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Abstract. We review the necessary background on Corner Polyhedra and use this 1o show how knowledge
abeut Corner Polyhedra and subadditive functions transiates into a great variety of cutting planes for gencral
intcger progranuning problems. Experiments arc described that indicate the dominance of a retatévely small
number of the facets of Corner Polyhedsa, This has implications for their value as cutting planes.

Infroduction

Itis the purpose of this paper to show how facets of the Corner Polyhedra, the convex
hull of integer solulions to Gemory’s proup problem [ 1], can be obtained by empiri-
cal investigations. The “shooling experiment,” presented in section |, quickly generates
many facets and gives an intuition about which facets are “itnportant.” We then show
how these “imporiant” facets can be used to construct a greal variety of cutling planes
for use in practical integer programming.

This paper is divided inlo three parts:

Part 1 Corner Polyhedra, shooting theorem, and lacets;
Part 2 Application of Corner Polyhedra (o generating culling planes;
Part 3 General remarks.

This paper makes use of results from three earlier papers [1-3]. The first introduced Cor-
ner Polyhedra and contains many of the fundamental theorems. The last two extended
the understanding of Corner Polyhedra in significant ways, developed a theory for mixed
integer programs, and developed a simpler framework for connecting Corner Polyhedra
and general cutling planes. This paper is self contained in the sense that i1 contains and
explains the theorems [rom these papers when they are needed, although it does not give
their proofs.
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1. Corner Polyhedra, shooting theorem, and facets
L1, Corner Polvhedra

The Corner Polyhedra are a relaxation of the non-negativily constraint on the basic vari-
ables. In Figure 1, which shows a two dimensional Corner Polyhedron, the dark area
is the integer programming polyhedren derived from a linear programming problemn
whose constrainis arc shown as lines. The farge letler V marks the verlex where the
non-basic constraints meel. The light gray arca, which continues off the figure between
the two non-basic constraint lines, is added when the basic constraints are relaxed and
the combined dark and light gray arcas make up the Corner Polyhedron. The Corner
Polyhedron is the convex hull of the integer points in the area defined only by the non-
negalivity of the non-basic variables. In a Corner Polyhedyon, therefore, it is required
that the non-basic variables be both integer and non-negative, hut the basic variables are
only required 1o be integer.

Corner Polyhedra are connected to the original integer programiming problem in lwo
ways. (1) The facets of the Comer Polyhedron are cutling planes of the original lincar
programming problem. This is the aspeet of Corner Polybedra that we will emphasize
in this paper. (2) The problem is identical with the inleger programming problem if the
right hand sides are large enough. This gives rise 10 the theory of asymptotic integer pro-
gramming. The one-dimensional version of asymptotic integer programming appeared
first in Gilmore and Gomory [4].

Corner Polyhedra wre the simplest integer programs in the sense that they are present
in every integer program, so if we can find out something about them it is likely to be
uscful. Fortunately, they turn out to be much simpler and more intelfigible than the more
general integer program.

Fig, 1. The Integer Programming Problem and Corner Polyhedron
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Consider an ordinary m x (m -+ )} linear programiming problem with integer data.
Consider a vertex and the associated basic feasible solution which divides the variables
into m hasic and »# non-hasic variables.

Max ¢x
Ax = b, x =0

where A = (B, N)and x = {x3, xn), 50
Bxip -+ Ny = b;
or, equivalently,
Ixg + (B 'Nxy = B~ 'b. %)

The Corner Polvhedron associated with this basic feasible solution is obtained by
allowing the basic variables to have any sign. The sct of all integer combinations of the
columns of B gives a latlice L in m-space. To produce an integer solution 1o the Corper
Polyhedron problem, the 7 non-basic variables times their (integer) columns must add
up (o the right hand side m-vector b, moedulo the lattice L. An equivalent statement,
obtained rom equation (1) is: The non-basic columns, transformed by B -1, must add
up to the right hand side Mod . In the notation used below, saying two vectors i and
v arc equivalent Mod t means the cotresponding elements u; and u; of the vectors are
equivalent Mod 1 for each index .

(B""Wyxy = B 'bMaod]. ()

The factor group of all integer vectors in m-space taken mod B form a finite group G.
G is also obtained from reducing Maod] the {usually non-integer) vectors in m space
that are B} transforms of integer vectors. Either way, & has D clements, where D
is the value of the determinant of 8. The group element corresponding to B~ N, the
transformed ith columm of N, is B~ N; taken Mod1.

Consequently, in place of (2), we can wrile, using g; for the group clement cor-
rcsplonding 10 N; and go for the group element corresponding to the right hand side
B

Y i@e =g 3

pel;

Here the variables 7 (g), which are positive integers or 0, are just the non-basic variables
x; adjusted for possible duplication — more than one column of ¥ may map inlo the
same group clement g.

Solutions {1 {g)} to (3) are integer points within the Corner Polyhedron. More con-
cretely, if we find a solution {1(g)]. we can translate it back to the non-basic variables,
possibly in more than one way. The non-basic variables then determine the basic vari-
ables, which will necessarily then turn out to be integers, although not necessarily non-
negative mtegers.

If we refer to the space of the variables ¢ in (3) as T-Space, we have the picture of
Figure (2). The r-variables are the non-basic variables adjusted for poessible duplication.
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Fig. 2. T-Space

The dark dois are any integer 7-values and the circled dots are the non-negative i-values
that satisfy the group equation. These are the values of the non-basic variables that make
the columns of & add up 1o the right hand side b, Mad B.

The convex hull of these 7 (g) in T-space we call PG, N, 2o). The facets of these
polyhedra P(G, N, go) leave all the solutions to the Corner Polyhedron problem on one
side. These solutions include all the integer solutions (o the original integer program-
ming problem. Therefore, the facets of P(G. N, go) are always “cutting planes " for the
integer programming problen.

However, the polyhedron £ (G, N, gp) is still rather problem specific. It depends on
which group clements are actually represented by non-basic columns B! N; and which
are not. We can move to a more problem independent approach by introducing Master
Polyhedra.

1.2. Master Polvhedra

The Master Polyhedron is the polyhedron P{G, N, gp) obtained whenever N containg
a column B~ ¥, for every group clement g € G. We use the notation P(G, gy for the
Master Polyhedron with right hand side element gg. Master Polyhedra have many useful
properties,

Master Polyhedra contain all the facets of the other polyhedra, the ones in which
some group clements arc missing. This is expressed in the Master Poiyhedron Theo-
rem, which appears as Theorem 12 in Gomory {1] and is restated below. The theorem
says that a particular polyhedron P(G, N, go) can be obtained from the Master Polyhe-
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dron by intersccting the Master Polyhedron with the subspace of the 7-variables that are
represeried by the columns of N,

Theorem 1 (Master Polyhedren Theorem).
P(G, N, go} = P(G, go) N E(N),

Here E(NY is the subspace of variables 1(g) for which there is a B “IN; corresponding
to 8.

This means that the facets of the Masler Polybedron P(G, gp) are culling planes
for any integer programming problem with Corner Polyhedron P (G, ¥, go) forany M.
Nolc that it is not asserted that each facet of the Master Polyhedron P(G, go), restricted
Lo the subspace E{N), is a facetof P(G, N, go). Rather, itis asserted that the inequalitics
obtained by restricting the facets of P(G, go) to E(N) allleave P(G, N, go) 1o one side
— therefore they are afl cutting planes — and thal among these inequalities are all the
facets of P{G, N, go).

The nexl important poind is that the facets of the Master Polyhedron, including
therefore all the facels of the non-master pelyhedra, can be obtained as the basic feasible
sofutions of a very structured ordinary linear programming problem.

To see this we need 1o introduce n-space. w-space, like T-space, is a linear space
with ong dimension for cach group element of G. A point in rr-space is a vector (i, 7g),
where r € R and mp € R, that gives a real value for cach group element g ¢ G,
where GV is G without the zero element 0 of G. In our nofation below, m(g) refers to
the component of the vector 7 that corresponds Lo the element g G,

There is a very closc connection between the vertices of a very structured polyhe-
dron IT(G, go) in 7r-space, and the facets of the integer polyhedron P{G, go). We ohtain
(G, go) by fGrst writing down all the conditions for i to be subadditive on the group
clements, i.c. that we always have r(g) + nw(g") = nw(g + g") forany g, g" € G. These
inequalitics are reatly the underlying conditions in defining IT(G, go) in (4) below. The
cquality conditions sr(g) + m(go — g = m(gp) in (4) are derived from the inequality
condition by some additional reasoning that shows that we can require this particular
inequality to always be an equality for basic solutions. The other conditions in {(4) are
normalizations. The close connection of this structured m-space polyhedron with the
F-space master polyhedron P{G, gg) is given by the following theorem, which also
appears as Theorem 18 in [1], except that here we do not discuss the case gg = O

Theorem 2 (Facets of the Master Polyhedra). The inequality

> wlgie) = o

geGt
given by the vecior (r, o} with non-negative 7 (g) and with sy > 0, is a facet of the
polykedron P(G, go). go # O in T-space if and only if it is a basic feasible solution 1o
the system of equations and irequalities in s -space:

7(go) = 7o

g +m(go—gy=m g€G ' g#eo (4
(@) gy > n(g+g) g8 eG”
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The basic leasible (rr, ) of the theorem give us facets of the Master Polvhedron in
Tespace. This means that we have w -1 = 7 forall 1 € P(G, gg) and that o -1 = e isa
facet of P(G, go). However in m-space, the 7 arc vertices of the polyhedron (G, go)
defined by the inequalities and cqualitics of [ 1]. This theorem enables us to compute fac-
ets of the integer polyhedron P(G, go) by finding basic feasible solutions of the ordinary
linear set of cquations and inequalities defining TT(G, gq).

The Master Polyhedya can be considered to be the irreducible atoms of integer pro-
gramming. Because of (4), small master polyhedra can actually be computed and all their
facets and vertices found. Because of the Master Polyhedron Theorem the facers of these
polyhedra are cutting planes for any integer programming problem having that group as
the group of its Corner Polyhedron. Table | shows 3 of the 12 facets of P(G g, 9}, with
(19 being the cyctic group of order 10, and 9 denoting the 9th group element. Table 2
also shows 3 of the at least 782 facets of P(Gop, 19) based on the cyclic group of 20
tlements and right hand side [9. Gomory §1] labulates the facets and vertices for all
groups of order 11 or less.

1.3. The problem of size

However, the size of group G for which we can reasonably expect 1o compute the entire
Master Polyhedron P (G, go) is very small compared to the size of the groups we would
encounter in practical problems. These groups can casily contain miflions or billions of
clements. This might scem to preclude the use of groups for practical use, for example
in generating cutting planes; but this is definitely not the case, There are several ap-
proaches which let us make use of our knowledge of small Master Polyhedra to generate
cutting planes for arbitrarily large problems. The earliest such approach was in Gomory
{1], which made use of iifting to move lacets of small polyhedra into large ones, and
made use of avtomorphisms o ranslate a single facel into many different facets. Group
characters were also used to map the group G into a cyclic group and avoid needing to
know the structure of G.

Later in this paper we will describe and use the method used in Reference [3], which
generales culling planes withoul even knowing what group G is involved, and which
extends to mixed integer as well as all-integer problems.

Fable 1. First three facets of P{G g, 9)

Iy e 3 e s oG iy iy My ]

! 0 | 0 H G ! 0 { H
i 2 3 4 0 I 2 3 4 4
4 3 2 6 0 4 3 2 6 6

Table 2. First theee Tacets of (G, 19}

T My A3 Mg Ms Mo T3 Wy M9 Mg Myl W) M3 Wig Ni§ Ryg iy Aig Mo AR

P00 10 ot 01T D 10 1 01 1
2 12 3 ¢ ¢t 2 3 ¢ 1 2 3 0 & 2 3 3
2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 4
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1.4. Krowledge about Master Polyhedra

All these approaches are helped by knowledge of the Corner Polyhedra. In Gomory
and Johnson [2], it was shown that the number of lacels of Master Polyhedra grows
exponentially. However, knowing that there are a vast pumber of facets leaves open the
question of whether there are many facets of roughly equal importance, or whether there
are refatively few major facets and thousands of tiny ones. Probably for practical prob-
Jems, we would prefer to deal with the major facets if they form a significant portion of
the polyhedron. How can we shed seme light on the question of there being major and
minor facets, and how can we find the more significant ones?

1.5. Shooting theorem

Conceptually, this problem could be approached as follows: Shoot arrows (more pre-
cisely, random directions from the origin) at the facets and see which they hit. Many
random directions hitting the same facet would suggest that it is a big facet, few or none
would suggest it was small. Perhaps we could then see what the distribution of facet
sizes is, and which [acets turn out to be the big ones. Shooting experiments were first
used by Kuhn [5] to measure Tacets of the traveling salesman polytope, and required a
list of all extreme points of the polytope a priori. Kuhn shot random vectors {rom the
approximate cerder of the bounded traveling salesman polytope to see which facet was
huil first.

If we accept this approach, there is still the question of how to do this shooting, 1T
the facets of the Master Polyhedron were known, we could proceed as follows: Choose
a random direction v in the first quadrant, increase the vector v by multiplying by a
scalar A, test the veclor vA against the various faccls (!, 7o) to see which side of
cach facel it is on, or, equivalently, which facet defining inegualities are satisfied by
vA. Keep increasing A until v gels to be on the far side, the Master Polyhedron side,
of alt those facets, When vA gets beyond aff the Tacets, it is in the pofyhedron, so the
iast acet it gets beyond is the sought-afier facet containing the point where v hits
the polyhedron. Put another way, if vA lics beyond all the facets but one, and lies on
that one, that facet is the one hit by the random direction v. (Since the facets of the
Master Pelyhedra have nonnegative coefficients, this hit will occur for large enough
A unless the random v has (s in il in positions that include all the positive clements
of one of the facets of P(G, gg). The probability of randomiy generating such a v
is ().

This conceptual process requires having the facets (o lest against the random direction
vA. Except for the smallest Master Polyhedra, we do not have those facets. Remarkably,
there is a way of doing shooting experiments without knowledge of the facets. This
is given in the foflowing theorem, which was introduced by Ralph Gomory at a lec-
ture at Georgla Tech in 1998 that also included some very preliminary computational
results:

Theorem 3 (Shooting Theorem). The facet of PG, go) hit by the random direction v

is the facet given by the minimizing basic feasible solution of the objective function v in
7 -space subject to the constraints of I{G, go).
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Inother words, the facet hit by v is obtained by solving the linear programming probiem:

min - wr
subject to
w{ge) = 7
n(g) +migo~g) =m geG¥ g+ g (5)
nig)y+ng) =g+ g g8 Gt

Proof. 17 is the minimizing solution to (5), choose a positive scalar A so that w oA = g,
Such a A exists because v is a vector from the origin into the non-negative orthant, so
some positive mulliple of it must intersect with the inequality ¢ > . Since v mini-
m[/cs v in (5) we have r'v > st for all hasic feasible solutions 7/ 10 (4). This implies
w'vi = wud = mp. From the Master Polyhedron Thuncm we know that the facets of
P{G, go)are the (_:rr , 700). Therefore the refations wivd > wud = s imply that v lies
on the Master Polyhedron side of all the other facets ' of P(G, go) and that v lies on
the facet (, mp). Therefore o is the facet hil by the random direction v. This ends the
proof.

‘This thcorem asseris that one linear programming calculation produces the facet hit
by one random direction, The theorem gives us a way of discovering facets of any poly-
hedron P{G, gp) for which the lincar programming problem (5) is solvabie. We will also
tend to discover large facets first, as they then to be the ones that are hit. Note also that
the linear programming problem is highly structured, and that the rows, which are much
more numerous than the columns, could be produced when needed by row generation
methods and a dual simplex approach.

Making use of this theorem, Johnson and Evans wrote and ran a shooting program
capable of dealing rapidly with problems (5). They were able 1o fire off 10,000 shots
al each polyhedron that they investigated. They have obtained data on polyhedra up to
group size 30.

L6, Shooting results: the concentration of hits

Table 3 contains data about the number of facets receiving hits in the shooting experi-
ment, and suggests that the concentration of hits is on a small percentage of the facets.
The first column gives the name of the master polyhedron corresponding to the shooting
experiment. The second column gives the number of different facets hit in 10,000 shots.
In the third column we take the facets that were hit most, and show how many of these it
took 10 absorb 50% of the hits. These experiments indicate a strong concentration of hits
on relatively few facets. Conceplually we have to consider that these results could result
from the angle of facels rather than from size. There could be many big faces, but they
could be tilted away from the origin so they are hard 1o hit. We discuss this possibility
in Appendix A and show that it seems very unlikely.

In Figures 3—4 we show in more detail the distribution of hits on the 30 facets that
account for 50 percent of the hits on the {at fcast) 605 lacets of P(G g, 18) and the 11
facets that account for 50 percent of the hits on the (at least) 78] facets of P(Gag, 193,
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‘Fabie 3. Shooting experiment resulfs

Number of facets  Number of Tacets
Polyhedron  hitin 10,000 tries 1o S0% of hits

P{G g, 2) 151 8
P{Gye, 3) 479 1
P{Gig. 6) 207 17
PGy, D 505 12
P(Gig 17 309 7
P(Gyg, 18) o0s 30
P(Gay, 2) 341 10
PG, 4 587 19
PG, 5) 929 20
P(Gap, 10} 374 25
P(Gap, 19) 781 Hi

5 N

1

Facern Tokalling 50% oF Hing

Fig, 3. P(G 9. 18)

In Figures 3 and 4 the facets are ordered according to their number of hits. The first bar
gives the percent of hits on the facel with the most hits, ete. The distribution of hits is
much more concentrated on a few facets for P{Gap, 19} than for P(Gro, 18).

Polyhedra whose groups have subgroups tend to have some very simple facets Jifted
up from subgroups. These simple facets get a lot of hits. Since 19 is a prime, G 19 has no
subgroups, However, Goo has Jots of subgroups and this appears in the facets that get
the most hits as we will sce below. AlE of this reflects the fact thal we arc dealing with
very structured Master Polyhedra.
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Tig. 4. P(Ga, 19)

1.7. Shooting results: dominant facets and their structure

When we look at the actual facets there is clearly lots of structure. If we are dealing
with cyclic groups, which we have in all shooting experiments up to this point, we can
represent the group elements as integers on the real line Mod n. Then we can plot the
7(g) value 7; for the ith group clement as a dot above the ith imeger point, and then
comnect these dots, the values of the x;, with straight lines. The group element 0 is at
the origin and w (0) is always 0. The resulting diagrams for the first four most hit facels
of P{G s, 14} are shown in Figures 5--8.

In cach diagram, the facets have been normalized so that the right hand side group
clement has wr-value = 1, or, equivalently, height = 1. The first three of these [acets
are repetitions of facets of smaller groups that have been “lifted up™ to the larger group.
Reference [ 1], Section 1D, describes various methods of lifting up facets [rom subgroups.
The fourth facet is the Gomory mixed integer cut,

However, if we look at P(G 3, 12}, we see something quite different. Since 13 is
prime, there are no subgroups. However, there are lots of automorphisms that map facets
from problems with different right hand sides to facets for this problem. The two most
hit facets of £((G 3, 12) are shown in Figures 9-10. Both arc quite simple. The two
segment curve appearing in 9 is the Gomory mixed integer cut. In this case il has right
hand side element 12. The third and fourth most hit facets are more complicated but
they are both automorphisms of simpler facets with different right hand sides. The most
exlreme case is the facel which reccived the fourth most hits, which is shown in Figure
H. We assert that the curve in Figure 12 produces the curve in Figure 11 through an
autemorphism. We can verify from Figures 11-12 that if we refer to the first curve as
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' 1 1 1 i i

2 4 5 8 1g iz 14

Fig. 11 (1) — Facet of PL{G 5. 12) with 4th most hits

2 q 6 a 10 12 14

Fig. 12, 7% {r) — The related Automorph with RHS - .60 7 (20) = 7% (i)
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() and the second curve as 7% (u), then the values on the group elemesnts are related
by w(26) = 7™ (u).

In addition to the structure within a given Master Polyhedron, there is significant
persistence of facets from one Master Polyhedron to another. Recall that Table 1 shows
the first 3 facets of P(Gg. 9), the Master Polyhedron for the cyclic group of 10 cle-
ments with right hand side 9, and Table 2 shows the first 3 facets of the much larger
P{Gap, 19). Two of the three facets follow the same pattern. While for groups having
common subgroups this can be explained by facets being lified up, there is the same
tendency among the prime cyclic groups. The same two facets that arc the most hit in
P(G13, 12), shown in Figures 9-10, are also the two most hit facets in P((Fy7, 16) and
P{Gyg, 18).

What these experiments tend 1o show is that there are a relatively small number of
facets that do play a major role in the Corner Polyhedra we have been able 10 exam-
ine. Many of these facets have simple and recognizable structures. The structure of all
these facels is examined in Tar greater depth in [6]. All of the facets, large or small, are
of course culting planes [or integer programming problems having Corner Polyhedra
based on these groups. We would have lots of promising cutling planes if we managed
1o Hmit ourselves to problemns in which the group size was always 20 or less. However,
we will now go on to show that the knowledge of the struciure of these small groups
gives us culting planes for Corner Pelyhedra, and therefore lor integer programming
probiems, of any size.

2. Application of Corner Polyhedra to generate eniting planes

Now let us turn (o generaling culling planes. The key to this is using the fractional
FOWS, HOt as cutting planes, but as group characters. This concept was introduced in [1]
Section E. However the subsequent work in [2, 3] has made it simple and straightforward
to use this approach without any knowledge of the greup structure or of the determinant
of the optimal basis for the problem being solved.

2.1. Group characters, subadditive functions, and cuiting planes

A group character  is any addition preserving mapping of a group into the real num-
bers Mod 1. If we take as our group the group gencraled by addition from the columns
;= B~'N; of B7TN, then such a mapping xx (8;) is given by simply taking the [rac-
tional parts of the kth row element in each column and interprefing it as a group clement
in the interval {0,1) Mod 1. So y(8;) = F{5; 1), where §; 1 1s the element in the kth row
of the transformed non-basis and F is the fractional part. This mapping x of vectors into
group clements is addition preserving,

Taking any of our many possible row mappings xx as our mapping x, we have from

(2)
S PG = Fro). (6)
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1M we had a function s (i) that was subadditive on the reals Mod 1, we would have, using
the subadditivity,

Z T F Gt = mn(F o eh. {7

This is a new incguality involving the variables ¢;. Also, (his is a cutting plane that cuts
off the present linear programming vertex whenever 8¢ o is not itsell an integer. 1 8 o
is non-integer, then ¥ (8¢.0) = £ (3,0) 7 0 and the #; do not satisfy the inequality (7) at
the present linear programming vertex, where they are all 0.

This is a simple and straightforward way 1o generale cutling plancs for any inte-
ger program provided that we have the subadditive functions (1) on the reals Mod 1.
However we will see that what we have done so far provides us with a wealth of such sub-
additive functions. In [3] we show that we have many subadditive functions, and that we
can classify them in order of increasing strength as subadditive, minimal, and extreme.
The subadditive functions we will be using in our examples here are always minimal
and sometimes exireme,

2.2, Subadditive functions

Subadditivity on the group ciements is a property of any facel r of P(G. go) so we
always have x(g1) - n(g2) > (g -+ g2). For cyclic groups, which can be represented
as points on the interval [0,1), Mod 1, any such & is subadditive on those points. For a
targe cyclic group this is close 10 being subadditive on the reals Mod [. This supgests
that one way to generate subadditive functions is 1o interpolate between the values given
1o eyclic group clements by any of the facets of any of the Master Polyhedra.

The Straight Line Interpolation Theorem {[3] Theorem 1.9 or [2] Theorem 3.1}
asseris that all those connccted diagrams that we saw above are subadditive on [0,1).
More precisely, if we have a facet w of P(G, go} where G is cyclic, we can always
form the associated diagram like those shown in Figures 5-12 by connecting the values
i given to the group elements g; by straight line segments. If G has n elements, this
connected set of lines gives us a funciion 7*(x) on the interval {0, 7). We can change
¥ (x) into a function x (i) on there interval [0, 1} by rescaling 10 the interval [0,1),
i.e. wlu) = w™(nu). The Straight Line Interpolation Theorem asserls that this (i) is
subadditive.

This is one ol scveral ways to generate subadditive functions. There are other ways,
one is the “two-slope fill in” [3]. Then there are facets of the Master Polyhedron (G, go)
associated with the group G, when G is not a finite group but rather the reals Mod 1, [7].
However, the poini is that there is no shortage of subadditive functions and therefore of
ways to generate cutling planes for integer programming problems of any size.

2.3. An example

Now we give a concrete example of the interpolation procedure. In this example (Table
4} we look al a transformed 7ih row of a matrix having !5 non-basic variables. The
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Tablc 4. Cutting Plane Example

Fractional cocflicients in the row
0.17 021 Q36 041 044 047 0531 059 061 067 071 072 077 081 094 0.88
Cutting Plane Cocfficicnls
.38 0.2 050 012 050 0.87 L13 003 0.3 088 LI3 100 038 013 075 (00
¢45 055 095 095 063 032 003 024 029 045 0535 058 07F 082 063 1.00
063 0.5 085 L.04 060 035 008 0.69 (75 .63 050 054 044 046 069 100
0.19 024 041 047 (.50 053 058 067 069 0.76 68 .82 088 092 0.061 100
080 0.88 033 036 .50 064 078 0.73 067 033 620 025 048 0.67 006 1.00
0.80 091 044 036 .50 0.64 (.75 050 044 0.25 020 025 948 0.67 0.66 100
0.90 086 070 0064 061 058 0533 045 042 030 032 030 025 032 072 10O

clements shown in the highest row in the table and referred to there as the “Fractional
coefficients in the row™ are the fractional parts F{&; ;) of the actual row clements &; ;.

We have arranged the columns so that these row elements are in order of increasing
fractional part. The right band side element (.88) is in the last column. The first cuiling
plane generated, which is represented by the topmost of the group of seven rows under
Culting Plane Coelficienis in Tabie 4, is:

0.3800 + 01282 -+ 0.5003 -+ 01214 + 0.5015 + 08716 4 11317 + 01345 -+ 01319
+0.8811 4 1131y - 1.00133 4 03883 + 013114 + 0.7505 = |

We obtained these numbers by

Obtaining the first facet of P{(G1g,9)

Forming the interpolaled function by linear inferpolation and then scaling to the
interval [(, 1} to obtain a subadditive m (x)

Applying that 7w (u) to all the {ractional parts F(c; ;) in the transformed row just as
in equation (7). This produces a cuiting plane,

Dividing all the coeflicients through by 7 (0.88) Lo produce a culting planc with right
hand side = 1.

The other rows, each of which represents a cutling plane, were obtained by using
the next 6 facels of P{G g, 9) and repeating this procedure.

The reason for the choice of the particular Master Polyhedron P(Gip, 9) was fo
have the peak of the interpolated curve at 9 in the interval [0, 10), which translates into
a peak for m{u) at 0.9, which is near the right hand side value of (0.88. This tends to
make almost all the coeflicients less than the right hand side, which makes for a stronger
inequality. We could equally well have chosen P(Gy, 19), which would give a peak at
0.91, 0r P{Gap, I8), 0r P(Gg, D), or P(Gig, 14). Or wecould have chosen them all and
gencrated large numbers of cutting planes.

The seven cutling planes we actually computed form a well balanced set. Some cut
deeply on one set of variables, others cut deeply on other variables. This is what we
wauld expect as these inequalities come from the major facets of a Corner Polyhedron.
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2.4. Remarks on Non-Master Polyhedra

The theory of [1] shows thal the facets of a particular Corner Polyhedron arc among the
facets of the Master Polyhedron. That is, if we set 1 = O for the group elements that
are not present, the resuliing inequalities include all the facets of the particular Corner
Polyhedron P (G, N, go). It seems plausible that in problems with many variables, there
will be a good coverage of group clements present on the unit interval (the rescaled
interval [0, 1)), Major inequalities from the Master Polyhedra are likely o be relevant,

For problems with a spolty coverage of the real line, we should be able to use the
great varicty of possible inequalities and their systematic structure to shape strong in-
equalities, or sets of strong inequalities, (o deal with the actual locations of the {ractional
paris.

3. General remarks on the use of Corner Polyhedra
and moving beyond cutting planes

Clearly there is much to be learned about Corner Polyhedra, and that knowledge trans-
lates directly into cutting planes. The use of fractional rows of the updated linear pro-
gramming tabiueau as group characters allows us Lo import sets of valid inequalitics from
Corner Polyhedra or from our knowledge of extreme functions on the interval [0, 11([7])
and translate them into culling planes,

Practice scems to show the cffectiveness of adding multiple cutting planes to a for-
mulation before resobving 1he lincar programming relaxation. From our point of view,
this makes sensc, since adding a strong, well-balanced set of facets from appropriate
Corner Polyhedra begins to approximates the true Corner Polyhedron, rather than mak-
ing a single cut and moving to a new linear programming vertex. One approach used in
practice today is to add many Gomory cuts from different rows of the updated tableau in
the same iteration. Adding many such irequalities from different rows and with different
right hand side clements (although this is not obvious) is, in the case of a pure integer
program, almost exactly the same as using the avtomoerphic images of many different
Gomory cuts on a single row of the tableau. This then ends up being a simple way to
generate and apply one important subset of the Master Polyhedra facets,

H we were able to come ¢lose 1o solving the Comer Polyhedron problem - say by
having an adequate supply of cutting planes or perhaps in other ways, such as finding
solutions to the group problem, we could come close {o a different kind of algorithm —
one based on solving a sequence of Cerner Polyhedron problems. In such an algorithum,
we would solve a corner problem, then apply dual simplex to the resulting integer an-
swer, and then repeal. With the practice of putting on multiple cutting planes, we are
moving in that direction.

A. Taces tilted away from the origin

We have examined the question of whether facels tilted away from the origin receive
fewer hits in the shooting experiment in two ways. (1) by looking at the normals of
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Table 5. Cosine test (ables

Number Cosine of Cosine of Number  Cosine of Cosine of
of hils angle with angle with of hits angle with angie with
(1,1,...,0) incidence dircction (,1,..,1) incidence direction

20 0.802 0.740 2 0.904 0.617

9 0.845 0.662 I 0.934 0.821

8 0.888 0.764 I 0.934 0.807

] 0.861 0.597 I 0.931 (0.797

7 0.900 G017 i (0.926 0.7H)

0 0.89] (3.882 1 0,925 0.739

4 0.915 3.793 1 0,923 0.748

4 0,909 0.624 ! 0.922 0.743

3 0,905 0.770 i 0.922 G.7i0

3 0.892 0.706 i 0.920 G.699

3 1.881 0.680 I 0.912 0.690

2 0.926 0.826 H .91 0.665

2 0.925 (1.814 H (.01 {.654

2 0.916 (0.799 { (.91 0.651

2 0.908 0.678 | 0.901 0.635

the faceis that are hit to see how far ol the divection (1, 1, ..., 1) they are, and (2) by
looking at the angle of the random direction that hit the lacet made with the normal 1o
that facel.

The result of examining one Master Polyhedron, P{( 15, 14) is shown in Figure A,
The lists in the figure are the facets arranged in order of decreasing hits. The first number
in cach row is the number of kits out of 99, Tn the first table the second column is the
cosine of the angle made with (1, 1, ..., ). In the second (able the second number is
the cosine of the angle made with the incident random direction. There seems 1o be at
most a very slight tendency for the low hit facets to be paralicl to the axes or hit al a
sharper angle, but certainly nothing that would explain the significant disparity i hils.
Similar examinations have been made {or several other Master Polyhedra and the resulis
are always the same.
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