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Abstract, In this paper we show how knowledge about T-space translutes directly into culling plancs for
general integer programming problems. After providing background on Corner Polyhedra and on T-space,
this paper examines T-space in some detail. It gives a variely of constructions for T-space facets, all of which
translate into cutting planes, and introduces coatinuous families of facets. In view of the great variety of
possible facets, no one of which can be dominated either by any other or by any combination of the others, a
measure of merit is introduced to provide guidance on their usefulness. T-spaces based on higher dimensional
groups ate discussed briefly as is the idea of going beyond cutling planes (o iterated approximations of Corner
Polyhedra.

Background, literature, and the contributions of this paper

Corner Polyhedra based on finite groups were introduced by Gomory [1]. That paper
introduced finile T-space, Master Polyhedra and many of the fundamental properties
of Corner Polyhedra, and made clear the possibility of generating culting planes for
small groups. 1t also indicated some methods whereby knowledge of Tacets for small
groups could be lifted up to form facets for groups of any size. Gomory and Johnson [2]
introduced continuous functions and the use of the unit interval (Mod 1), in place of the
finite groups of [1]. They introduced infinite dimensional T-space and the fundamental
concepts of valid inequality, subadditivity, minimality, and facets, which we will use
here. Although this work was molivated by the desire (o escape the limitations of finite
groups, and especially of small fintte groups, and to provide systematic practical meth-
ods for cutling planes, it was not until 1972 that Gomory and Johnson [31} spelled out
the direct connection of the T-space theory with the practical issue of generating cuiting
planes. A uselul rigorous treatment of infinite dimensional T-space can be found in [6).
Further work on the mixed integer case appears in [3]. There is related material in [7]
and information on practical experience with the earlicst cufting planes in [8].

In Section 1 of this paper we review the needed results from the papers [1], {21 and
|31, We show the direct connection of T-space with cutling pianes and with the hicrarchy
of valid inequalities. We oblain the needed results from [2] and [3] by arguments that
set the stage for Section 2.

In Section 2 we introduce the Facet Theorem, the cylindrical space S, and the Interval
Lemma. These are the main tools that underlic the more detailed exploration of T-space
that follows.
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In Section 3 we start the detailed exploration of T-space, We give a first construction
(Construction 1) for a simple family of facets. Facets in this [amily are inequalities that
vary continaously with one parameter. There is a facet for each parameter value, no onc
facet dominates another, and cach one generates inequalitics for integer progrannning.

We next introduce a more complex construction (Construction 2) for a two parameler
family of facets. In proving that Construction 2 does yield facets, we introduce lemmas
relating to subadditivity that are more generally useful. Then, using this material, we
introduce a third construction (Construction 3) that gives us a two parameter family of
three-slope facets.

Next we show how homomorphisms of the unit interval can be used 1o generate
facets that are multiple replicas of some starting facet,

Il 'we were dealing with a finite polyhedron, any facet would be linked to any other
by a sequence of intermediate facels that are adjacent to each other. Since our T-space
polyhedron is infinite dimensional, the passage from one facel 1o another through inter-
mediate facets is continuous. So there shoukd be a continuous path of imntermediate lacets
linking any two of our facets. We give an example of such a path of intermediate facets
linking an important three-slope facet through a variety of different looking intermediate
facets 1o the basic mixed integer lacet.

Having shown the greal variety and extent of the possibie facets in Section 3, we
need some measures of their goodness. In Section 4 we introduce two new measures for
facets, a Merit Index and an Intersection Index. The Merit Index is related to the number
ol paths on a facet and therefore in some rough sense {0 its size. The Intersection Index
reflects the number of paths {wo facets have in common, and therefore relates to how
much they intersect or how close they are. We define these indices and compute them
for some of the facels and familics of facels that have been produced.

In Section 5 we briefly discuss higher dimensions, and in Section 6 we give some
perspectives that are suggested by this work and indicale some possible areas for further
activity. We also state an important and challenging conjecture.

1. The cutting plane process and its justification
1.1, A practical construction process for cutiing planes

We will start by showing a practical construction process for both pure integer and mixed
integer problems. Then, later in this paper we show how (o construct the class of special
functions, referred 10 here as the -functions, that are used in the construction process
and that appear in Figure 1.

Assume that we have a basic feasible solulion of the linear programniing problem so
that we have basic and non-basic variables. We will work with the non-basic variables
to produce a new valid inegualily which is not satisfied at the present basic feasible
solwtien in which, of course, all the non-basic variables are zero.

Choose a row of the transformed matrix corresponding 1o a basic integer variable
whose vatue in the basic solution is fractional. Then: (1} For a non-basic integer vari-
able ¢, find the fractional part f of its coefficient. Use the m-function valuc 7 ( f) as the
coelficient of 1 in a new incquality. (2) For a non-integer non-basic variable with positive
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coefficient mulliply the coefficient by the right hand stope of 7 at (), and enter the result
as the coclficient of that variable in the new incquality. (3) For a non-infeger non-hasic
variable with negative coefficient multiply that coefficient by the {ncgative) slope of
at 1. Then complete the new inequality by choosing 1 as its right-hand side. The basic
variable does notl appear in the ineqguality.

Fxample 1. Suppose a row of the transformed matrix is x| ++4.728 — 2,936, + 0.5 113 +
0140, + 1. ke — 145 == 2.79 where x; is a basic, integer variable, 71, .. ., 4 are non-
basic integer variables, t1 and 1 are non-basic continuous variables, and 2.79 is the
value of x; in the basic solulion. The fractional parts of the coefficients of 1y, ..., 14 are
(0.72, —0.07, —0.51, —0.14).

New Inequality: Using s (i) values and slopes 1/0.79 and —(1/0.21) gives the in-
cquality.

0.9114# -+ 0.08861 + 0.6456/3 + 0177244 + 139241 + 6.6667:~ = 1

This process yiclds a new inequality if 7 is a valid irequality for the Group Problem
Mod 1. This will be explained in more detail in section 1.3.

1.2, Origins of the inequalities: T-space and the master polyhedron
We start with an additive Abelian group G which can be finite or infinite. We form sums

of elements # € G by taking for each u € G a nonnegative integer 1 («) and then adding
up the 1(i)u for all group elerents 1. We only consider sums having a finite number
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of non-zero £{i). We refer 1o the vector {1 (i)} as a path thal leads to the sum element
Hy = ¥ (.

If G is a finite group, as it was in {1], we can form a vector space having one dimen-
sion for cach non-zero group element. There is a one-to-one correspondence between the
non-zero group elements and the coordinates of vecters in the vector space. The various
paths {7 (x)} arc then represented by the integer fatlice points in the first quadrant of that
finite dimensional vector space. We refer to this space as T-space (Figure 2). H G is
infinite, as it was in |2} and [3], T-space formed in the same way is infinite dimensional,
and the paths form a regular integer lattice in that infinite dimensional space. In this
paper (¢ will always be the real numbers (Mod 1), so T-space will be infinite dimen-
sional, We can single out those paths that add up to any one particular group clement
uy, that we will call the right-hand side element or rhs. These paths form a sub-latlice
in the integer lattice of paths in T-space. In Figure 2, the dots represent all the paths in a
two dimensional T-space. Fhose paths that add up to the rhs have circles around them.
The convex hull of these first quadrant elements forms a polyhedron that is uniquely
determined by the group G and by the choice of up. We call this pelyhedron the Master
Polyhedron PG, up).

Figure 2 illustrates a corner polyhedron with two variables. If we could visualize
T-space over the interval [0,1), it would be an infinite dimensional version ol this poly-
hedromn,

1.3, Valid inequalities and subadditivity

For a given function m{x) defined on G with zero clement {), we will say 7 is a valid
Junction if it leaves the polyhedron P(G, ug) on one side, as illusirated by the heavy
line in Figure 2.
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More formally, we will say that 7 is a valid function with rhs element ug i and only
if:

(i) is contimuous and nonnegative, 7 ({)) = 0, 7w (ug) = 1, and (n

Zr(u)u =y implies ZH(M)I(HJ > 1.

The valid {functions (o, 7{un)) that we study arce always subadditive. Subadditivity
simply means that 7(ieq) -+ 7w(i2) = 7w + up). Validity and subadditivily are natu-
rally and tightly connected. If 7 is subadditive and has 7 {0) = {, then, for any path
31O = up, we have Y w0 (1) = w(ug). Wai{un) > 0 we can divide both sides of
the inequality by 7 (1) (o make the right-hand side | and obtain a valid inequality. So
subadditivity implies validity, While it is possible to construct valid inequalitics that arc
not subadditive, they can always be strengthened into subaddilive ones, so we will work
exclusively with functions sr(u} that are subadditive. Our functions 7 (i} will always
have bounded stopes and are typically made up of a finite munber of line segments.
"Throughout the paper, we will often refer to a valid function & as a valid ineguality
7 (u), to demonstrate the analogy between these valid functions for infinite polyhedra
and traditional vahid inequalities for discrele polyhedra.

1.4. Curting planes

We next discuss the connection belween subadditive functions (1) and cutting planes
for inleger programming.

Consider the m row, st + i column integer programining problem whose constraints
are Bx -+ N1 = b. Here x and £ are the basic and non-basic variables and b is the vector of
right-hand sides. All variables are required to be integers. Then the transformed problem
is Ix -+ (B~VN)t = B~'h where I is the identity matrix. If the x are to be integer, the
non-basic vartables t must satisly (BN = B (Mod 1).

if we denote the columns of BN by ¢; and B~ b by ¢o we have

Z tie; = co (Mod 1) . )

This looks very much like the path condition of (1) with the ¢; playing the role of the
u’s, the 4 playing the role of the 7 (x), and the ¢y the role of the rhs element ug. The only
difference is that the ¢; and ¢g ate me-vectors being added (Mod 1) while the u and ug
are real numbers being added (Mod 1),

However there are simple mappings that send veclors of m-space into elements of G
while preserving addition. For example, if we choose from any m-vector the k™ compo-
nent, and then map that element (Mod 1) into G, this mapping x of m-vectors into group
clernents will be addition prescrving, It also sends the O-vector into the 0 of G. Mappings,
such as x or ny, that are addition preserving, satisly x (g1) + x (g2} = x (g + g2), and

! Fhat we nced only consides functions with bounded slope can be proven theoretically [61 It is casily
shown that a subadditive function & has bouaded stopes if its siopes at the origin and at T are bounded. What
a bounded slope at the origin means is that the quotient 7 () /u, for « > G, does not become unbounded as
becomes small.
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map some group into G, are catled group characters. Taking any such mapping x we
have {rom (2)

> xtet) = x(co). (3)

Since each x{c;1;) is a group clement of G, the reals (Mod 1), the 4 of the integer
solution have given us in (3) a path in G (o the rhs element x (co). For any valid 7 (1)
then we can use subadditivity to oblain:

PREIVICTIIESE (4)

For the variables #; that are integers, since we are adding #; copies of the same group
clement,
m{x (cidde = m(x(cifp)) and (5}

> mlx e > 1.

Since the 7w (¥ (c;)) in (3) arc non-negative constants, this is a new culling plane involving
the non-basic variables 1;. So we have proved:

Theorvem 1. All Integer Cutting Plane Theorem: If w(u) is subadditive, and x (¢;) is a
character sending the columns of B™'N into G, then the inequality (5) on the non-
basic variables 1 is a valid cutting plane for the all integer programming problem whose
constraints are Bx + Nt == b.

If we 1ake as the character x {¢}), x{c;) = F(c¢ .40 the fractional part of the element
¢;.k» then this is, for the integer variabies, the cutting plane generation process described
at the beginning of Section 1.

Note that in the reasoning that led to the Cutting Plane Theorem we did not use
the non-negativity ol the basic variables, only their integrality. The geometric object
oblained by relaxing the non-negasivity constraint on the basic variables is called the
Corner Polyhedron associated with this basic solution, see [1], [2], [3) and [4]. It is the
faces of these Corner Polyhedra that we will be pursuing in our quest for cutting planes.
In Appendix A we extend the analysis to cover the treatent of non-integer variabies.

1.5, Hierarchy of inequalities ~ minimality

If every valid inequality o gives an incquality or cutling plane, or perhaps scveral
depending on the choice of row &, we want to be able to generate the functions .
Since we will soon see that they are in fact rather casy (o generate, we will also nced 1o
decide which are better than others so we will describe a hierarchy of inequalities.

There are three levels of inequalities, valid, minimal and facet (or extreme). Geo-
metrically they are quite easy to understand. Valid is the weakest level of inequality, it
merely means that the inequality leaves the polyhedron to one side.

A minimal inequality is stronger, it means that there is ne other valid inequality that
is uniformly better. More formally 7 is minimal if there is no valid 7y with s < 7, and
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Fig. 3.

wi{u) < m{i) for some 1. In practice the extremely useful criterion for minimality is the
one dertved by Gomory and Johnson [2, 3], In Figure 3, the tuee types of inequalitics
are illustrated.

Theorem 2. Minimality Theovem: The necessary and sufficient condition for a valid
w{u} to be minimal is that w(u) is subadditive and that the symmetry condition, (1) +
wlug — u) = m{ug) = 1, holds for all u € G, where ug is the rhs element in (1).

Sketch of proof for the finite group case: The concept behind this theorem is clear
cnough when we are dealing with firite groups G. Suppose 7 has symmelry. If 7 is not
minimal there is amy < o with 73 () < s (w) for somie u. Then w{u) -+ 7w (ug — u) =
gr(ig) = Flurns into my(u) + m{ug — 1) < 1, which means that sy is not valid. So
symmetry implics minimality. Now suppose for an clement i in a finite group with n
clements we did not have symmetry. Then () + 7w(ng — 1) = 1 + §. I we reduce
the value of 7w on uy by §/n to form iy, we have for any path (o ug that uses u) r times,

alu)y + [(r— D) + z tOT )] = wu ) + alug — ) = | 46,
{(wsuy)

Since changing 7 (o 7y decreases the left side by 8§r/n and we can assume r < n, we
have

)+ O = Dm@) + Y tm@) = 1+ —r/n)@) 2 1,
(nsfut)

which shows that the new smaller 7ty is a valid inequality, Therefore 7t was not minimal.
Therefore minimality implies symmetry and ends the prool. The proof for continuous
groups involves the same ideas but is much more complex.
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The symmetry condition is quiic strong. First of all, it impiies that any minimal s (i)
passes through the two points %(uo, 1) and %(I + #q, 1) thal are halfway up the two
straight lines connecting (0,0) and (ug, 1) in Figure 4. In Figure 4, 7 (1) is the dark line,
and Pi and P2 mark the two halfway points. Second, it implies that if half the curve
(1) 1s known, so is the other half through s (u) = 1 — s{ug — u). We will refer to u
and (i — u) as complementary points. All minimal 7{u) must exhibit the odd sort of
complementary symunelry scen in Figure 4.

L.6. Hierarchy of inequalities ~ facet definition

Fucers are stronger stifl and they are what we will emphasize. The intuitive idea of a
facet is that it is a valid inequality & whose contact with P(G, up) is maximal. Facels
arc atways minimal. Since facets are valid inequalities we always have for any path
{14}, 3 ()i ) = 1. However facels usually have lots of paths {1 (1)) for which
equalily holds, i.e., ¥ w Q) (u) = [. We will use the phrase a path {1 (1)} lies on an
inequality 7t 1o mean that 3 w{u)r{u) = 1. We will sometimes denote this by 1 « .
In this paper? we use as our concepl of facet the idea that 7 is a facet when there is
no other inequality 7* which has all the paths on it that 7 has, plus an additionai path
or paths. More formaily, lel £ () denote the set of paths lying on an inequality, then:

Pr*y > Pir) implies % = .

While this turns out to be a useful deflinition of a facet, we can not ist all possible
paths to find out if' a () is or is not a facet, Without looking at the paths themselves,
we need to know if a given inequality 7 (1) is or is not a facet. Some simple observations
will lead us closer to thal goal.

L7, Path properties

Paths lying on a face have some special properties. Consider clements 1 and w3 that
make up part of a path p lying on a valid subadditive inequality 7 (1), We will denote the
fact that iy and w2 are part of the path p by (uy, u2) € p,sowehave (ws, 2} € p e .
Suppose that uy and uy on p had a strict inequality 7r{uy) + 7 (ua} > 7 (ug + nz). Then
the substitution of the element (i -+ 1) for the two separate clements u; and ¢ would
produce a new path to ug that would have a smatler sum 3 s {u)t (1), a sum less than
1. Butsince 7 (u) is valid, 3" () (i) = 1 for any path {2 (i)}, This is a contradiction.
We conclude:

Lemma 1. Pairs Lemma; Paths lying on subadditive valid inequalities contain only
pairs uy and wy that satisfy w(uy) - m(u2) = m{ug + u2)

With this background established we are in a position to create the tools needed for
investigating T-space and lor facet creation.

2 While this delinition s different from, although eventually equivalent to, the one used in [3] it is the one
that leads much more casily and inuitively to the Facet Theorem which we need for facet construction.
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2. Tools for facef creation
2.1. Facet theovem

Cur main tools for facet creation will be the Facel Theorem and the Interval Lemma.
To prove the Facet Theorem we need a lemma connecling equalities which relate two
clements of the same path, with all the equalitics of the form (i )+ (12) = 7w (| +uz)
satisfied by a function nr (1),

Denote by E(p) the set of all equalities 7w {i} -+ 7w (u2) = 7w {1y + wa} where both
iy and uy are used in the path p. Denote by E(x) the set of all possible inequalities
wlity) +m(ua) > w{uy + uz), that are satisfied as equalities by m. Here »y and w2 are
any elements of G. We can now state the useful lerma.

Lemma 2. Eguations Lemma: If n is subadditive and minimal, the set of equalities
E(p) obtained from all paths p Iving on 1 is the same as the set of equalities E(w).
Svymbolically

U £ = EG.

peir

Progf. Clearly any equality sr{uy) -+ m(n2) = 7 (uy + uz) oblained by the Pairs Lem-
ma from a path p € n is parl of E(w). Now consider any equality (u;) + 7 (un) =
a(uy + uq) from E{r). Since 7 is minimal, iy < w2y + wlug — (g - u2)) = 1.
Therefore w(iy} 4 w(up) -+ w(ug — (g + w2)) = 1. Therefore 1 and u3 lic on this
path of lengih three, and their equality 1s inciuded among the equalities obtained from
alt paths. This ends the proof.

We have now laid the groundwork for the Facel Theorermn which we will use repeat-
cdly below 1o identify facets.

Theorem 3. facet Theorem: If nw is subadditive and minimal, and if the set E{n) of all
equalities has no solution other than w itself, then m is a facet.

Proof. Suppose x is the only solution to the equalions £(rr), but it is not a facel. Then
there is a facet w™ that contains all the paths on  and at least onc additional path p*
that does not lie on . However, by the Equations Lemima, all the paths on 7 already
generale £(r). Therefore 7™ satisfies the equations of £ (). But £ (5r) has only the one
solution 7r. So 7 == 5t* and # is a facel.

We will use the Facet Theorem extensively to show that the valid inequalities we
construct in the next section are in fact facets.

2.2. The cylindrical space § and a diagram

In constructing facets we will make exiensive use of the space § of all points (i, 1)
where # € G and A is any real number, Figure 4 shows the diagram we use to represent
§ and inequalities (u, m (1)) in 8. The A values are plotted vertically, and the group
elements, represented by their real values between 0 and | are plotted horizomtally. In
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Fig. 4.

the diagrams, points tying on the vertical line through the origin in S, = 0, always
appears twice. The origin O = (0, 0} in 5, appears once in the diagram at (0,0), which
we will name O1, and again at (1,0) which we refer 1o as 02, If 1 is a group element
then the corresponding number in the interval § < x < 1 we denote by n{i).

Any pointin S, such as R in Figurce 4, has its corresponding group element #(R8) and
its height A(R). In § we can add any two points A and B, taking care that the horizontal
components are added (Mod 1). Since the vertical components are added in the usual
way, S resembles an infinite cylinder. In S, in the immediate neighborhood of the origin
or of some other point P, the behavior of vectors and fine segments is exactly the same
as in the plane. For exampie the concepts of slope and of length in § are the same as in
the plane and can casily be made rigorous. However for larger objects, the topology of
the cylinder makes a difference,

In S, the arigin is connected (o a point A not by one straight line, but by many. Some
lines head off clockwise, some counterclockwise, and lines can wind around the cylinder
different mumbers of times. In fact, for any point A = (u, k), inslcad of there being one
straight line from the origin to A, with one uniquely determined slope, there is a straight
line from the origin to A having slope i/ (n(u) - n), where » is any integer. In Figure 4
we see three such lines from (0,0) te (0.7,1). For n = 0, we get the line Q, P1, R with
slope 1/{0.7), forn = —1 we get the line 02, P2, R with slope 1/(~0.3), and forn = 1
we get the dashed line (01, P2, {0, .6), R) with slope 1/(1.7).

We have to keep these possibilitics in mind as we work in §. However they all
depend on the cylindrical 1opology. Whenever we explicilly confine ourselves to a re-
gion of § that can be mapped one-one onto a region of the plane, line segments and
veetors have the usual planar properties. For example, within a vertical stiip of the cyl-
inder with width strictly less than 1, two points have only one conecting straight line
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segment lying entirely within that region. When such a region is specified, the line seg-
ment or vector lying entirely within it will be referred 10 as the direct vector or line
segrent for that region.

2.3. S-Vectors

In creating facets we will often need to multiply a vector by a non-integer scalar. Mul-
tiplying a vector by an integer is mercly repeated vector addition, and therefore gives
a unique result. However, in S, there 1s no unique meaning o multiplying a vector v
by a non-integer scalar A because of the multiple lincs In Figure 4, R is (0.7, 1. Both
P1 = (0.35,0.5) and P2 = (0.85, 0.5) are vectors 4 R. Multiplying cither by me(iuccs
R. 1f we bad chosen A as 1(] instcad of ' we would havc had 10 choices lfor (IU)R’ and
if A were irrational there would be a couniab!c infinity of choices.

To deal with this we attach a slope 5 10 the vector v, and then interpret Ay as chang-
ing the distance 1o the origin, measured down the line of slope 5, by a factor of A. Of
course we can only choose among slopes s that do connect the point R to the origin.
Morc precisely from a vector v = (#, ) we define an s-vector, {v, s}, as a vector
v = (4, h) and one of the slopes, s = h/(n(u) + ») for some integer . We define
Ao, st by (AR/fs(Mod 1), A0) = (A(n{u) +mMod 1), Ah). For example, multiplying
R = (0.7, 1) forthe slope s = 1/{—0.3) by [/2 yields (0.5(—0.3) Mod 1, (.5) = (0.85,
0.5), which is 72. Doing the same [or the pair (0.7,1) and v = 1/0.7 yields P1.

2.4, Interval lemima

The inequalities 7 (i) that we deal with always consist of successive straight line seg-
ments, many having the same slopes. To prove that = (1) is a facet we will show that
the inequalitics that (1) satisfics determine its values uniquely, Then we will appty the
Facet Theorem. In showing the uniqueness of m (i) we will make extensive use of the
Interval Lemma.

Lemma 3. Interval Lemma: Let U = [uy,u2l, V = [v1, v], and U 4+ V == {i| +
vy, uy 4 v be three closed intervals on G. If, whenever n € U and v € V, we have
() +m{vy = m{u + v}, then w(u) must be a straight line with some constant slope s,
foralluinlU, V,and I 4 V.

Interval Lemma would be obvious if we knew that o (1) had aderivative instead of be-
ing merely continuous. In that case, differentiating the equality (w7 (v) = m{u +v)
with respect to « would vield 7'(u) = 7'(x + v). This means that for a fixed « and
varying v the slope at u + v remains the same and produces a straight line segment. So
the only difficulty lics in proving the lemma without differentiability. Since this Lemma
is simply a restatement on G of a well known result about linear functions, we will not
give the proof here.
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3. Families of facets
3.1 A family of facets

We now construct our first family of facets. Let B = (ugp, 1). Let vy be the s-vecior
{rom the origin € to R with siope 1/(3(ug)); this is (@1, R) in Figure 5. Let v be the
s=vector from O 1o R with slope 1/(n{ug) — 1); this is (2, R) in Figure 5,

Constrection 1: First construct the point P1 = {i/2)v,. Then forsome &, 0 < A < 1
construct the points A = P1 + (I/2)hv2 and AA = PI — (1/DAvs. In order (¢
produce a single valued non-negative s («), A is limited to the values that keep A
and AA in the diagram, specifically #(A) = 0 and h(AA) > 0. This requires thai
A< Min{l, nued/(1 — n{up)))

Theorem 4. Construction 1 Theorem: The n (i) formed by the divect segments connect-
ing the successive pairs of points in the sequence O, A, AA, R, Qis a facer.

Remarks. (1) m(u} appears in the diagram as 01, A, AA, R, 02 because of the Ltwo
appearances of @. (2) In this theorem, and in others to follow, each direct segment is
defined relative to a specific vertical strip. For cach segment it is the vertical strip con-
taining al! points (i, ) with n(u} on or between the 1(u) of the endpoints. (3} Define
w) o the the direct vector from (1o A (this is Q1 10 A in Figure 5) and w2 (0 be the
direct vector from O to P2 {this is 02 to P2 in Figure 5). Thus, wy = (1/2)vs. (4)
When we have two points py and p2 on a line segiment, we will use w[p(, pa] to refer o
the group interval [1{p 1), 1 (p2)] directly below that segment.

Proof: (A) Minimality and Subadditivity,
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(1) Minimality: Since A + AA = 2P1 = R, A and AA arc complementary points.
The points on [, A} are complementary to those on [AA, R} and the intervals [A, P}
and [P 1, AA] are complementary as are iR, P2] and { P2, O]. Since 7 is symmet-
ri¢, by the Minimality Theorem, it is minimal. {2) Subadditivily: To check subaddi-
livity we first obscrve that any point on 7 1% either of the form Q1 - puyy, or the
form Q2 + pws, or of the form AA 4 pwy, or AA 4+ pun for p = 0. Therelore
any sum py 4 pp is of the form (@} O + pwy + vwo, (b)) AA -+ pwy - Twg, or
{¢) 2AA + pw) -+ vy with p, © > 0. We can readily sec from Figure 5 thal any sum
of form (a) or (b) will lie on or above . By construction, the point AA = P1 — Awsy.
Therefore, 2ZAA = 2P1 — 2 w2 = R —Avy = (1 — Ay, since 1p = 2wy = R. Hence,
2AA lieson (R, O, (R, 02 in Figurc 5), for & = 1. So the vectors of the form (¢) are
realty of the form pw; + (t +2(1 — A)ywe, which always lics on or above sr. This proves
subadditivity.

Since m s minimal and subaddilive, the next siep is 1o show that 7 (i) is the only
possible solution to all the equalities £ () and then apply the Facet Theorem.

Proof (B): Unigueness of the Solution, Consider any 7% (i} that satisfies all the equa-
tions satisfied by 7 (). Consider the direct segment { O, (1/2)w]. Take the correspond-
ing interval on G, u{ @, (1/2)w] as both the interval I/ and as the interval V in the
Imterval Lemma. The interval U -+ V then is u[ O, A]. Since for any points (u, 7 (1)) and
{v, 7(v)) on the segment [ O, A} we have 7 (i) +x(v) = 7 + v), we must also have
() A () = 7w (u + v) for those points. Then by the Interval Lemma, 0% must be
a straight line segment on {7 -+ V = u[ O, un | with some slope §.

We next consider the direct segment [AA, R We again take u[ O, (}/2)un] as U,
b, we now take [AA, AA (1 /2yw]as V. Theresulling I/ +Visu[AA, AA+u ] =
n[AA, R). Again, sincewe have () -+ () = w (e +v) foru € U and v € V, we must
also have 7% () ++ n*(v) = 7*(u -+ v) for all (he points on those intervals. Applying
the Interval Lemma, we find that ™ must be a straight line of fixed stope on u[AA, R].
Furthermore, from the Interval Lemma, the slope of 7% musl be the same as il is in
U =ulO, (1/2un], soitis 5.

Continuing to use the Interval Lemma we can show that on the intervals u[A, AA]
and #[R, 02), #* must be made up of straight line segments with slope $.

The slope s2 is uniquely determined by the condition that the segment |R, (2]
descends from 1 to 0 over the interval u[ R, O2]. Since o also meets that same slope
condition, ¥ is not only a siraight linc but also has the same slope as 7 on [R, O],

Once 2 is determined, the slope s1 of the other segments of 7* is also uniquely
determined by the condition that 01, A, AA, R, rise up from Q1 to R. Since this condi-
tion applies to both v and r* they both have the same slope on [ O, Al and #[AA, R]
as well, So m* = & . Therefore, by the Facel Theorem, 7 is a facet.

Since A, was arbitrarily chosen, this constrection gencrates a onc parameter family of
facets. Representative members of the family shown in Figure 6are (01, A, AA, R, O2),
(01, B, BB, R, 0O, (01,C,CC, R, 02), and of course the original mixed integer
facet {1, P1, R, O2).

What is the geometric meaning of a one parameter family? Geomelrically the = (i)
is the normal to a face of the polyhedron. In finite T-space if we move from one face
to one of the adjacent faces, the normal lakes a discontinuous jump. Here it changes
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Fig. 6.

comtinuously. So as we change the one parameter in a one parameter family of facels
we are moving steadily and continuously over the surface of the polyhedron. We are
maoving continuously through a sequence of normals 7 () of adjacent facets.

3.2, More complicated tvwo-slope facet families

The family introduced by Construction 1 is a two-slope family. The Gomory-Johnson
Two Stope Theorem, see {2], simplifies the construction of much more complicated two
slope families.

Theorem 5. Gomory-Johnson Two Slope Theoren: If w (u) is subadditive, minimal, cnd
has only two slopes, then it is a facel.

The use of the Interval Lemma and the Facet Theorem now enables us to give a
fairly short proof of this theorem which is in Appendix B. This theorem apens up the
possibility of a wide variety of facels.

We now proceed (o the construction of a more complicated family of facets (Figure
7). Again the ths element is up and R = {up, 1), The vector v connects 1 1o R with
stope [/ug and the vector vy connects 02 to R with slope 1/(((ug) — 1).

Construction 2: Choose positive integers s and » and then locate the points p; =
(1/m)v) and gy = (1/m)vy . Through O (O1 in Figure 7) construct aline L of positive
slope s greater than the stope of vy, Through O (©2 in Figure 7) also construct a line
L™ of negative slope s~ more negative than the slope of va.

Next through p; construet a line of slope s~ . Within the vertical strip containing
O, pl, and R this linc uniquely intersects L™ at a point Aj which determines the s+
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vector {O, A1) = wy. Repeal this construction in the strip £, ¢, O2 by putting a line
of slope s~ through (22} and a Hine of slope s through g). These lines intersect at a
point B1 which determines the s~ vector (O, By) = wy (02, Bl in Figure 7).

Since wy and py lie on the same line of slope s 7, the vector w — py = Aw; forsome
L. Choose Ay = m/(m — 1), and form the point AA; by adding —Asw» to wy. Then
form Az by adding w o AA1, and then form A Az by adding —Azu; to Ay, Continue
adding wy and —Auwy by turns until Ay, = R is reached. (We will show below that this
construction actually preduces A, = R).

Apply the same construction to the R, 02 side. There we define A; by Ljuy =
(rn/(n — N(vwy — ¢y, then add A 1wy o By W form B8y, then add ws, 1o form By, and
comdinue untit B, = R i3 reached.

Theovem 6. Construction 2 Thearem: For any integers m and n, and for s and 5~
as described in the construction, the 7w formed by the direct line segments of the line
O, A, AA L Ax, o A1 AAL IR, BBy, By, ... By BBy, B1,0, is a
facetifand only ifO < Ay < tand 0 < dy < 1,

Figure 7 is an example with m = 4 and n = 3. Construction | is the special case
e 200

Remark. 7 has only the two slopes 57 and 5™, so the Gomory-Johnson Two-Slope
Theorem can be applied. In proving that theorem, the Facel Theorem and the Interval
Lemma have already done their work. So we need only prove minimality and subaddi-
tivity 10 establish that 7 (u) is a facet. Doing that will be helped by some general remarks
on minimality and subadditivity.
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3.3, Minimality

Because of the Minimality Theorem, minimality {ollows from symmetry so we need
only check whether the symmetry relation, w (i) 4+ 7 (g — u) = 1, holds Tor every u.
However, for piecewise linear 7 (¢} the symmetry relation will clearly hold for every
u if and only if it holds for the endpoints of cach linear segment, Checking minimality
for piecewise linear functions, therefore, is always reduced 1o the relatively casy task of
checking symmetry for the #-values of the endpoints. In our diagrams checking sym-
metry for endpoints is simply showing that each endpeint can be paired with another
endpoint such that the two add up to R, the rhs point.

3.4, Subadditivity
Once minimality is established, checking of subadditivity can also be reduced 1o check-

ing endpoints. In fact only some eadpoints need 1o be considered.

Theorem 7. Subadditivity Checking Theorem. If w{uy) - nw{u2) > w(uy + uz) when-
ever uy and g are convex endpoints of 7, then if 7 (u) is piecewise linear and minimal,
it is also subadditive.

By a convex endpoint of 7 (4) we mean an endpoint where both the line segments
that end there, would lie below (1) if they were extended. A concave endpoint is one
where the {wo line segments, if extended, would lie above s {u). The points 0 and 1 are
convex endpoints.

Proof. The proof consists of showing that if subadditivily is violated for iy and w7, then
there are convex endpoints ufl and u;, that also viclate subadditivity and by al least as
much as ¢y and wp. Consider the cases below where uy = uy +ua, p1 = pluy), pr =
piuz), and p3 = plul).

Case I. Both py and pp are interior points or concave endpoints. If both are interior
points, then we can slide p a small amount § to the right and py the same amount to
the teft, or visa-versa. Then one of m{uy 4 8) 4+ w(uz ~ & or wliy — 8) + nug + &)
will be smaller than or equat to the original sum st (uy) -+ 7w (uz). IF the slope of w(u) at
uy 1s smaller than the slope at ws, then the first sum, 7 {u; + &) + w{uy — &), will be
smaller than 7 (ie ) -+ (i), The value of & can be increased until one of wy 4+ 8, uo — §
is an endpoint. 1f the endpoint is a concave endpoini, then we can continue 1o increase
4. The reason is that moving to the right through a concave endpoint causes the slope (o
become smatler and moving to the leflt causes the slope to become larger,

H either or both of py, p2 were initially concave endpoints, the same argument works
because we need only have one or both conditions: the right-slope at w1 is smaller than
the feft-slope at w3, or the right-slope at w5 is smaller than the left-slope at iy.

Case 2. One of py, py is a convex endpotint, the other is an intertor point, and pa is an
interior point or & convex endpoint: The same sliding argument works except that now
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1 and p3 both have the same § added (0 them. Then one of (i) + 8} — w(iz + 8)
or 7luy — 8y — #w{uz — &) will be smalier than or equal to the original dilference
7 {1} ~ m{uy). Increasing § will either move iy 4+ § (0 a convex endpoint or u3 + 6 to
a concave endpoint.

Case 3. One of py, pp is a convex endpoint, the other is an interior point, and pi is
a concave endpoint: The minimality condition m{u) + 7w — ) = 1 implies that
complementary points w and ug — v are either both interior points or one is a con-
cave endpoint and the other is a convex cndpoint, Thus p3 = p(ug - i#3) is a convex
endpoint. Suppose thal p; is interior and po is a convex eadpoint. Using 7(iq) =
P —m(ug —uy) and w(uz) = 1 —w(ug — uz), we have (i} + o (1) < ot (iez) implies
I —a{ug —uy)+mw(uz) < 1 —m(ug — ), orar(us) +lug — ) < wlup — uy). Both

Now fet us twrn {o the proof of the Construction 2 Theorem.

Proof of Minimality, Minimality will follow casily il we can show that the construc-
tion of the successive segmenits dees lead (o R. From the construction we have A, =

muy — (m — DAava. Also by construction we have py = vy — ((m — 1)/m)Aws.
Multiplying this by m yields R = mpy = muw — (m — 1}hows = Ay,
Therefore wy - Awy 4wy — Awg - - -+ wy — Awsy + wy = R is a path of vectors

surmming 1o R. If we break this sum alter a w, the terms on the left will add up io one
of the A; and the remaining terins, as can be scen by reversing their order, will add up o
one of the A A;. Since together they add up 1o R, we have proved their complementarity.
Similarly arguments can be made if we break the sum alter any of the terms —Awn, or if
we deal with the corresponding sums {from the other side, [ 02, R]. This establishes the
complementarity of all the segment end points and hence, by the Minimality Theorem,
establishes minimality.

Proof of Subadditiviry. In proving subadditivily in Construction 2 we will olten reach a
stage, as we did in Construction 1, where we can show that the sum ¢ of two points p;
and pa on 7 is al a position that can be reached from a different point p on 7 by adding
positive multiples of the upward pointing veclors wy and urp to p. An upward pointing
vector simply means that the vector (i, A) has 1 > 0. We would like to conclude that ¢
can not be under x, so that the sum of py and p; satisfies subadditivity.

We will be able to do that using the Separation Lemma.

Lemma 4. Separation Lemma: Let w be piecewise linear with the slopes s of all seg-
ments satisfying sT > 5 > 57, Let w™" be an upward pointing s-vector with slope s,
and w™ be an upward pointing s-vector with slope s 7. Then if the point p lies on 7, the
point g = p 4w +w” can not lie below .

Proof. Choose any very small &, Then, because of the sieep slopes of w™ and w™, p +
sy and p +&w; both licon or above 7 Torany ponw. Lot w = ew™ +ew . Since the
vectors ey, £wy, are upward poinling, w is an upward pointing vector. Since all three
vectors fie in a small planar region E around the origin O, ordinary planar gcomelry
applies, We find the slope v of the direct vector from @ to w in £, and from the s-vector
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w with slope 7. 7 is either > s+ or < s—. Because of its slope, p + w also lies on or
above m forany p onm,

Now 1/g = n+r, where i is an integer and » is areal, O < r < 1. Within £, veclors
combine as in the plane, so for 7, rew™ + rew™ = rw. For any integer # we also have
newm 4 new” = nw. Adding the two equations we get w¥ 4+ w™ = (2 -+7)w and then,
adding p to both sides, ¢ = p + (n 4 rYw. This means we have a straight line segment
[, gl with slope © from p to g. If we were to raverse [ p, ¢} from p toward a g that was
strictly below mr, there would be a last point ¢* on [ p, ¢] and on or above . Of course ¢*
would be on 7. Then we would have, for some small 8, g% on 7 and ¢* +8w strictly under
7. Since t is the slope of | p, g] this can not happen. This contradiction ends the proof.

We can now continue the proof of subadditivity. By the Subadditivity Checking
Theorem, we need only consider pairs of points pp that are either (1) an AA; andd a BB s
(2)yan AA; and an AA;, or(3)a B and & BBj.

Case (7). A pair AA;, BB;. Assume that | = j +r with r = 0. Then AA; + BB; =
rlwy—Azwa) + j(wy —A2w) -k jluwn —Aw ) = AAr 4 J(1—=ADw + 7 (1~ A)wy ==
AA -+ i + Tpwn. Since A A, Hes on st (u), the Separation Lemma, with w™ = 1,un
and w™ = Tows tells us that AA; + BB dees not lic below s {u}.

Case (2a). A pair AA;, AA; withi 4 j < m. By the construction AA; + AA; is AAjy
which is on m{u).

Case (2b). A pair AA;, AA; with { + j = m. We can continue the construction that
ended al R by adding —Azws to R 10 obtain AA,,, and then add w; o that to obtain
Apsr and so on. Consider { 4+ j = . Since R s also B, = BB,_| + un, Ad, =
R —Jawy = BB, +wp — hwy = BB, + (1 — X)w,. Since BB, lies on w, and
(I~ Az} = 0is one of the Construction Theorem conditions, the Separation Lemma
tells us that AA,, . can not lic below 7.

I is important o note also that if (I — A2) < O, then AA, = B8, 4 (1 — A2 un
does lie under . Therelore the condition (1 - A2} is both necessary and sufficient for
AAp 10 avoid violating subadditivity.

Let us now advance to AA,,) and compare that with B B,,..5. Since we start with
AAy = BBy -+ (1 = X)we, we can add (wy ~ daws) + {wy — Ajwy) to both sides
toobtain Adp.1 = BB,y_2+ 201 — 2wy + {1 — Awy. Since BB, _» lies on n, we
again use the Separation Lemma to assert that AA,, . can nol lic under .

We can go on in this way until we reach the last 8 8 which is 02. Al that poinl we
have Adpy pner = 02 + tyw) -+ t2wa. Al the next move we compare A Ay pq. with
AAy IE we add AA) 10 both sides of this we gel Adpper = AAL + Tyw) + ©un
which cstablishes the subadditivity of elements adding 10 AAp 4 p+2. We can continue
around the perimeler of 57 in this way indefinitely.

Case (7). A paic B8;, BB;. We can sce that this is exactly the same as Case (2) with the

roles of the AA; and B B; reversed.

These cases exhaust the possibifities. By establishing subadditivity, we have proved the
Two-Slope Construction Theorem,
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Qur empirical studies on finile dimensional T-space indicale that two-slope facct
dominate among the Jargest faces, those that are hit most often in the shooling experi
ments which we describe in the section below on the Merit Index. However the expeti
ments also turn up many facets with more slopes, so we will next examine three-slop
facets.

3.5, Three slope facets

We now give the construction for a family of three-slope facets analogous 1o the two
slope families described above. Again we slart with 1, PI, R, P2, 02, wilh right-hanc
side element R = (ug, 1) and halfway points P1 and P2 (Figure 8). We will refer L
the direct vector (0, PI) as vy and the direct vector (@, P2) as va. For ? > A = (
we choose a point Arey on [0, P 1] which we denote by A. We denote its complement
K- WA; vy by B. Now we give a construction for a family of three slope facets.

Construction 3: Define the point A; by Ay = A - Ayva, and the point By by B — Ao
Then 7 is defined by the direct line segments O1, Ay, A, B, B1, R, 02 (Figure ).

This construction gives us a 7 with slope 5™ on 10, 4] and slope s~ on [A), Al
and [ R, (O], The segment [A, 8] has the third slope s3. As in Construction 1, we limil
the A so that (A ) > Oand A(B)) = 0.

Theovem 8. Three Slope Family Theorem: If n is constructed according to Construc-
ton 3, and if &) < 1/2 and O < da < 1, then 1t is a facet.

Proof. We will follow owr standard process of using the Interval Lemma to show that
any * that satisfies the equalities satisfied by 7 must in fact be 7 itself. We start with
the segmend [A, B,

Because Ay < 7’,, there is a segment with A as its left end point and P - A as the
right endpoint. A;Jp-lying the Interval Lemma 1o the segments I = [A, Pl — AL ¥V =
Pl — A Plland I/ + V = [P1,2P] — A| = | PI, B, we conclude that, since the
segments cover [A, 8| and 5™ is linear with the same slope in each one, and is required
to be continuous, 7% must be linear with a single slope over [A, B).

I remains 1o show that the slope of 7* is the same as the slope of 7 on [A, B].
However [A, B was construcied on the segment | @, P 1] passing through the origin O,
Therefore ir satisfies bothw (2A4) = 2m{A)and 2% (P 1) == m(R). Thesec arc two relations
[ha[:r* must also satisly, However m*(2A) == 2r*(A) implies that on ui/’s Blthe lincm‘

* is part of a line that passes through the origin. In addition 7 *(P1) = ( Y (R) =
so 7™ passes through £ 1. However, in the vertical strip between O cmd R and commnmg
P, there is only one fine passing through O and P1. So 7 and * must have the same
slope.

We have now deall with lhc scgment having the third slope, what remains are the
usual segments with slope s and 5. These arc easily dealt with using the Interval
Lemma as we did on the discussion of Construction |.

We now know that the set E () of all equalities has no solution other than 7 itself.,
If we can show that o is subadditive and minimal, we can apply the Facet Theorem.



360 R.E. Gomory, E.L. Johnson

Minimality: Construction 3 is easily seen to have produced a symmetric zr, s0 77 is min-
imal.

Subadditivily: Referring to the Subadditivity Checking Theorem, the only convex end-
points in 7 are the focal minima al A and B;. So the Subadditivity Checking Theorem
applied here (ells us that we need only check subadditivity for the three following cases.

Case It py is A and p2 is A. Since A is Ayvy, p1 -+ p2 = 24701, By the Separation
Lemma this cannot be below .

Case 2. py1 is By and pp is By. By the construction, 8] + By == 2B — 2l = (B —
AY 4 (B 4+ A) — 20y = (B — A)+ R —2hwm) = (B — A) + (2v; — 2003) =
(B — AY + 2(1 - Az)vy. However, B ~ A lies on w and 2(] — A2)v2 is a nonnegative
multiple of v7 so the Separation Lemma applies. Note that if A, > 1, 2(1 — Az)vz points
inward from B — A and B, + By lies below o violating subadditivity. Therefore the
condition A < 1 is nceessary,

Case 3. py is By and pp is AL Since by construction By = B—Avz = (R—A)— A =
2y — A havy = — A+ {2~ Az)vy, adding By 10 A yields (2~ Az)va. By the Separation
Lemma this can not be below .

The three cases together prove subadditivity and end the proof of the Three Slope
Family Theorent.

Another three-siope facet, w3(w), is shown as the first figure in Figure [0, 73{u)
first emerged by being the most oflen hit three-slope lacet in the shooting experiments,

Fig. 8.
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{ts construction is described in Appendix C where il is shown that w3 (i) belongs 10
|-parameter family of facels.

3.6. Mappings

Since our group & is the line (Mod 1), the only automorphism is multiplying cver
element by —1. However we do have homomorphisms, multiplying each element o
G by an integer m is a homomorphism that sends the group clements represented by
1/m,2/m ... into Q. These mappings then become the source of still more facets.

Theorem 9. Mapping Theorem: If w(u) is a facer with rhs element ug, then m, (1) =
w{mu), where m is any integer, is a facer. The rhys element vg of 7y, (u) can be any one
of the m elements vy satisfying muvy = up.

Geometrically, since my, (u+u (3 /m)) = w(mu+mu{d/m)) = 7 ru+0) = m, (4}
7w (1) tooks like m copies of o (1) stacked next to cach other in 1 successive intervaks
of length #/m. (Figure).

The proof of the Mapping Theorem 1s given in Appendix D.

Corollary 1. Mapping Corellary. If m(u) is constructed by a process that gives a Jace
) for a range of rhs wo € la, b), then my, (1) is a facet of the Master Polyhedror
P(G, ug) whenever muy € [a, b].

Proof. To make a wry, willt ths ug, first consiruct 1 with ths mup. Then define my, (1) =
().

As an cxample, in Figure 9, a m3(u) facel is created with rhs (.7, starting from &
(i) with rhs 0.1, For facets from constructions like Constructions 1,2, and 3, which
are valid for all rhs, this means that they and all their 7, appear in every P(G, ug).

The Mapping Theorem therefore gives us yel another way (o creale Tacets, But il
also connects facets and polyhedra P{G, up), with dilferent rhs clements ug.

3.7, Moving front one facet lo another

Since, for a fixed rhs element up, there is only one polyhedron, we should be able to
find a path from one facet to any other facet through a series of intermediate facets. This
shouid be true cven if the facets look very different.
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We will jllustrate this by showing a sequence of facels connecting the three slope
lacet 7w 3(u) and the standard mixed integer facet replicated twice.

In Figure 10 we start with 7 3{u). We end in Figure 1¢} with the figure that describes
the last element of the family created by Construction [. In between we go through some
different 51's, all of which, with some effort, can be shown (o be facets. The Construction
1 family then provides the remainder of the path to the mixed integer facet.

What is different about this infinite dimensional polyhedron is that the movement
from 73(u) to the mixed inleger cut is along a continuum of facets. We are not moving
along an edge 1o an adjacent facet, but along a curve where each function on the curve
is a facet.

4. A merit index and an intersection index

We have shown we can creale many different facets. Are some bigger and betier than
others? What can we say here about size or goodness of the various facets?

One natural figure of merit would be 10 count the number of paths lying on a facei
and take that as a {igure of merit. Since the paths lie on a regular grid, more paths will
usually mean a bigger facet. One can cerlainly argue against this by pointing out that
a path count would need to be corrected for the alignment of the facet with the regular
array of integer points in T-space, or other factors, however, for the moment, we are only
al. the very crude beginnings of this kind of thinking. The merit index we introduce now
is motivated by this idca of counting paths on a facet. However, il also has cmpirical
support, as we will sce.
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4.1, Merit index

Coensider the unit square 2 in two dimensions with the x and y taken (Mod 1). Let
be any point {1y, «z) in Cy. Then we define the Meril Index M1 () as follows;

Definition 1. Merit Index Definition: M1 (n) is twice the area of the set of points p =
{uy, ua) in Co for which m(uy) + w(ua) = w{uy + us) holds.

Of course it is the area that matters. We (ake twice the area for convenience as the
caleulations always turn out simpler with the factor of two, and the largest possible M
becomes [.0 rather than 0.5,

But how does this definition relate to counting paths? To answer that question let us
return 1o the discussion of paths in Section 1. H we take any path p lying on a face 7, we
can reduce its length (the total number of group elements ir the path) by choosing any
pair (i1, 7) € p and replacing them by the single element &y + 2. The Pairs Lemmu
tells us that for any such pair we have w(u ) + xr{uz) = 7 () + w3} s0 we have a new
shorter path. We can continue doing this until there are only two clements in the path,
complemeniary pair of elements v and wg — u with 7w{u) + w{ug — u) = 1.

If we took al this process in reverse, it shows that every path on a facet is built up from
some complementary pair by substituting pairs (i, u2) lor single elements {u) 4 u2)
whenever we have s (i1) -+ w{ip) = (11 + u3). The more such inegualitics, the more
paths on the face, probably in a very non-linear way. What the merit index measures
is the [raction of all possibic pairs that are equalities, The larger the index, the maore
equalities. The more equalities, the more paths.

The second rationale for this index is empirical. It is based on the correlation of
the merit index with the results of the shooting experiments discussed in |4]. These
experiments were conducted oa linite Comer Polyhedra, These Corner Polyhedra are
the same concept as the T-space described here, but the mapping of columns is into a
finite group instead of into the real line (Mod 1). This results in a finite T-spacc with as
many dimensions as there are non-zero group elements. Thesc finite Corner Polyhedra
are the ones discussed in [1].

In the shooting experiments a random direction was chosen at the origin in finite
T-space and that dircction was pursued until 11 hit a facet of the Master Polyhedron,
That facet was then recorded. The technique used, Gomory’s Shooting Theorem,
allowed the experiment 1o be conducted without knowing in advance any of the fac-
cts of the polyhedron. The facets were discovered by being hit. The program actually
written and used by Evans and Johnson made it possible for them to compute 10,000
hits on cach Master Polyhedron used in the experiment, although fewer shots were used
on the smailer groups. At the end of each experiment, the number of hits on each lacet
that was hit was recorded. No knowledge was produced by the shooting experiments
about the facets not hit.

What Figure 11 shows is the correlation between the merit index and the number of
hits in these shoecting experiments. There is a dot for each facet hit. The percent of all
shots that hit that facet is plotied vertically, and the merit index of that facet is plotied
horizontally, The cyclic group used was the integers, (Mod 17), rhs clement 16. A strong
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non-lincar correlation can be seen between the faces that are hit most oflen, which also
has something to do with size, and the merit index.

4.2, Compuiing some merit indices for facets

If we have some face s (u) it is guite straightforward 1o compule the merit index. This
can be done exactly lor some simple lacets and # 1s very straightforward to get a good
numerical approximation for any 7 (1),

The merit index (M 1) of the mixed integer facet is M1 = n(ug)® + (1 — 5lug)2.
For this {acet the merit index depends strongly on the choice of ug and ranges from (.5
in the middle (g = 0.5) to a value that approaches 1 as ug approaches Q (or 1). We can
sometimes exploit this dependence on right-hand side by using the Merit Index Mapping
Theorem,

Theorem 18. Merit Index Mapping Theorem: Mappings m*(u) = w(nu) of a face
always have the same merit index as the original 7w (u).

This theorem seems intuitively correct and the proof is not difficult.

Of course the facet % (i) created by the mapping will have a rhs element that is dif-
ferent from the rhs element of the original 7 (). Mapping thus makes it possible to move
the mapping of a family member with higher merit index into a position where the family
member has lower merit index. For example, the mixed integer cut has M T = (.52 for
rhs clement (1.6, We can form a new facet with rhs 0.6 by using as our 7 () the mixed
imeger cul with ths element (L8, and generating {rom it the new facet m* (1) = 7 (2u).
Since 7 () has M1 = 0.68, the new facet ™ also has M7 =— .08, So we have created
a new facet with the desired rhs (0.6, but with a larger merit index.
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In Figuwre 12 we alse show a minimal, but non-facet, inequatity. It has a Tow M/

cqualities of a non-facet and ethers in addition as well, and therefore we should expec
a lower score on non-facets, In particuiar, the mixed integer facet deminates it and ha
alarger M1 = 0.68.

So far we have discussed the merit index for dilferent facets or for the same facet:
with different rhs clement. There is also the guestion of the variztion of the merit index
within a family of facets all having the same hs. Figure 13, based on Constraction [
gives an example. In the merit curve in Figure 13, there is a discontinuous drop from:
MI = .52 10 MI = 0.43 as the % of Construction | becomes non-zero. Then, as 2
grows, the merit index first decreases (o a low value slightly less than (1,38, and then
rises smoothly to 0.68. This example shows that the choice of the parameter value can
make a difference of more than 0.3 in the Merit Index.

4.3, The intersection index

It would be good to know about two faces how many of the paths on each face they have
in common. It gives information for how far apart they arc on the polyhedron, or perhaps
more accurately, how large their intersection is. For practical cutting planes one might
nol want 1o add two culting planes that have almost the same sel of paths on them.

Note that in T-space the intersection of two facels is never empty. The two elemeni
paths {ir, (r — 1)} lic on cvery facel since every facet satisfies the minimality condition
() +r(u — ug)) = m(ug) = 1.

Apain il is difficult to obtain the actuad paths. However, as we remarked above, all
paths can be built up by starling with a complementary pair (i, (i --ug)), and then vsing
equalitics to build longer paths. So if we take the set of equalities that two lacets have in
common, ali the paths that those equalities can generate [tom the complementary pairs
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wili be paths lying on both faces. Again we can expect the number of common equalities
to be positively but non-linearty correlaled (o the number of common paths.

With this in mind we return to the unit sguare Cy in iwo dimensions used in the Merit
Index. Again fet p be any point {1y, u2) in Cy. For any facel x, let S{m) be the sct of
points g in Cp for whicl mw (i1} 4 7w {ug) = 7 (u1 -+ w2) holds. We define the Intersection
Index 17 (my, mp) of two lacets 7y and 7z by:

Definition 2. [ntersection Index Definition: 11 (wy, ma) is the area of S{r) 0O S(a2)
divided by the area of §(my).

Note that F1{my, 2) is not symmetric in 7y and w2 J1 (ry, 7w2) and 1 {my, 1) are,
however, closely related through T {my, m2) /1T (o, mwy) = M () /M T (r2).

Figure 13(a) shows a plot of the merit index for the family of Construction 1 where
g = (1.6, Figure 14 shows in black the values of uy, u3 for which m(u} + n(in) =
w{uy -+ iep) with 1y on the horizontal axis and w9 on the vertical axis. Figure 14(a) is
for & = 0, i.e. the mixed imeger facet. Figure 14(h) is for L = ¢ > 0 and shows the
reason for the discontinvily in the merit index seen in Figure 13(a). The merit index
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drops [rom (.52 to a value just farger than 0.43, However, the two triangles including the
points (0.3,1) and (1,0.3) increase in size as A increases. These two riangles are not i
the areas where equality holds for the mixed-integer facet. There is a small discontinuity
at A = 1| when the small tiangle above (0.5,0.5) in Figure 14(d) comes into the equality
region. This wriangle results from the fact that, e.g., u; = 0.5 and 2 = .55 have
() 4w (ug) = 0--0.5 = w(uy +up) = 7(0.05) = 0.5. Thus, as & approaches 1, the
merit index jumps [rom (.67 1o 0.68. In Figure 13(b) we show the intersection indices
for the family of Construction 1. Both 77 (s, 72) and 71 (w3, 1)) are shown. In Figure
13(b), 1 is the family member created by increasing A, while s does aot change and
is always the facet A = 0, i.e. the mixed integer facet. In the Figure 13(b) €y marks the
curve of 11 (my, mp) values and Cy marks the curve of 17 {5y, 1) values. The horizontal
axis gives the values of a parameter which ranges from 0 to 0.4 as A ranges from 0 to 1.

For very small values of the parameter, when ) is first separating from sry, there is
a sudden drop in Cz but Cy moves continuously and so remains near 1 (sce Figure 14 (a)
and (b)). Since in this parameter range we also have a discontinuous change in the merit
index of my, it appears that we are moving from a larger face abruptly to a somewhat
smaller face. The fact that C) remains near T shows that the smaller face 77 still has
almost all of its paths in common with the Jarger one, but the drop in C» shows that 73
now has a significant collection of paths no longer in common with ;.

Fig, 14, Two-slope Family
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A more extreme example can be obtained lrom the three slope family of Conslruction
3 (Figure 8), with ug = 0.8. Choose a family member with Ay = & very near (1. This
means that in Figure § we choose an A arbitrarily close 10 A, and a By arbitrarily close
o 8.

The merit index of the mixed integer facet, A = {, is 0.68 but the merit index with
Az = g is almost exactly 0.20 (sec Figure 15{b)). This very large change occurs because
in 517 the segments from the origin to Ay and from By to R are no tonger in line with
the segment AR, while the new equalities that 7 has gained from the arbitrarily small
new segments AA; and B By can make only an arbitrarily small contribution to the merit
mdex.

For the same reasons the intersection index of 7y with 73 remains almost 1, but the
index 7 (s, m1) becomes (0.20/0.68 which is roughly 0.29. This suggests that 7 has
become much smaller but remains firmly attached to 79, while the larger 72 has lots of
paths that have nothing to do with 1. Since the &1 in Construction 3 can be chosen freely
from the range 0 < A < 1, there is not one, but rather a whole family of these much
smaller three-slope facels firmly aftached to different parts of the basic mixed integer
facet. Despite the small merit index, all of these 3-slope facets are facets. They include

C. Ay = 112 d =1

Fig. 15. Constructien 3 Family
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four 1riangles where equality holds and does not hold for the mixed integer facets. Thesc
four triangles (Figure 15(b), (), (d)) have corners at {.2,1), (6,1, {1,.6), and {1,.2) and
come from the line OP2 with the line segmenis A, A and B1, B.

With the merit index and the inlersection index we have done some very preliminary
exploring of the polyhedron associated with G. Exploring the potyhedron reminds us
that cutting planes arc not isolated things, c.g, “the Gomory cut,” rather they are all facets
of this huge polyhedron and it is possible to move from one 1o another, ro matter how
different they look, through a continuous succession of intermediate facets, and these
100 are facets and give culs.

Since all these cuts are facets, they are all independent. No Facet (or cut) is implied
by any other facel or by any combination of other facets (or cuis).

5. Two dimensions (or more)

A similar theory can be developed for mappings mto a two dimensional group, The
group is the unit square in two dimensions with the x and y taken (Mod 1). 'Fhe mapping
consists of taking two rows rather than one and sending the pair of fractional parts assc-
ciated with each non-basic variable into the unit square. The 7 now has to be a function
of two arguments (f1, f2) the fractional paris associated with one non-basic variable in
the two rows. Again the contintuous variables are linked to the slopes at the corners, but
now these slopes are more varied and more accurately reflect the role of the continuous
variables.

Here is a minimal inequality in this setup (Figure 16). However it seems likely that
functions like the one pictured in Figure 16 with a single central peak can be minimai
but can not be facets. Figure 17 shows what we believe (o be a facel. These tentative
staternents reflect the fact that with the exception of [5] very little work has been done
in this arca. It looks like a promising arca both for theory and for practice.

There are reasons (o think that such inequalities would be stronger since they deal
with the properties of two rows, not one. They can also much more accurately reflect
the structure of the continuous variables. There is also an argument that says that not
too much can be expecied from more rows in the case of a pure integer problem with
integer starling data. For in that case the fractional parts of a single row can represent
the structure of the fractional parts of all rows.

6. Challenges
The exploration of the these polyhedra has barely begun. There is much to be done. We
mention some of those things here,

6.1. A facet conjecture

Hvery single facet that we have dealt with has been piecewise linear. Are there facets
that are not piecewise lincar? We have not been able (o construct a curved 7 that is a
facet, so we state the following conjecture:

Conjecture 1. Facet Conjecture: If 7 is a facet, & is piccewise linear,
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0.2, Better methods

While the Interval Lemma and Facet Theorem and the various lemmas aboul subaddi.
livity give us useful tools, their application o generate facets is still somewhat ad hoe
Also we don’ have general theorems for three or more slope facets analogous 1o the
Gomory-Johnson Two Stope Theoren.

6.3. Smaller facets

There has been an inherent bias in much of what we have done so far. Because of ow
inlerest in cutting planes, we have discussed mainly large facets, families of two-slope
facets or three-slope facets. What about much smaller facets? It secems extremely likely
that there are much smaller more complex facets ail around the big ones. Can we develop
a better understanding of this and through that an understanding of the fundamental limits
to what can be accomplished by cutling planes?

6.4. More dimensions

Although the equivalent of the Inferval Lemma and the Facet Theoramn seem o work
with group of dimension higher than f, and these were the methods used to produce the
examples in Section 3, we know very little about 2 or more dimensions. Or what about
m dimensions where #7 is the dimension of the original columns?

0.5. Using the cutting planes

We have an endless supply of facets. All of them are cutling planes and none are implicd
by the others. How are they to be used? One possibility is to keep a list of the n highest
ranked facets and just use them all, all the time. The list could be developed [rom the
merit index or from experiments, while the number on the list is determined by practical
compultational considerations.

In the opposite direction is developing methods 1o exploit the wealth of cutting
plancs to form cutting plancs that reflect what variables are actually present or the actual
numerical structure of the row being worked. For example, (1) that have small values
for certain integer variables can be developed. These are good cuts For those variables.
In addition, we also want cuts that have small s+ and s for the continuous variabies.
The Gomory mixed integer cut has the smatlest s+ and s—.

Can we transform families of facets and carry them along in integer programming
rather than dealing with one facet al a time?

0.6. A better index

While the merit index helps, it does not take explicitly into account the effect of steep
slopes s and s~ at the origin which weaken cuts in mixed integer programming. The
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potyhedra PY{U, ug) used in |2} are analogous 1o the polyhedra we have been dealing
with, but they cxplicitly take into account the role of the continuous variables, Perhaps
the theory and the indices can be redone in this space,

6.7. Bevond cutting planes

Perhaps we should shift our thinking away from the notion of cutling plane and think
instead of adding, not a cutting plane, but rather an approximation (o the corner poly-
hedron. We could iterate on successive approximate Corner Polyhedra, rather than adding
culling planes and scooting off to a new corner. Fhe practical tendency in computation
to add many cutting plancs at once is a step in that direction, and with this theory we arc
now in a position (o use in aclual computations a very large coherent sel of inegualitics
that approximates the corer polyhedron,

We hope that many will be interested in exploring these and still other possibilities.

Appendices
Appendix A — Valid Inequalities and cutting planes — Non-integer variables
We now extend this analysis to include non-integer variables along with the integer ones.

If ¢; is a non-integer variable we still obtain the inequality in {4), but with non-integer
fi we can not take the next step and get the inequality in {3) which is the cutting planc.
Since in our discussion of this case we will go from group clement (o real number and
back we need some notation: 1 u is a group clement, then the corresponding element in
the real interval 0 < x < | we denote by 5(u). Going the other direction if we have a
real number x then the corresponding group element is g(x).

We will discuss only the simplest case: using the mapping x that maps the vector
cit; into the group element & = ¢; 44 (Mod 1). For the non-integer variable #; we reason
as follows: Denote by a/n the group element g(R(a)/n), we have from subadditivity
for any iteger n;

m(a) = nmw(a/n), then for sufficiently large na{a/ny < (s 4+ £)nla/n)
= (s eyl /nso ai{a) < (s + g)nla) (AD)

In (6) s is lim sup 7 (2)/n(ue), as u approaches 0 from the right. We assume 7 is
piecewise linear, with s ¥ denoting the slope of the first segment of & (). Since (6) holds
for all n, we can make ¢ arbitrarily smail. So:

m(a) < nria/n) < s¥n(a) which implies when ¢; 4 is positive that

m(a) < s nla) < sTegti (A2)

We can repeat this argument when 57 is the (negative) slope of the Iast segment of
(1) 1o obtain:
wla) < $7Ci Rt (A3
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Putting (A2), (A3), and (5} together gives us
Doiet T - 3 (S iy + 3 e (57 Cip )t = 1 {Ad)

in (A4} 7 is the set of variables that are integer, T is the set of variables that are
non-integer and have ¢; ¢ > O and T s the set of variables that are son-integer and
have ¢j 4 < 0.s% and s~ are the slopes of the first and last linear segments of 7 (1). So
we have proved:

Theorem 11. Mixed Integer Curting Plane Theorem: If 7 (i) is subadditive and piece-
wise linear, then the inequality (A4} on the non-basic variables t is a valid cutting plane
Sor the mixed integer programming problem whose constraints are Bx + Nt = b.

This theorem justifies the complele process of cutting plane generation described at
the beginning of Section [ above.
Appendix B - Proof of the Gomory-Johnson two slope theorem

Theorem 12. Gomory-Jolmson Two Slope Theorem: If w (1) is subadditive, minimal,
and has only two slopes, then i is o facer.

Proof. 1f we have a 7 (1) satisfying the conditions of the theorem, let us take any one
of ils line segments § = | py, p2] and the corresponding group interval 1 = fuy, uz].
Assume that S has slope s, the vight hand slope at Q. For the interval U of the Interval
Lemma, choose {{), ] where ¢ is smaller than the length of any interval of 5. For the
interval ¥V choose (i, up -], I 4+ V then becomes /. Since for these intervals we have
m(u) + s (v) = 7w -+ v), the Interval Lemma asserts that any other n(u) satisfying
them nwist be lincar on &/, V, and & + V and have the same slope 57 on alf three seg-
ments. Repeating this reasoning on cach s segment shows that i witl be linear on all
of them and that they all have slope $7 because they all have the slope that #* has on
U = [, ¢]. Similarty we can show for all segments of (¢} with stope s, that 7% (1)
would have to be a straight line on these with slope 5.

1f we can show that s7 and 55 must in fact be the same values as s and s, we will
have shown that any 7 ¥ {x) satisfying the same equations as 7 (i) is in fact identical with
7e{u), so that (u) must be a facel. To do this we use the same basic conditions as in
Construction 1, namely that 7%(Q) = 0, and 7% (xg) == 1. The analysis is stightly more
compiicated, but the result is provided by the Conditions Lemma.

Lemma 5. Conditions Lenmma: Consider two two-dimensional non-zero row vectors X |
and Xy that point into the first quadrant. Then the equations 51 X1 + 52Xz = X3, where
s1 and sy are scalars and X3 points into the second or fourth quadran, have either one
solution or none.

Proof. 1f the rank of (X, X1) is 2, there is exactly one solution. If the rank is onc, X
and X7 are scalar multiples of each other so that $; X + 50 X2 = $3X1. Bul s3.X, can
only point into the first or third quadrants, so there is no solution. Since the veciors are
non-zero, rank () is not possible.
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Now to determine s, and s;, we use the equations s X 4+ s2X2 = X3 wherce
Xy == (L1, L2) with L.; the total length of inlervals of slope s7 1o the left of ug in
a(u) and Ly the total fength of intervals of slope 7 to the right. The components of
X7 are obtained in the same way using s in place of s, For X3 we use (1, —F). The
cquations then represent the condition that the sum of the rise in each segment o the
left of up should cqual 1, and the sum of the rises to the right should equal —i. The
equations satisfy the conditions of the Conditions L.emma. Since 7 (i) does satisfy these
equations, the Conditions Lemma (ells us there is exactly one solution. So s} and 53
must in fact be the same values as s+ and 5 Applying the Facet Theorem ends the
proof.

Appendix C — Construction of w3({u)

To consiruct 73 (see the first figure in Figure 10): (1) Sclect a rhs clement wg with n{ug)
in the open interval [0, 0.25]. (2) Find the midpoint C of the line scgment [, R} with
slope /(1 4+ n(wod). On this (O, R], which is not the direct segment [, R], (a) {ind
the midpoint € = (£0.5(1 + 5(up}). 0.5), (b) sclect a point A located to the right of ug
but fess than halfway from O to C. Because uqg is in [0, .25] and C is to the right of
(0.5, there always is such an A. 7w 3{u) is then defined as the successive direct segments
O, R, A, C, D, O, where D is the compiementary point to A, Since there is a range of
possible A’s, this process does not produce one, but rather a family of facets, depending
on the choice of A.

Appendix B — Proof of mapping theorem

Theorem 13. Mapping Theorem: If w(ut} is a facet with rhs element uy, then my, (1) =
w(mu), where m iy any integey, is a facet. The rhs element vy of my (v) can be any one
of the m elements vy satisfying mug = uy.

Proof. There is a very tight relation between my, and m. Because of the sequence
T (et} A st uz) = mwimuy 4 muz) = B+ w(mluy + u2) = B 4 muuy < itz)
the equalitics (§ = 0) of 7 transiate into equalitics of , as do the incqualities where
B > 0. The subadditivity of 7, follows from the subadditivity of & because the g that
appears in any sequence will be non-negative because of the subadditivity of 7.

To prove uniqueness we first show thal any 7™ satislying the cqualities that sy
docs, must, like m,,, be made up of a single patiern that is repeated in each interval
of length 1/m. If we use w{1/m) 1o indicale the group element # whose ) = |/m,
then my (e (1/m)) = wimu(l/m)) = 7(Q) = 0. Thercfore m,, satisfics the equality
T ({1 )} - (1 /1)) = 1 ({1 /). ¥ must also s satisTy this equality which
implies that w*(u (1 /m)) = 0. Next, since mp (1) + g (e T /m) = w0 (- u(1/m )y, w*
must also satisly m*() = 7% + u(1/m)). Therefore 7% too is made up of a single
pattern that is repeated in cach interval of length 1/ m.

There is an addition preserving | — 1 mapping ¢ between the first of these intervals,
{ regarded as a group (Mod 1/n) and the group G. We define @) = mu for any element
winf.
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Therefore any s defined on £ produces a new 7, m; defined on G by (1) =
Jr(cp'“] (u}). We can verify Lhat, as one would expeet, that if we use as our w, wm,
we get 7 (i) = 7 (@7 u) = mlmg ™ ) = m(u).

Since " is now repetitive, like my,, we can use 7% 1o produce a function 7% (¢~ ' (1))
which has the same tight refation to 7* as & does to x,,,. The same sequence of egual-
ities wrillen above with 8 holds with this new pair. In particular if 7* satisfied some
triple ey ) + 5 () = 7w*{(uy + wz) which 7om did not, there would be a triple that
7 * (e (1)) satisties that 7 did not. But this contradicts the assumption that 77 was a
facet, This contradiction ends the proof.
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