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ABSTRACT

Two points a and b ina set § are said to be
r-connected if there is a finite sequence of points
a=D., p. ..., pn = I owith pi ¢ 5 and the distance
p(p,, v, -E-}) <1, b=0, ..., n.l . Inthis paper we deal
with scts C whose removal from the planc R? r-separates

two points & and b oin R? - G . More procisely, we
shail study the structure of r-separating setg containing

no proper - separating subsetfs.






R-SEPARATING SETS

R. B, Gomory, T. C. Hu and J. M. Yohe

INTRODUCTION

The definition of r-connectedness is a familiar one; see, for example,
Newman {1]. Two points a and b in a set § are said to be r-connected if
there is a finite seguence of points a = po, pz, Ceey pn = b with pi e 5 and

the distance p(p,, p,P y<r, i=0, ..., n-1. Inthis paper we will develop
SRR B R

1
properties related to r-connectedness. We will deal mainly with the notion
of r-separation (two points in a set S are r-geparated if they are not r-con-
nected) and with planar r-separating sets, which are, roughly, sets C whose
removal from the plane RZ r-separates two points in RZ - C . The protoivpe
of such sets might be the annulus of Figure | which separates a from b .
However, much more complicated r-separating sets are also possible. (Tigure 2).
Ot course, r-separating sets, as described, can have few interesting
properties since almost any sufficiently large set will do. However, the sets
shown in Figures 1 and 2 have an additional property: they are irreducible;
i.e., each one contains no r-separating proper subset . 1t is the irreducible
r-separating sets, which have a very detailed structure, that will be described
below. Some subjects related to r-separating sets are cutlined in [2].
In Part T we will develop the general properties of irreducible r-separating

sets. Among other things, we will prove that their boundaries are alwavs unions

of Jordan curves. With this established we will be able, in Part II, to exhibit a

The work of the second author is sponsored by the United States Army under
Contract No. JA-31-124 - ARO-12-462 and by National Science Foundation under
Research Grant GP-8557,
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much more detailed structure. We will show, roughly, that all irreducible r-
separating sets consgist of simple tube-like sections of width r (such as the
Tj in Figure 2) hooked together by polyhedra cach having an even number of

sides of length r . (such as the Pi in Figure 2).

#939 "3



PART 1

We now turn to more exact definitions. Using p(p, g} for the Fuclidean

distance of two points in the planeg R?? we will say that the secuence of

forms an r-chain from p. to p_ if p{p,, p, <y
2 EO i‘n P(.]‘.FH‘A}L} o

0

points p 4 ceag ]
o° " T

We will say that a and b are r-connected in a set 5 if there is an r-chain
with the properties

iV p.=a, p =b, and

( } 'E {) ki ],1 3

{ii) P, € S for all i

If p,q are two points of R? . then by p—q we will mean the line segment

from p to o. If Por -0 P is an r-chain, we will also use r-chain to denote
n-1

the path congisting of UEO n.D, S The context should resolve any ambigulities.
o I 1l

We will sav that a set ¢ R, r-separates a and b if
Y

(i) C is closed and bounded,

(i1} a and b are nol r-connected in R? - C

i (0 r.separates a and b then we will use A to denote the set of points
which can be r-chained to a in RZ -, and we will define B analogously.
Tf % is a set, we use F(x) to denote the frontier, or boundary, of x .

We will be able to see in retrospect that condition (i} of this definition
does not meaningfully affect the structure of the separating sets, but it does
facilitate the analysis.

An irreducible r-separating set ¢ is defined as one that contains no -
separating set as a praper subset. It is the structure of these irreducible sets

that will be analyzed.

e
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Theorem 1. Svery r-separating set containg an irreducible r-separating

set.

Theorem | follows by routine arguments from the following ecasily

eatablished lemma;

Lemma L. If ¢ is any collection of nested r-separating sets, i.e.,

™y

for any G, (O ¢ ¢ we have either C'C C or CCC', then C = v Cois
Ce
an r-gseparating set.

A further useful property of O is given by Theorem 2, which we state

withoul proot:

If p helongs to the irreducible r-separating set €, then

elp, Ay v oand p(o, B) <7

ently the set A of points r-connected to a in RZ - C has the property
thal any two points in A can be connected by an r-chain with vertices lying in
AL We will call a set with this proverty an r-connected set. Theorem 3 is,

then, somewhat analogous to the Jordan curve theorem in that it asserts that

the removal of an irreducible r-separating set separates the plane into two

reconneciad open sels.

in order to prove Theorem 3, we need two results that are used repeatedly

in what follows. These are given here as Lemmas 2 and 3.

Lemma 2. Let p] D? and q] q? be two intersecting closed line

segments, both of length Then for some one of the four end points, say

EA
-

p]'_‘ eithor

(h D) is an intersection point and it coincides with either 4 or g, , or

#939 s



(2} the distances p(p], q]) and p(png} are bhoth < r .

In either case, the distances p(p],ql) and p(p},q?) are <r so that vy is

within distance r of all the end points.

Prool;  Assume (by relabeling, if necessary) that p1 is an end point

nearest the point of intersection.  The conclusion follows casily from
elementary geometrical considerations.
The purpose of the next lemma is to enable us to deal with r-chains that

do not cross themselves. An r-chain ;:)O, o) p_ is said to crogs itsell if the
n

15 s

path consisting of the union of the segments p'p,* i=0
i1+

i » -, 0-1 1s not an arc.

If there is an r-chain p = poj p}, coen D= g o fromoa point p
i "n

to o point g, then there is an r-chain from P to g, whose veartices are a

subset of the original pj_? which does not cross itself.

The proof of this lemma is elementary, and we omit it.

Theorem 3. 1f C is an irreducible r-gseparating set which r-geparates

a ‘rom b then R? - C = A UB, where A isthe r-component of R? -G con-

taining a and B is the r-component of RZ - O containing b .

Proof: 'We will show that if D = RZ ~AaUpUC) isnot empty, then A
and 1D are r-connected. To do this, we will produce a simple closed
curve | which consists of an arc in D together with an r-chain K in A U C ,
such that there arc points in both components of R2 - ] which can be r-chained

to b in B U PC) . We will then obtain our contradiction from the fact that

this r-chain must cross 1

b #939



Let pe D, and let Ky X, be points of C which do not lie on the
same line through b . Lot qi ke the first point of RZ - D encountered in
traversing the segment from p to Xp and let q? be defined analogously

{see Pigure 3},

Since 12 ig interior to D U C, czl and ¢, must belong to C . There-
fore, by Theorem 2, p(q]} A} <r and so there is a point qi on TF{A) with

A

P(qia Qi)

{

r . Bince g, is also on the frontier of D, we must also have
p(q}S q;{) >r, so p(qr qi) = 1. Since U.i is in F{A), there is certainly a
noint q;‘ of A within distance r and from there an r-chain of points of A
leading to a .

Inexractly the same way there is a g on F(A) with p(g

2 q'z) =r and
from it an r-chain to

a .

D

Figure 3
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sonseqguently, there is an r-chain g A P P

}-5 29 qZS QZ -

Using Lemma 3, we will replace this r-chain by a non-self-intersecting r-chaijin

D = q whera n > 2

of the form A= Py ooy " by

In order to get a non-gelf-intersecting r-chain of the desired form, we

first show that E;Eqi'  and dzq'z do not cross each other. Note that ql and

q? belong to (D) and q]' and sz belong to T{A) . BRoth Eziqi and MO_;;

Tq]' and orzc.r; cross each other, then according to

are of length r . Tf a
Lemma 2, one endpoint of one of the segments will be within 1 of bhoth end -
noints of the other; hence we will have, say, p(qi, Cf‘z} <r . But p(ql9 qé) >r
since qj ¢ (I and cr,'& ¢ P(A) . The contradiction proves that the two seg-
ments do not cross.

Now to obtain the non-self-crossing r-chain, we first apply Lemma 3 with
Ry {.rl and o, U‘é and then (since the fact that p(q], XYFr for xe A

guarantees that qi will be in the resulting chain) apply Lemma 3 with Py = OT’ and

pp = CF? . Since G‘lqi and q?q; do not cross each other, we wiil get a non-

seli-intersecting chain K from g, to q. which contains o

1 - 1 T -
h > I and a, (Note

).

that we may have q] = q;

We now show that the modified r-chain K, together with the arc ;}}pti? s

forms a simple closed curve J. To do this, we must show that the modified

r-chain does not intersect q]pqz except in the points g For any seg-

,}-5 qz .

moent pipi--ﬁ-i s 1#0,...n-lat least one of the endpoints belongs to A and

honce is at a distance greater than r from any point of D . Since the length

-8~ #939



of the segment is <71, it is impossible for any such segment to intersect

9.1 . e segments and int t
P9, The seg PP p_ b, Intersect g pa

o in ql and g

Z 2

respectively, but lie entirely in C .

The vertices of the simple closed curve [ all belong to D oor A , and
any point of T either lies in D or has one of these vertices within a distance
<y, Conseguently no point of B can lieon J. The peint b itself must be
in one of the two domains RI and RO into which T divides the plane. We
can suppose, without loss of generality, that b e RO" the outer domain.

Returning now to our original point p e D let us construct a straight line from

P into RI” the interior domain (Figure 4)

%
p M
9

Figure 4

Let 03 be the first point on this line not in D . q% must still be in RI ,

for if the line were all D material up to its intersection with ], it would
bring ¥ material toc close to the points Ppro-es P g which are in A
Since q3 ig also in €, there is a point pi of F(B) with p(qg, p]‘) <r, and

hence there is an r-chain G, = ‘,i)'o, p}‘A, e p;n = b from a, to b with all p‘i ,
1>, belonging to B

#939 -9~



Since . ¢ R.{ and b ¢ RO’ the chain from q3 to b must cross .

is in I, so the chain cannot intersect Elpq? since

Moreover, all of E;pmq—;

1

in the contrary case we would have a point d ¢ D such that p(d, B) <r .

Thus there must be a segment, say }3’{5;{” of the chain from g, to b and
T J

a segment, say pjp},H of the chain from g, to cg2 which interesect. The

i

intersection is not a common vertex, since all pé helong to B exceot p&}

which does not lie on ], and no vertex of ] belongs to B

By Lemma 2, then, there is one endpoint of one of the segments at a

distance of less than r from both endpoints of the other segment. The "close”

endpoint cannot belong to bjpjal , since if it did there would be a point of
A or of D {namely p.  or p,H) at a distance less than r from p;” ¢ B

Thus the "close" endpoint must be pJf or p}"” . However, this point cannot

belong to B by the same reasoning as above. The only remaining choice is

ph =, . But then by Lemma 2, d(g_, A} <r and hence, since there is clearly
’ A ]
an r-chain from p to g, in D, we see that p can be r-chained to a in

2

DU A . The contradiction proves the theorem.

We now know that an irreducible € splits RZ into two r-connected
sets, A and B, with nothing left over. We next approach the problem of
obtaining more detailed properties of C . This is done by a detour. We will
prove something about A and B that will establish F(A) and F(B) as well
b'ch'aved; this will then give information on F(C) . Then with F(C) established

as well hehaved it will become possible to establish more detailed propertios

of C .
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An important property of the sets A and B which prevents them from
becoming too unruly is given in Theorem 4.

Theorem 4. Let p

— 1

and P, be points of one component of A with

2) <71 . With radius v draw two circular arcs a and o, through

both points. kach arc should be < wr/3 inlength. Then there is a path P'F

from by to D, that lies entirely in the closed sector bounded by ay and o,

and consists only of points of A . (figure 5).

[0

e M/

&y

2

Figure 5

Proof: Since 2] and P, belong to the same component of the open set

A. there is some simple path P from p, to D, in A {Figure 6). This path

I

can and will be taken to consist of straight line segments of length <t

D

Figure 6
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We will proceed to analyze a special case from which the general theorem
can be deduced,

We consider the case in which P does not touch the sector bounded by
csl and (}'2, except at pl and pz . We can assume, without loss of generality,
that b lies in the outer domain D(} of the Jordan curve T formed from P and
the segment EJ—]p;j

Bither < or o, must lie inside J . Let us assume that the arc lying

inside is @, as in Figure 6. Since all of a., lies within r of Py, @, can

A 2
consist only of points of A or of C . If there are no C points on @, then
the theorem holds ; so let us suppose there is a point pg e C ] @, - Since
pg ¢ C, there is a segment of length < r connecting p3 to a point g of B
or of T(B) . Thus there is an r-chain pfﬂ = qo, qi, e qn = b . Just as in the

proof of Theorem 3, this r-chain must cross | . If a segment of this chain crossed

a segment of | other than 5{5 we would have a point of A (namely, the

intersection point) at a distance <r from B . Thus p,aq must cross plp7

as shown in Figure 7.

N

Figure 7
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Let ¢ be the center of the circle of which @, is an arc. g cannot lie

cp,, for then its distance from p. and p

in or on the isoscles triangle P 5 :

2

would be v or less, but p*i and p,, as interior points of A, have distance

>r from B U FB). So g lies outside PCD, and the edge P,d intersects

either the edge plc or the edge p.c . Let us assume it is p?c . Then,

applying Lemma 2 to the edges of p_g and E)WZ we find that case (1) cannot
2 3

hold gince neither g nor p3 can ceoincide with ¢ or p 0 case (2) is the

29

only possibility. But 103(: has length exactly r and 55; must have length

> 1 . Sonone of the four vertices ¢, q, b, or p, can be within distance <r
of the two vertices of the opposite edge as described in Case {Z) . So case (2}
also cannot apply. Thus the existence of such a g contradicts Lemma 2 and
we conclude that p3 d <

since we have shown that a, oA, it forms the P* of our theorem in the
special case we have been considering.

We next turn to the general case in which P intersecis o) or az

(Figure 8).

Figure 8
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In this case P is formed by using the segmented path P up to the point ™
where it first leaves the sector. All P is in A so in particular ™ and the
point of next return to the sector 'rrz are in A . By connecting ?Tl and nz

by arcs of radius r we create the situation of the special case with m and

T, playing the role of pl and p2 . Consequently, one of these new arcs «'

Figure 9

is in A and carries P>:< up to T, - If P does not go out of the sector again,
then P* is completed with the remainder of P; otherwise, the process is re-
peated. Since P consists of a finite number of straight line segments, there
will only be a finite number of intersections with @ and a, - Therefore,
after a finite number of repetitions pz will be reached and the path P* fully
constructed. This establishes the theorem.

We are now in a position to say something about F(A) and F(B) and
hence about F(C) which is F(A) U F(B) .

Theorem 5: The boundary of each component of A or B is a simple

closed curve.

14 - ‘ #939



Proof: The proof is based on a converse to the Jordan curve theorem. A
version by Newman [p. 166] asserts that if a domain in ZZ (the two dimensional
projective plane) is simply connected and uniformly locally connected, then
its frontier is a simple closed curve, a point, or null. We will proceed to
show that the components of A and B meet the conditions of this theorem.

We first discuss the question of uniform local connectedness. A set
S is said to be uniformly locally connected,if for any & > 0 and any point

p e S, there is a &(¢), independent of p, such that if p(yl, p) and p(yz, p)

are both <§/2 and yl and yz ¢ S, then y1 and y, are joined by a con-

2

nected subset of S of diameter < e . Theorem 4 shows that the components
of A and B are uniformly locally connected; for if we take a point p in a

component of A, and y, and vy, within distance &, then the path P’ of
? 1

2

Theorem 4 provides the connected component and actually lies within a circle

of radius 6§ = ¢ .

We next turn to simple connectednéss and consider a component of AO

of A . If we draw any simple closed curve in AO" all of B U C must be

either in its outer domain RO or its inner domain RI . First note that any

attempt to split B between RO and RI leads to the usual difficulties with
some connecting chain crossing J which isin A. So B lies in one domain

only, say R If even one point of C were to lie in RO’ it uld require

L Sy
a point of B within distance r, which again is impossible beca®

intervening J C A; so CC R, also and (BU C) must lie entirel¥

entirely in RI .

#939 -15-



If BYUC isentirely in R r then every point in RO bhelongs te A

(Figure 10)

Tigure 10

Asg RO then takes in the entire plane, except for a single bounded region, this
can occur for only one component of A U B . Also, since we have confined
curselves to bounded C, this outer area must belong to A= A U AO and
therefore, this case does cecur for exactly one component., To apply the
theorem to the unbounded component, we take as the corresponding set in Z’2
the line at infinity plus AO . T can now be contracted to a point in this set.
if AO is the hounded component and we draw a | with B U C inits R(}’
then | can be contracted to a point in R ’ which contains only points of A .
In, ail other cases, il we are dealing with the bounded components, (B U
will necessarily be in RO; so | can be coptracted in RI; 80 AO or, more

precisely, the corresponding set in Z?’ is simply connected.

b
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Thus, the theorem applies and each component of A (or B) has ag its
frontier a simple closed curve or a point or the null set. Possibilities other

than the curve are ruled out by choosing a point pe A{) and two distinct

points qi and q? in the complement A’O of AO such that p, g

and g

v 2

are not collinear. Each of 5&{: and qu must contain a point of TF{A )

0

which, therefore, has at least two points. This establishes the theorem.

#939 -17 -



With something now established sbout the regularity of A, B and ¢ and
their boundaries, we furn o a more complete analysis of the structure of C .

Let us define a connector to be a closed segment of length r connecting
F(AY and F(B) . Then it is easy lo prove:

Theorem 6. For every point p on TF(A) (or F(B)) there exists at least
one connector with p as one of its ends and the other end a point of T(R)
(or T(A)}). Furthermore, all points on the connector other than the endpoints
belong to C - F{C) .

Note that this theorem does not imply that every point of C must be on

a connecior,

Len’i_lpmamij Two connectors plq]ﬁ and p;—ci: wiih distinct end peints

can have no points in common.
Proof; If two connectors have a point of intersection other than an end

point, then it follows from Lemma 2 that there exists a point p, ¢ F(A) with

1

p(p}, p2) <r and p(p]? q?) < ¢, This contradicts the agssumption that A and

B are r-separated.

Let (31 C G be the set of all points of C which lie on a connector,
and let C_ = C‘ - C .
’ 2 ]

Lemma 5. C1 ig closed and C2 is open.

-

The proof of Lemma 5 is elementary, and we omit it.

is a connector, and XO ¢ int poq(} is an intevior

Lemma 6. If Eﬁ{;q(}

point of C]? then all interior points of _p—nﬁoﬁq; are interior points of C]

~18- #939



Proof; (See Figure 11} since XO is interior o C], There exists an ¢ >0 such

that I\I6 (XO)C Gl' Suppose ye int Hg&g is not an interior point of Cl . Then

there exists a sequence {y‘i} —~ v with v, 4 C]; we may suppose that all of

these points lie in one of the twe half-planes determined by the line containing

) 58 ..
Pody o Sev Hy

TN (XO); we parameterize x_ X%
€

Pick x. ¢ I\}G (xo) i HO. Then x_x 0%y

i 01

by «, 0<a <1 Toreach KQ we have a connector p ¢  such that

@ o

pa Nxx =x
oo 01 I

Now there exists a & such that Né(y) fl ({p{)’ qo} UnN (xy U pquwz %
c
Moreover, we want & so small that every connector which intersects Né(y)

must ran through N (XO} .
€

This choice of & guarantees that no point of N’é(y) may belong to A
or B, since this would contradict r-separation. Hence all v, c Né(y} are

_-points.
> 1

Pick any such yj, and from it draw a perpendicular line to quO . Let

the first connector this line hits be p ,g ; similarly determine v g
“o %o *1 %

these connectors must be p g 's, since in the contrary case we will con-
o o '

tragict r-geparation).

Now p a and p g may nol Cross; moreover, no connectors are
“5 %o oy 7

sandwiched boetween these two. DBut then the gap between these conneciors

near y. cannot be closed by the time we reach x . The contradiction
. Yl 01

proves the lemma.

#939 " -19-



Figure 11
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ook

Lemma 7. Let C be a component of CZ . Then each point of F(C) lies

o

on a connector which lies on F(C) .

Proof:  We first show that if a connector has an interior point on F(C)

s

then the entire connector lies on I{C) . By Lemma 6, we know that such a

connector lies on F(C If a connector were to lie partially, but not com-

pletely, on F(C), then, since F{C)C T(C,)C C we would have two con-

2 I

nectors which cross, coniradicting Lemma 4,

Now suppose there is an x ¢ F(C) which does not belong to any con-
nector which lies on F{C)Y . Then x is the endpoint of a connector; more -

over, there is a neighborhood N\{ of x such that any connector which inter-

sects N containg no boundary point of C  on its interior. TFor

« , supposing

that no such neighborhood exists, we can find a sequence of points converging
to ®x such that each belongs to a connector containing a boundary point of
(: on itg interior, and therefore lying on P((}J) . These connectors converge
to a connector containing x; this connector also lies on F(a) .

We may suppose without loss of generality that T(O) N Nx is an arc.

Thus we can find a neignhborhood

Nx of x such that N is divided

S

in two pieces by an arc on F{C7} s

4

where one of these pieces is in, say,

A and the other is in C; moreover,

cach point p of (G, - FCY Nx is

1

o

an interior pointof C - € . Since Figure 12

4939 -21-



components of C? are open, we can conclude that each pointof (C - C - F(C)) 1N

£

an interior point of C-C, or that F(C) N NX C P(CY . Then we must have

rCHy N N\{ =)y N N\{ . But this is impossible, since this implies x does

not belong to a connecior.
Lemma 8. if pe (A belongs

to two connectors K‘z and KZ’ and

there exists an e » 0 such that

Ne{p) l ¢ contains a sector S

bounded by both K, NC and K, [ C,,

then the angle at the vertex of 5 is

< w . (See Figure 13).

Proof:  Suppose pe F(A) and

the angle is greater than w . Then all

B

points in a neighborhood of p will be "
Figure 13

within a distance r of B, contradicting the assumption that C r-sceparates
A from B.

Lemma 9. FBach component of C? is convex.

~

Proof: ~ Suppose X,y belong to the same component ©  of C?, but

;3? 7 C . Let 2, ov!e ;{y be such that ;ZGF NC = ¢ . There is a path a on
F{C) which connects x' and y' such that the interior of the simple closed
curve x'v' U o lies outside of C . The path & consists of connectors

(and portions of connectors) by Lemma 7; it follows that there must be a pair

of adjacent connectors Ki, Kiﬂ’ an ¢ >0, and a sector S of Ng(p) nc
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such that the angle at the vertex of S is greater than w . This contradicts

Lemma 8. (See Figure 14).

Lemma 10, The closure of each

component of C? is a convex poly- ///
hedron with an even number of sides /

A
cach of length r . e
Proof:  Since C is compact,
the closure of a component & of O ’/X‘

is closed and bounded. By Lemma 7, /

.t
s

. : , . Figure 14
the boundary of ¢ consists of

et

connectors, each of which is of length r. By Lemma 9, C is convex and
hence so is its closure. Hence C  can have only finitely many sides. Since
vertices of  T(C) are alternately in A and B, it follows that there must be

an aven number of sides.

Definition. A nondegencrate tube of width v is the closure of a dif-

ferentiable embedding h of [0,1] X {(-r/2, r/2) or gl X (-r/2, r/2) into R,
which is

(a) an isomelry on the second factor,

(b} such that for each o< [0,1], {a} X (-r/2, r/2) is normal to h([0,1]x{0}),

and

(¢} each point of W0, 1] X (-r/2,v/2)) - h{0,1] x(-r/2,r/2)) is a boundary

point of R? - h{[o, 1] X (-r/2,v/2}) .

#939 w23



A tube of width r is either a nondegenerate tube of width r or a connector.

Theorem 7. If C is an irreducible r-separating set, then C = C1 U C2 ,

where

(a) the closure of each component of C, - F(C} is a tube of width r which

i

has one bhoundary component on A and the other on B

(b} each compenent of C? is the interior of a convex polvhedron with an

even number of sides, each of length v, which intersects F(C) only

in its vertices,

Proofs Each point of C, lies on a connector by the definition of ¢

FIOO8 1 [

then C. consgists either of the interior

If CE is a component of C

of a single connector, in which case there is nothing to prove, or, since no

1

two connectors may intersect except in a point of F(C), an interval {or
circle} of connectors. Certainly since each connector has length r, we may
parameterize the interior of each connector via an isometry of (—r/Z, r/2) - RZ .
By deciding in advance to map the positive side of this interval toward A, say,
we may assure the possibility of a cohesive array of intervals. That these
mappings may actually be extended to a differentiable embedding of [0,1] (or 8)
X (-r,r) follows from the smoothness of the center line {the radius of curvature
of the center line must be > r/2 at each point) and the fact that the isometries
match up there.

The normality condition follows from the fact that p(a, B) =t for all

ae Bd A.
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The propertics of components of C? follow from Lemma 10, Lemma 7

and the fact that interior points of connectors are also interior points of C .,
The theorem is proved.

We note that we mav actually have an infinite number of Cz~components
{(Figure 1%) and that these components may get arbitrarily near one another;
note also that a connector which is on If’{G?} need not be on the boundary of

any component of Cz . We also observe that isolated connectors are indeed

possible (Tigure 16).

Figure 1%

An r-separating set with an infinite number of CZ»Componemzs
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Figure 16

An irreducible r-separating set with an isolated connector
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