(ug —v) + 7+ (luy — vl — IL(yy —v)1)

=m(uy —v)tp) m(uy —v) +aw) =1,

contradicting p’ being a valid inequality for P* (U, uy). When n(uy — v)
is equal to the second term in brackets, the proof is similar but uses the
solution s~ = [R(uy — v)| — luy —vl, t(R(uy —v)) = 1, H(v) = 1.

(ii) Next we show that 7' is extreme among the subadditive valid in-
equalities for P* (U, u,). This result, together with minimality, will
show that 7’ is an extreme valid inequality for P* (U, u,) by Theorem
1.3.

Suppose 7' is not an extreme subadditive valid inequality. Then
7' =1p' + 10’ for subadditive valid inequalities p’ and ¢’. Just as in the
proof of minimality, 7’ is an extreme valid inequality for P* (G, u,), so
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at=pt=0t, 7T =p-=0",
W(gi) = P(gi) = U(gi) s

and hence p' # o' means that p(v) # o(v) for some v € U\G,,. Since
n(v) =4 p(v) + $0(v), one of p(v), o(v) is larger than w(v) and one is
smaller. Without loss of generality, we can assume p(v) > w(v) > o(v).
Again, by the construction of #(v), we have either

w(v) = w(L(v)) + 7t (lvl — IL(V)])
or

() = MR@)) + 1= (IR@)! — Iv]).

Let us assume that m(v) is given by the first expression, and the proof in
the second case is similar. By the subadditivity of p’ and by p* = #*,

p(L@)) + 7+ (vl — IL@)) = p(v) .
But p(L(v)) = n(L(v)) since L(v) € G,,. Hence
7(L(v)) + 7t (vl — IL@)D) = p(v) .

But here the left-hand side is equal to w(v) by our assumption of case
(i) above. Hence m(v) = p(v), contradicting p(v) > m(v). The proof is
thus completed.

We can apply this theorem to Table 2 of the appendix of {4]. Corres-
ponding to each extreme valid inequality for P* (G,, uy), n =1, ..., 6,
we can easily give the set U, on which n(u) + n(uy —u)=1, u€S,.
Then for any set U, G, CUC U , the inequality given by Theorem 1. 10
is an extreme valid inequality for Pt (U, ugy). For Gy, G, G5, G3, Gy
and Gg, U, =1 for all extreme valid inequalities of P* (G, 4, ); the first
exception occurs at G5. There are four exceptions for G5 among the 6
faces given by [4, Table 2] and the reflections. These exceptions are
discussed further following Corollary 4.4.

The unique extreme valid 1nequahty for P* (Gg, uy), where Gy is the
subset consisting of only the point 0, is of particular interest. It is readily
seen that this inequality 7" when used in conjunction with a mapping ¢
gives Gomory’s mixed integer cut [1, p. 528]. We see at once that for
this 7', m(u) + w(uy — u) = 1 for all u so that 7’ is an extreme valid in-
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equality for P* (U, u,) for any set S C [ provided O € §, which is ac-
tually not a restriction since 0 can always be adjoined to S without
changing the problem.

3.2. Some extreme inequalities for P(G,, , ug)

When the inequalities 7’ given by the two-slope fill-in (Theorem 1.10)
satisfy m(u) + m(uy — u) = 1, then the theorem just proven says that’ is
an extreme valid inequality for P* (, uy). By Property 2.9, 7 is an ex-
treme valid inequality for P(/, u). For subsets U of I, we know that w
is a valid inequality for P(U, u,), but we do not know that 7 is extreme
for P(U, ug). The following theorem establishes that result for some U
and, in fact, applies for any extreme valid inequality for P(/, u,), not
just those given by the two-slope fill-in.

Theorem 3.2. If w is an extreme valid inequality for P(l, uy) and
conmsists of straight line segments connected at values u belonging to a
regular grid G,, with uy € G,,, then n is an extreme valid inequality for
P(U, uy) whenever Uis a subset of I including G,

Proof. Since 7 is extreme for P(J; u,), it cannot be written as3p + 30
for different valid inequalities p, o for P(J, u). Certainly 7 is a valid in-
equality for P(U, uy), and if it is not extreme for P(U, uy), then

=4p +40 for different valid inequalities p, o for P(U, ug). If both p
and o are valid inequalities for P(/, u), a contradiction is reached. How-
ever, both can be extended to valid inequalities for P(J, uy) by the
straight-line fill-in from G, as in Theorem 1.10. Furthermore, such a
construction maintains # =3p + 40 on all of I since 7 also consists of
straight line segments joined at points of G,,. The proof is thus com-
pleted.

This theorem enables us to construct some extreme valid inequalities
(faces) of the polyhedra P(G, gg) of [3]. It is of particular interest when
one extreme inequality of P* (G, , uy) gives rise to many slight variants,
all of which are extreme for P(Z, u4) and all of which in turn give rise to
apparently unrelated faces of P(G, u). Before showing that possibliity,
we digress to give some results related to the two-slope construction of
Theorem 1.10.
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3.3. Extremality of two-slope functions

Theorem 3.3. Let m be a continuous function on I consisting of a
finite number of straight line segments, each line segment having a slope
7t >0 or else —n— < 0. If w is a subadditive function on I with
m(ug) =1 for some uy €1, then w is extreme among the subadditive
valid inequalities p for P(I, uy) which have p(uy) = 1.

Proof. The theorem asserts that if # =4p + 30, where p and o are
subadditive valid inequalities for P(Z, uy) with p(uy) = o(uy) = 1, then
p(w) =0o(u) for all u €. We know from Theorem 1.4 that 7 is a sub-
additive valid inequality for P(, u).

Suppose that 7 =4p + 40 for subadditive valid inequalities p, o for
P{, uy) with p(uy) = o(uy) = 1. Since 7 has a right-hand derivative #*
at 0,

limsup {p(w)/lul} < limsup 27(w)/lull =27+,
ui0 ui0

and similarly for 0. By Lemma 2.3, p and ¢ both have right-hand deri-
vatives p* and ot at 0. Similarly, the left-hand derivatives p~ and o~ at
1 exist.

We next show that p and ¢ have the same form as 7; that is, continu-
ous line segments of slope p* or p~ (ot or 6~ ). Choose a point u# within
an interval where 7 has slope 7. Let 6 > 0 be small enough that u + 6 is
in the same interval and that &' itself lies in the very first interval. Then,
w(u) + 7(8) = w(u + 8) by the fact that = has the same slope 7t on
(0, 6) and (u, u + 6). Hence

30)+io@) +41p(8) +30(8) =3pu +8)+to(u+3d),
or
$(o(u) + p(8) — p(u +8)) +3(o(w) + 0(8) —o(u+8))=0.

By subadditivity, each of p(u) + p(8) — p(u + 6) and o(u) +0(8) — o(u +8)
is non-negative. Since they sum to zero, each must be zero. Hence

lim {(p(u + 8) — p(u))/181} =1im {p(8)/161} = p* ,
540 5§40

lim {(o(u + 6) — a(u))/181} = lim {0(8)/i181} = ot .
540 5§40
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Similarly, we can show that the left-hand derivatives of p and ¢ at u are
pt and o*. Therefore, p (resp. o) has a constant derivative p* (resp. o%)
on the interval, and so it is a straight line with this slope. A similar
result is obtained for any x on an interval where w has slope —7~ . Here
one works with subadditivity through the inequality p(—8) + p(u + 8§) =
p(u), and concludes that both the left and right derivatives at u are p—.
Hence both p and ¢ are of the same form as 7 with two slope straight
line segments over the same intervals.

We now show that p* =¢* =a* and p~ =0~ =7—. Let [] be the
total length of the intervals on which the slope of 7 is #* and which lie
to the left of u. Similarly, let I be the length of those intervals to the
right of u, on which 7 has slope n*, and let /; and /g be the corres-
ponding lengths of intervals on which 7 has slope —7—. Since m(uy) =1,

o lp=1, wlh-mlg=—1,

and the same equations hold for p*, p~ and 0%, 0~ . But these two equa-
tions have only the solution 7%, #~ because in order for them to have
more than one solution, one equation would have to be a linear mul-
tiple of the other. But then /{ +/; =0and —/f — Ig =0, implying that
all of If , Iy, If and Iy are zero. Hence p* =*, p~ =7, and o* =77,
o~ =7

We have two immediate corrolaries.

Corollary 3.4. If © meets the conditions of Theorem 1.10 and if
(W) + w(ug —w) =1 for all u €I, then = is an extreme valid inequality
for P(I, uo).

Proof. If m(u) + w(ug — u) = 1 for all u € I, then by Theorem 1.6, 7 is
a minimal valid inequality for P(/, u,). The subadditive valid inequalities
p for which p(uy) =1 include the minimal valid inequalities by Theorems
1.2 and 1.6. Since by Theorem 1.10, 7 is extreme among those inequa-
lities, # cannot be written as a mid-point of two other minimal valid
inequalities. By [4, Lemma 1.4] and the minimality of =, 7 is an ex-
treme valid inequality for P(Z, u).

Corollary 3.5. If m meets the conditions of Theorem 1.10, if w(u) +
m(uy —u) =1 for all u €1, and if 7", —n~ are the two slopes of © with
at >0, 7= > 0, then ' =(n, n*, n~) is an extreme valid inequality for
Pt {, ugy).
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Proof. This is immediate from Corollary 3.4 and Property 2.8.

Before leaving this section, let us point out the difference between
Theorem 3.1 and Corollary 3.4. Corollary 3.4 and Theorem 3.2 would
prove that 7 of Theorem 3.1 is extreme when U includes the cyclic
group including all of the break points of m, not just G,. However,
Theorem 3.1 applies only to those 7 constructed using the two-slope
fill-in, whereas Corollary 3.4 applies to arbitrary two-slope functions
which are subadditive and minimal.

4. Generating extreme inequalities and exponential growth for faces of
some P(G, ug)

We begin by discussing some of the possibilities for creating extreme
inequalities for P(J, uy) from extreme inequalities of P* (G,,, uy) when
the condition n(u) + m(uy — #) = 1 does not hold for all u € I for the
constructed by the two-slope fill-in.

By way of background, we observe that the 7 given by the two-slope
fill-in of Theorem 1.10 does satisfy m(u) + 7(uy — u) =1 whenu € G,,.
This fact is a consequence of (1.20)—(1.22) because they imply

m(g;) = min {m(L(ug)) — m(L(ug) — &) ,
7T(R(uo)) — m(R(uy) — g;)}
=min {1 —7*(luy — L(ug)) —1(L(uy) —g;) ,

=7 (IR(ug) —ug ) —m(R(uy) —g)} .
Hence

m(g;) + min{m(L(ugy) —g;) + 7 (lug — L(ug)l),
T(R(uy) —g) + 7= (IR(uy) —ug )} = 1.

By the construction of 7 on /\G,, and by L(uy — g;) = L(uy) — g; and
R(ug — g;) = R(uy) — g;, the minimum in the equation above is precisely
m(uy — g;). Since w(u) + m(uy — u) =1 for u € G,,, equality also clearly
holds for u =uy — g;, g € G,. These points are located between con-
secutive grid points L(u), R(u) in the same relative position as u is be-
tween L(uy) and R(uy).
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Figs. 1(a) and (b) illustrate the possibilities for 7 on the intervals g;_;,
g;> 841 and the complementary intervals ug — uz,, Uy — Uy, Uy — U,
ug —u;_ 1, where we letu, | =g; +uy — L(ugy) and u; =g8; — R(ug) +uy.
Then uy — uyy € Gy, say g =ug —uy and g =uy —u; € G,. If, as
in Fig. 1, the maximum of 7 in (8, 8i+1) occurs at u = Uy, then
m(u) + m(ug —u) =1 for all u € (g;, g41). In order to see this result,
consider any interval (4, 851 ) wWhere u;q =g; +ug — L(ug) = 8iv1 —
R(ug) tuy, and the complementary interval (ug — g, g — Upy)-
The difference m(u;y) — m(g;) must be the same as m(uy — gq) —
(g — Usq ) because m(gs, ) + m(uy — giq) = 1 and 7(wy) + w(uy — u;) =
1. Since m can have only two slopes, ™ must be the same, except for a
constant difference in height, in the two intervals (u;,, g41) and
(g — 8pry> Ug — Upy).

The second possibility is illustrated in Fig. 1| by the interval (u;, g;)
and its complementary interval (v, — g;, 4y — u;). In both intervals, 7
has two slopes and a relative maximum occurs within the interval, In
this case, we must have n(u) + m(uy — u) > 1 for all ¥ within either in-
terval. For at u =u;, m(u) + m(uy — u) = 1, but as u is increased, both
m(u) and m(uy — u) increase until one of m(u), n(uy — u) reaches a maxi-
ma. Then w(u) + m(uy — u) remains constant as u increases since one of
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m(u), m(uy — u) is increasing while the other is decreasing at the same
rate. When the other w(u), m(u, — u) reaches its maxima, then w(u) +
m(ug — u) decreases until u reaches g; and u, — u reached u, — g; at
which point w(u) + m(ug — u) = 1.

An interval (u;, g;) or (g;, u;;) with only one slope for m will be
called an interval of the first type; here, u;, =g; +uy — L(uy). The
complementary interval will also be an interval of the first type, and for
u in an interval of the first type, m(u) + m(uy —u)=1. An interval
(u;_1, 8;) or (g;, uyq) with two slopes for 7 will be called an interval of
the second type. Then its complementary interval is also of the second
type, and for u within an interval of the second type, m(u) + m(uy —u) >
1. We note that the intervals (L(ug), ug) and (uy, R(uy)) are of the
first type, and so are their complementary intervals (0, uy — L(ug)),
(1 = R(ugy) +uy, 1).

An interval (u;, g;) will be its own complement if g; + g; = R(u,) since
then uy — g;=uy — R(ug) +g; = u;. The interval (g;, uz ;) will be its
own complement if g; +g; = L(u,) since then ug —g; =uy — L(uy) +
g; = u; . These self-complementary intervals may be of either the first
or second type. In what follows, we will exclude the self-complementary
intervals in the discussion of intervals of the second type.

With this background, we can construct a function 7, from  which
will lead to some interesting results. Let a = (g;, #;1) be an interval of
the second type and let 8 be its complementary interval. We assume that
a is not its own complement, so a # . Then m(u) + m(uy —u) > 1 foru
within either a or 8. Define 7, on [ by

m(u) , ueNa,

o (W) = 1 —w(ug —u), uca.

Fig. 2 illustrates m, in this case. Let u, denote the u where m,(u) is
smallest in a.

First, two lemmas are needed. The first applies to any 7 and does
not depend on the particular construction here.

Lemma 4.1. Let S be q subset of I and let m be a subadditive valid
inequality for P(S, ugy). If
)+, —u) 21, uel\s,
W) +r@) 7w +v), ucI\S, vel\s,

then w is a valid inequality for P(I, uy).
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Proof. Consider any ¢ solving P(J, uy). If #(u)> 0 and #(v) > 0 for
both u# and v in /\S, then we can change ¢ by reducing {(u) by 1, redu-
cing #(v) by 1, and increasing #(z + v) by 1. The new ¢ is still a solution,
and since m(u) + m(v) 2 w(u +v), 2, c1m(u) t(u) has not increased. This
process can be continued until £, <7, g#(1) < 1. At that point,

2 w(w) () = 7@) + 25 m(w) Hu),

uel ues

where v € I\S. By subadditivity of # on S,

2 u t(u))

ues

> ) ) Z nw) +w (

uel

=a() +m(uyg —v) 21,
by () +m(uy —u) 21 for u € I\S. The lemma is therefore proven.
The second lemma applies to the particular function 7, constructed
here. It actually applies to any two-slope function 7 in an interval in

which the function first decreases and then increases.

Lemma 4.2. If 27, (u,) = m(2u,), then 7 (1) + 7, (v) 2 7, (u + v) for
all u, v € a.

Proof. For any u € a, u # u,, either lul < lul or lul> lu,l. Let us
assume lul> luy!. The other case is similar. Then
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= +
() =, (u,) +at(lul — lu,l)
and forv € a,

Vo1, v) =7 (u) + m, (v) — 7, (u +v)
=m,(uy) + ot (lul — lu, 1) +m,(v) — 7 (u +v)
=m,(u,) +m, () — (m (u+v) -7 (u+vl— lu, +vl))

2 7o () + T (0) — T (1, +0) =V, (g, v)
by

+
To (g tO) + 7t (lu+ vl — luy, +vb) 2w, (u, +v).

Similarly, we can show ¥, (u,,, v) > V,(uy, u,). Hence if V, (u,,, u,) >0,
then V,(u, v) 2 0 for all 4, v € a.

These two lemmas suffice to prove the following theorem.

Theorem 4.3. If 2w, (u,) = n,(2u,), then m, is a valid inequality for
P, uy).

Proof. By Lemma 4.1, we need only show that T, (W) t7, (ug —u 21
for all u € « and m(u) + m(v) = m(u + v) for all , v € a. The first inequa-
lity is true, in fact with equality, by the construction of 7. The second
is true by 27, (u,) = 7, (2u,) and Lemma 4.2.

Corollary 4.4. If « and its complement § are the only two intervals of
the second type, then w, is an extreme valid inequality for P(, ugy) if
and only if 27, (u,) 2 n(2u,).

Proof. If 2m (u,) 2 7,(2u,), then by Theorem 4.3, 7, is a valid in-
equality for P(/, u,). Furthermore, if a and  are the only two intervals
of the second type, then T, () +m,(uy —u)=1for all u € I, so m, is
minimal. By Corollary 3.4, 7, is an extreme valid inequality for P(J, ugy).

We now consider in more detail the case described in Corollary 4.4.
To begin, two cases will be shown from [4, Table 2]. When n = 5 and
ug €(0, ), face 2 from [4, Table 2] is illustrated in Fig. 3. Of course,
when u, € (8, 1), the reflection is also a face of P* (G5, uy). Fig. 3 ac-



384 R.E. Gomory, E.L. Johnson

8f
6_
41 /
] /
L u
2 g
C Fay By
0 ug 1/5 2/5u, 3/5ug 4/5
Fig. 3.

tually shows the construction of Theorem 1.10 for Uy = 15. It is easily
verified directly that the two complementary intervals a and 8 are the
only two on which m(u) +m(uy —u) =1 does not hold and that 27, (u,)=
m(2u,). Here, u,, = 55.

Fig. 4 shows another example for n = 5 and Ug € (%, ). Its reflection
is, again, another example. This figure is face 6 from [4, Table 2.2].
As in Fig. 3, a and § are the only two intervals of the second type, and
2m (uy) 2 m(2u,).

In both Figs. 3 and 4, the role of « and B can be reversed, and we still
have 2w (u,) = m(2u,). In other words, if 7, is defined analogously to
m, with ug =4 in Fig. 3 and u; =4 in Fig. 4, then 2mg(ug) 2 m(2uy).
The next theorem shows that in this case a great many extreme valid
inequalities can be generated which differ from 7 only in the intervals
a and S.

I0F
8
-
(=
4+ \\
L \ y
\

2 v
O- 1 | hq‘)l J*B.-,I

175 2/5 Ya3/s UB4/5 !

Fig. 4.
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Theorem 4.5. If o and 8 are the only two complementary intervals of
the second type and if w, and Mg are each valid inequalities for P, uy),
then any continuous, piecewise linear function p on I having only the
two slopes nt and n— satisfying.

o(u) = (), weNaUp),

pw)=1—puy —u), u€a,

is an extreme valid inequality for P(I, u,).
Fig. 5 illustrates such a function p in the example shown in Fig. 3.

Proof. We will consider only the case previously considered; that is,
« = (g;, u;.1) so that the left end-point of « isin G,. Fig. 3 is this case,
but Fig. 4 is not. The case a = (y;, g;) is similar and will not be con-
sidered.

First, we will show that neither a nor § is a subinterval of (0, g;) or
(g,_1, 1). Since a and f§ have an element of G, as left end-point, if
either was a subinterval of (0, g;), then it would have to be (0, u;).
However, this interval is of the first type as was remarked before Lemma
4.1. Hence the only possibility is that « or B is (g,_;, 4, ). We will now
exclude that possibility.

Corollary 4.4 says that 7, is extreme and hence subadditive. We will
show that = then is linear on (g,_;, 1) with a slope —7—, and hence

neither a nor B could be (g,_;, #,). To see that 7 is linear on (g,,_;, 1),
recall that

T (8;) + Mo (g — ;) = m(g;) + m(up — g)=1=m(uy)
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and that w, and m are decreasing on (1, — g;, uy — u;) because of the
shape of 7 in 3. Hence,

T, (g) tm (ug — u;) =7, (R(ugy)) .
But
mo (U, ) = m,(g;) — 7~ (lu, — gl),

and by subadditivity, one of the following inequalities holds:

T (Uy) +m, (g —u;) > ﬂ'a(R(u()) — (U, — &),
mo(8) — 1~ (lu — ;1) + o (g — 1) 2 7 (R(ug) — (g —8)) 5
T (R(Wy)) — 1~ (luy, — g;1) 2 1 (R(uy) — (U, — &) -

By m, having only two slopes, the reverse inequality also holds, and
hence m, is decreasing on the entire interval (R(u), R(1y) + g;). This
fact and subadditivity imply that = is decreasing on the entire interval
(8,_1> 1), completing the proof that neither « nor § is a subinterval of
(8y_1,> Dor(0,g).

To return to the proof of the theorem, by Lemma 4.1 we can prove
that p is a valid inequality by showing p(u) + p(uy — u) 2 1 and p(u) +
p(v) 2 p(u +v) for u, v € a U B. The first inequality is obvious from the
construction of p. What remains is to establish p(u) + p(v) = p(u +v)
for u, vE€ a U . There are two cases: (i) u, v both in a (or both in ),
and (i) u €a and v € .

In case (i), we only consider u, v both in « since both in g is exactly
similar. By p being continuous with the same two slopes as m,,

pu) + p(v) 2 T (u) + 7, (V).
By 7, being valid, and hence extreme,

m,(u) +m, (v) = (U +v).
If u +v € I\(a U p), then 7, (u +v) = p(u +v), so p(u) + p(v) 2 p(u +v).
If u+tvep, thenw (y+v)=7(u+v) > p(u +v), so again p(u) + p(v) =
p(u +v). The third subcase u + v € « is excluded by a not being a sub-

interval of (0, g;) or (g,_;, 1). For any a which is a subinterval of
(8;, 841 ), but not (0,g;) or (g,_;, 1), u+véa whenu€a andv € a.
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Next we consider case (ii), # € « and v € . In this case there are two
subcases: 1vl 2 lug — ul, and Ivl < luy — ul. First, consider lvl = luy — ul.
Since v and uy — u are both in f,
v — (ug — )l < IR(ug) — ug!
p(u+v) = plug + (v — (ug —u))) = 1 =7 (lv — (g —u!).
Hence we need only show
p) +p) 21— (lv — (ug —w)) .
But p has only two slopes, so
pP) 2 p(ug — u) — 1= (lv — (uy — wl),
p(u) + p(v) = p(u) + p(uy — u) — = (lv — (uy — W)
21 —a(lv—(uy —wl,

completing the proof in this subcase. Next consider lvl < lug —ul. Ina
similar way, we can now show that

putv)=1—-m"(uyg —u) —vl),
pW) = p(uy — u) — mt(l(uy — u) —vl).

Hence, as before,

p(u) + p(v) 2 p(u) + p(ug — u) — *(I(ug — u) —vl)

=1 —n*(l(ug —u) —vh=p(u tv).
Hence p is a valid inequality for P(/, u,). To show that it is an extreme
valid inequality, we need only remark that p(u) + p(uy —u) =1 and
apply Corollary 3.4. The theorem is thus proven.
The development here can be extended to the case where there are

several intervals of the second type. However, its present form suffices

to show an exponential rate of growth for some of the polyhedra
P(G,, g) of [3]. We show this fact by means of the following example.
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‘Example 4.6. Consider the group G, for n=20K, K2 1, and let
Uy =15 € G,. We said that the functlon p in Fig. 5 gives an extreme
valid 1nequa11ty for P(J, uy). The same is true for a great many func-
tions p. In Fig. 6 we illustrate the intervals e and 8 from Fig. 5. Let us
restrict p to be straight lines with breaks at points k/20K. In Fig. 6,
K =3, and we are perfectly free to let p have slope 7#* or —7~ in the
3 intervals (&, ), (33, %), (%, ). The only restriction on p here is
that it must have slope 7#* on as many intervals between % m and i%a
on which 1t has slope 7~ . Since p has been determined on & to 33, 1t is
given on 3% i3 by 1r(u) +m(ug — u) = 1. In general, there will be K
intervals between % and 7 on which p can have either slope. Thus there
are at least 2K such funct1ons p. By Theorem 3.2, each one is a face for
the problem P(G,yk, 15). In fact, there are more than 2K | namely
(2K)!/(K'K"), such functions p. This number results from the fact that
we can choose any K of the 2K intervals between & and 3§ for p to
have slope 7*. As K becomes large, this number approaches 22K A (@K)
by Stirling’s approximation of n!.

There is an abundance of such examples from [4, Table 2]. In parti-
cular, for n = 7, there are several similar cases. A similar construction
works as long as there are two complimentary intervals o and 8 with 7,
and m; valid and provided the u, and all other break-points of w fall on
group elements,
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