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Abstract. Any integer program may be relaxed to a group probiem. We define the master cyclic group problem:
and scveral master knapsack problems, show the relationship between the problems, and give several classes
of facet-defining inegualitics for cach problem, as well as a set of mappings that take facets from onc type of
master poiyhedra to another,

1. Intfroduction
1.1, Motivation
Consider the integer programming problem
min{cx{Ax = b, x > 0 and integer} {1
and its linear programiming relaxation
minfex{Ax = b, x = 0]. (1.2)

Let (B, N) represent the sets of basic and non-basic variables for an optimal basic
solution 1o (1.2). We may rewrite (1.1) as

min{egxp + eyxn|Brg + Nxy = b, xp, xy > 0 and integer}, (1.3)

A group relaxation of (1.3) may be found by removing the non-negativity restrictions
on the basic variables x g

minfepxp +enan|Bxp 4+ Noy = b, xy > 0, x5, Xy inleger). {f.4)

From this formulation, we can see that given a non-negalive and integer vector xy, xp
is integer if and only if

Niy =56 (mod B). (1.5)

In other words, if Nxy — b gives some integer combination of the columns of B. This
is the traditional group problem.
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We can derive an equivalent formulation of the group problem by first multiplying
the constraints of (1.4) by the inverse of the basis matrix B:

min{egxg - enxyxg + (B TN xny = B b, xn = 0, x5, xn inleger}. (1.6}

From this formulation, we can sce that given any non-negative and inleger vector Xy,
Xp 1s integer if and only if

(B~ 'Nyxy = B 6 (mod 1), (1.7
A single row i of (1.7) has the form

3 ayx; =bi (mod 1), (1.8)

jenN

Because we are taking both sides of {1.8) (mod 1), we enly need to include the fractional
part of cach coeflficient &;; and b;:

Zﬁjjxj =b;  (mod 1), (1.9
jeN

where @;; = @; (mod 1) for ail j, and bi = b (mod 1).

When generating culting planes for the original inleger programming problem, the
practical way to find group characters |9} uscs the updated rows of the optimal linear
programming relaxation 1ableau as derived above. Subadditive functions on the unit in-
terval can then be used to derive culting planes for the integer progranmming problem.
However, when the entries of A and 6 are integral, D == det(B) is a common denomi-
nator for all entries &;; and 13; . Therefore, we can multiply the relation in (1.9} by D 1o
find

> (Dag)x; = (D) (mod D), {1.10)
JeN

where (Dd;;) and (1)13,-) are all integers. (1.10) with the added conditions xy > 0 and
mteger, is a cyclic group problem. Let ©, = (0, [, ..., n — 1]} represent the cyclic group
of order n. The generic version of a cyclic group problem is

Zaj.xj = {mod n), (11D
jes

xs = 0, and inleger

where §is aset of variables indices, a; € Oy forall j € Sandr € Gy, (1.10) is therefore
the group problem over the cyclic group Cp. Typically, only a subset of the elements of
C, are represented in the cyclic group problem derived for an IP. In other words, there
are some elements @ € C,, that do not appear as cocfficients in (1.10}. The master cyclic
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group problem corresponding to a given cyclic group problem has each group element
represented exactly once:
i1
ijj =r (mod m), (1.12)
J=i
x; > 0, and integer for f = 1, ..., 1~ 1.

Gomory [6] showed that the facets of the convex hull of solutions to the cyclic group
problem (1.11) may be obtained from a subset of the facets for the convex hull of
solutions (o the master problem (1.12) by simply deleting the facet coefficients corre-
sponding 1o elements that are not present in (1.11). The remaining facets for the master
problem give valid inequalities for the cyclic group problem. Thercefore, master cyclic
group problems can provide cutting planes for any integer program [6-8, 10].

The procedure given by Gomory and Johnson [9] mentioned above for generating
cutting planes uses the updated rows of the tableau directly and does not reguire knowl-
edge of which cyclic group is actually present for a given basis, therefore avoiding the
need for exact arithmetic with large integers and the computation of 2. This method is
based on theory about the infinite group problem over the unit interval modulo I [7.8].

The cut-generation method using master cyclic group facets that we just described is
essentially a finite and discrete version of this theory. If the relation of the master cyclic
group problem is divided by the size of the group, then the congruence is  (mod 1)
instead of (mod ») and the group clements may be represented by grid points on the
unit interval.

There are several intersections of these continuous and discrete theories, For exam-
ple, classes of seed facets we will develop in later sections for finite master cyelic group
problems give exireme subadditive functions 19]. Conversely, extreme subadditive (and
piccewise-linear) functions in the continuous interval problem also give facets for the
discrele master problem when the break points of the function fall on grid poirts.

By studying the facets of the discrete master cyclic group probleimn, we gain intuilion
and knowledge about extreme subadditive functions for the continuous problem, which
leads to new ways to generate cutting planes for general integer programs.

L2, Structure of paper

We conducted a detailed study of the facets of the master cyclic group polyhedra, as
well as the master knapsack partitioning and covering polyhedra. We can now explain
many of the facets of these problems using several classes of seeds and mappings. Seeds
are methods that generate facets directly for any given master polyhedra. Mappings take
facets from one type of master potyhedra to another, and often give a sequence of lacets
for infinitely larger master problems,

Gomory and Johnson |7] showed that the number of facets of master cyclic group
polyhedra grows exponentially. 1t is therefore impractical (0 assume we can explain all
facets of master cyclic group polyhedra. However, we may hope to explain the “impor-
tant” facets of these polyhedra. Gomory [10] developed a shooting experiment 10 ity o
estimate which facets are largest on the surface of the polyhedra, Using the shooting
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cxperiment resulls, we may now try to explain the facets that we think are most important
(o the structure of the master polyhedra, In fact, these lacets tend to have nicer structure
than the facets that appear to be small on the surface of the polyhedra, and we are able
1o explain many of them. As we introduce ¢lasses of facels throughowt this paper, we
will note those that performed strongly in the shooting experiment.

In the next section, we define the master cyclic group problem and review a subad-
ditive characterization that gives the facets of its polyhedra. The remainder of the paper
develops theory and machinery 1o understand and explain facets and give methods to
generale facels for master polyhedra, Section 3 shows that for small problems, all facets
may be explained using only a few facets as the foundation for lifting-type methods.
For larger probiems, the facets explained include those that the shooting experiment
shows are relatively important, In sections 4, 6, and 7, two master knapsack problems
are introduced and many of their facets are classified. The relationship between these
problems and the master cyclic group problem is discussed in section 5, and a method
for obtaining cyclic group lacets from knapsack facets is introduced,

Appendix B summarizes the classes of facets we developed for the master polyhedra
we consider, Essentially, we give a core of ten classes of facets and five different ways
1o gel facels from these classes for other master polyhedra. Tables of all facets for small
problems are also given in appendix B. Complete tables of facet-defining inequalitics
for some larger probleros are available at http://www.lli.gatech.cdu/AEGI. An explana-
tion of the double-description method [12] and a parallel implementation that we used (o
generate the facets may also be found there, and some supplemental proofs arc available.

2. The master eyclic group problem

Recall the master cyclic group problem of order s with right-hand-side r:

mn—1 -1
min[Z cixi ixj =rmodn, x> 0 and integer}. (Cui)
|

=} i

Since we are interested in the convex hull of feasibfe solutions, we will typically ignore
the objective function.

Without loss of generality, we may assume (0 < r < n#— . Inthe case of the zero-rhs
problem where r — 0, we must add the constraint Z;’;’f xi = I toeliminate the trivial
solutionx; =0fori=1,...,n— L

The eyclic group polyhedron P(C, ) is the convex hull of feasible solutions io
the cyclic group problem C, ;.. For any n and r, the recession cone of P(Cy,,,) is the
non-negative orthant of B! {8].

Let (m, ¥}, where 7 is an {(n — 1)-row vector and y a scalar, represent the inequafity
Z;';’,l mix; = y. Gomory [6] gave a subadditive characterization of all facet-defining
inequalities for P(Cy ,):

Theorem 2.1 (Non-zero rhs). for integers r and n, where 1 < r < n, an inequality

(r, ¥) is facet defining for the cyclic group polyhedron P(Cy,.,) if and only if it is @ non-
negativity constraint or its coefficients are given by the vectors m € B 1 and y ¢ R
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thar represent the extreme rays of the cone

= 0, i=1,..,n—1 (Nonnegativiry}
w Ty oz I =i, j,k<nand (Subadditivity)
S e con G+ jy=k (moda)
G mk; =y, V=i, j <nand (Complementarity)

U+ jy=r (modn)
3’1",. el ‘}/

Since y always equals x,, we will often write the facet-defining inequalitics as (o, ;).
However, the zero-ths problem does not have y = 7, so we give its characterization
separately:

Theorem 2.2 (Zero rhs). For integer n > 2, an inequality (7, y) is facet defining for
the cyclic group polyhedron P(Cy o) if and only if it is a ROM-REGATIVIEY CoRStraint or its
coefficients are given by the vectors w &€ B* Vand y € R that represent the extreme

rays of the cone

;> 0 i=1..,n-1 (Nonnegativity}
mtap ey 1 <i,jk<nand {Subadditiviry)
Su,0 = cony (i +j)=kmodn

midhwy =y 1=i,j <nand  (Complementarity)
G+ D=0modn

The subadditive cones introduced here are contained in the non-negative orthant and
are, therefore, pointed. They can be seen to be full dimensional. The facet-defining in-
equalities given this way are unique subject to multiplication by a constant. Throughout
the paper, we will scale incqualities to have all integer coefficients with no common
divisors, unless otherwise noted. Also, we will often refer to a facet-defining inequality
for a polyhedron as simply a facet of that polyhedron.

3. Master eyelic group faceis

Sections 3.2-3.3, except theorem 3.4, review previous results about master cyclic group
polyhedra. Section 3.4 gives a new class of facet-defining inequalities for this problem.

3L Classifving cyclic group facels

The following definition will be useful throughout the remainder of the paper:

Definition 3.1. Joran inequality (w, yYand | <1, Jok <n—Twithk = (i +j) mod »,
we will call m; + ;= my an additive relation if it is satisfied at equality.

Note that all complementarity constraints are additive relations. We will use theorems
2.1 and 2.2 to prove an inequality {r, ¥} is facet-defining for P(C, ;) in two steps:

1. Show (7, ¥) satisfics non-negativity, subadditivity, and complementarity
2. Construct n — 2 lincarly independent additive relations satisfied by (, ¥).
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3.2, Mappings

Using the group structure of the master cyclic group polyhedra, Gomory [6] gave the
lollowing two theorems that use awlomorphisms and homemorphic liftings to explain
facets.

Theorem 3.2 (auto). For the eyclic group C, of order n and O < r,s < n — 1, let
¢ o Cyp — Cy be anautomorphism wiere r = ¢(s). Then there is a one-to-one mapping
of facets from P(C,, ;Y to P(Cy ). If

n--1
E X > dEy
fux]
is a facet for P(C, ), then
n—1
mixi = oy
i=1

is the corresponding facet for P(C, ), where J’l’; = ).

When the facets are known for P(C,,), the facets for P(Cy 4(-) for an avtomor-
phism ¢ arc essentialiy the same. Thus, table B.2 only fists facets for one of the right
hand side elements r in the set of group elements that map onto each other under auto-
morphisms.

Theorem 3.3 (homo). For integers r,d, and n, 1 < r,d < n, where d divides n but
does not divide r, and s = r mod d, any facet of P(Cy ) can be lifted to a facet for
P(Cyy,p) using the homomorphism f : Cy —> Cy given by ¥ (i) = i mod d. Explicity, if

d--1

E WX = My

i=]

is a facet for P(Cy ), then the facet for P{Cy ) from homomorphic lifling is:

n-1
[ .
E X A,

i=1
where w0 = Ty Here g is considered to be 0.
i i)

Hssentially the new facet is obtained by cyclicaily repeating the original facet n /d times.
That is, the new facet is:

I
o= (ﬁ-] » ﬂ’:’,’ (AL R‘d"—'ls Oa H’]? T2, e, W1, O: ey 01 TY, T2, ey ﬂ’d*l)-

In table B.2, we omit these facets because they are derived from listed facels of smaller
£roups.

Every lifting of this type will have at least ope coefficient among 7y, ..., 7, _, equal
to (1. Gomory [6] also showed the converse theorem: any facet of a master cyclic group
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polyhedron with some coclficient 7 == 0 comes from such a homomorphic lifting.
Facets from homomorphic Jiftings were consistently among (he most hit facets in the
shooting experiment,

The previous theorem requires that » > ), which means the right hand side is not in
the kernel of the homomorphism. The next theorem discusses a different type of homo-
morphic iif"!ing when the right-hand side is in the kernel of the homomorphism. Instead
of setling ;r = {h when ¥ (i) = 0, we will set 7] = =04, where (o, op) is a facet for
the zere-rhs problem P(C 2. o). Gomo:y s eriginal paper [6] on the group problem had a
lifting result of this type using a "special” facet for the kernel. Gastou [4] had a different
version of that result that recognized the role of self-inverse elements. Our result is a
strengthening of both results and, empirically, seems to be the strongest possible for
cyclic groups.

Theorem 3.4 (0ifting). For infegers r,d, and n, | = d < n, where d divides hotf: n
and r, let

1

Z R

i=1
be a facet of P{Cy.n) such that either

1. disodd or
2. d is even and there is some { # & such that the subadditive relation

U%' +opZ oy ‘[—l Dod d

holds at equality.
Let
~1i

§ TiX; = Ty

be any facet of P{Cy ) where k = % and s = 4. Letting ¢ © Cy — Cy denote the
homomorphism given by ¢(i) = i (mod d), a lified facet for P(Cpp)is:

el
I /
E WX E AL,

i=1
where

p aopay if (i) # 0

;o ]
B jq otherwise

where of =

g _ d
god{d. we} (mdﬁ T opedi{d mg)”

The case r = 0 is allowed. Essentially the new facet is obtained as in theorem 3.3, and
then the O’s are replaced by the appropriate clements of m, giving

7= (@0, 007, o, €O, BT, QY ey QO 1, BT, <y BTh, O oy GO ).

The lengthy proof of this theorem is in appendix A.
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3.3, Mixed integer cut
The first cyclic group facet we use as a facet-generating sced is the mixed integer cut
(mic). For the polyhedron P(C, ), » # 0, the mixed integer cut (7, ) is:

i r—1i ]n—rml n—i ]

JT:{—""J—,"‘J s Ay s reey PILTER) )-
¥ r s n—r n—r [l

and y == 1. This cut is a facet for every cyclic group problem ([8}, theorem 3.3). When
=0, the cut is
I i n—1

=y =y ey )$
1 it h

and again y = 1. Mappings given by automorphisms and homomorphisms are power{ul
tools when used with the mixed integer cut, For example, for n < 7, every cyclic group
facet, except one, is either a mixed integer cut itsell or comes from one or more mappings
of'a mixed integer cut. In every shooting experiment conducled to this point, the most hit
facet is either a mixed integer cut itself, or a homomorphic lifting of a mixed integer cut
for a smaller group problem, or an antomorphism of a mixed integer cut for a problem
with a different right hand side. Additionally, all facets in these three sets consistently
were anong the most hit facets.

3.4. Patterns for cyclic groups

We will often refer to the slopes and lines of a facet (7, ). Recall that in the defining re-
lation of the non-zero right hand side master cyclic group problem C,, ., the coeflicients
of hoth xp and x, are zero. Therefore, we can think of the coefficients of xg and n, as
equal to zero m a facet (m, y) of P(Cy,). We consider the slope (i) = m4 —m o
be the difference between two consecutive coefficients 7y and my o fori =0, .., »m ~ 1.
Hwelet S = {s(i) : | <i < n— 2) denote the sel of all unique slopes of a facet
{r, ¥), then we may say (, p) bas |S] slopes. Let a line L{i, i'} refer 1o a set of con-
secutive elements from i (o i with constant slope; for example, if $ (i) = s(i + 1} then
L, i+2) =i, i1, i+2) isaline. WL{, ky = (i, i+ 1, ..., k}is a linc that salisfics
both conditions:

. citheri = Qors{i — 1) #£ (), and
2. eitherk = nors(ky # stk — 1)

then we call L{i, k) a maximal line.

The mixed integer cut for » = 0 described in section 3.3 has two slopes: § =
{T—I_, m;j«;i;}, and two maximal lines: L0, r) = {0, ...,r — |, 7}, and Lir, ) = {r, ..., n).

We introduce two classes of eyelic group facets with four maximal lines. The first
has two slopes (v, £), and the second has three slopes (@, 8, §). In the theorems, we
describe the facets scaled (o have 7, = 1. In our examples and tables, we will give the
facels scaled to have all integer coefflicients.

Theorem 3.5 below is a discrete version of the two-slepe theorem described in theo-
rem 3.3 of [8). That theorem described a class of piccewise linear functions on the unit

interval that have two slopes.
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Theorem 3.5 (Zslope). For positive integers n, r, and d, with
n+1 Aty -1

axfr + 1, [——1} <d < .
max{r -1, [ 5 N=d=| 51
(m, 7)) defined as follows gives a facet of P{Cy )
ol iei={1,..,r—1)

o F+BG - e dy=1{r ..d)
D ER G- el ={d+1, n by —d)
(i —mp tedy={n+r—d+1, .., n-1}

. 1 _ 2r—d)-n
where ¢ == - and § = QT

Proof. Complementarity follows from the construction of 7, and subadditivity follows
from the condition on d, which guarantees that 27y == 74_,,. There are 7 — | triangular
relations 7y - 7y = w4 fori € Jy. Similarly, there are d — r — 1 {riangular relations
Tp—i +7; = 7ty fori € Jy. Finally, there are n —d triangular relations ; H g = i
fori=1,..,n+4r—2dandfori =r ...,d — 1. With the exception of my, all of these
relations either contain one element from J; and one from Ja, or one from J2 and one
from J4, so they are independent from the previous relations, Q

Lxample 3.6. P(Ciy,5) has the following 2slope facets:
d=T:{m,y)=10(1.2,3,4,5,3,1,2,3,4,2), 5
d=8:(my)=0(1,2,34,54,3,2,3,21),5

The facets described in the following theorem have three slopes and four maximai lines,
I the proof, we use lemma 6.2, which we will state and prove in section 6. Again, this
theorem gives a special case of a general theorem about functions on the vnit inferval
from Gomory and Johnson [93,

n-r

Theorem 3.7 (3slope). For positive infegers n, v, and d, with r + 1 < d < 51
{7, m,) defined as follows gives a facer of P(C), ;).

fo fedi={1,.,r}
I R T e R (R SN |
S T iedy=|{d .. n+r—d
(i —~n)p tedy={n+r—d+ 1, ..,n—1],
where o = ,l § = # and § = Gﬁ’—ji—}_"m

Proof. Complementarity follows from the construction of 7, and subadditivity follows
from the condition on d, which guarantees d, 2d € J3, so 27y = 4. As in the previous
proof, there are » — 1 triangular relations 7y +m; = 7, fori € Jy. Similarly, therc are
d —r — 1 triangular relations 7, + m; = ;. fori & Jy. There are d — » triangular
relations sy -+ mg = migq fori = r, ...,d — 1. With the exception of my, all of these
relations either contain one element from J and one from J4, so they are independent
from our previous refations. Finally, the condition on d guarantees that 3¢ < 5 4y — d,
s0 by lemma 6.2, the maximal line L(d, n-+r —d) , gives n-+r —2d linearl y independent
relations with all coefficients in J5. !
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Example 3.8. P(Cy2,1) has the following 3slope facets, scaled to have inleger coeffi-
cients:

d=2:(m,y)y=0((13,2,34,56,7,8910,11),13)
d=3:{my)=1((138,34,5,6,7,89, 10, 5), 13

4. The master knapsack problem
4.1. The master equality knapsack problem

The master equality knapsack problem of size i is:

n I
min{Z c,-xl-lz ix; = n,x > (0 and inieger}. (K,

faxl f==]

Again, we refer {o this as the master problem because foreach i = 1, ..., 5, there is a
variable x; with coefficient { in the constraint. The equality knapsack polyhedron P{X,)
is bounded because foreachi = 1, ..., 1,0 < x; < 5} must be satisfied. Furthermore, the
polyhedron has dimension at most 7 — 1 because the defining knapsack cquality must
be satisfied for every solution. Define a polytope 10 be a bounded polyhedron. For the
remainder of this paper, we will refer o the master equality knapsack polytope as sim-
ply the knapsack polytope. Most previous knapsack polyhedral studics, such as {111,[3],
tooked only at (-1 problems, unlike the knapsack over general integers we are concerned
wilh. It is clear to see that the knapsack polytope P{K,} has dimension n — 1: for i =
Zion (o =n—i,x =1 x; =0for j # 1,i}isasolution, as is {x; = n, x; = O for
J=12, .., n}; and these n solutions are affincly independent.

In section 5 we will show that the master equality knapsack polytopes arc actually
lacets of certain cyclic group polyhedra. Therefore, studying the facets of these poly-
topes gives us information about these cyclic group polyhedra. In section 6 we will give
several classes of lacets for this problem.

4.2. The master knapsack packing problem

The master knapsack packing problem is:

41 H)
min[z cixil g ix; < n,x > 0and integer}.

i=1 i=]

However, we do not need to study this problem independently: if we introduce a slack
variable 5 to this inequality, then, xy and s are identical in the constraint. Therefore,
the master packing knapsack polyhedron is the same as the master equality kaapsack
potyhedron.
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4.3. Subadditive characterizarion of facets

Let (o, pu) refer to the inequality 3 7, pix; = py. The following subadditive charac-
terization of facets (p, p,) of the master equality knapsack polytope P(K,) is given in

i1

Theorem 4.1. The fucets (p, pn) of the knapsack polytope P(K,) are the extreme rays
of the cone

Tur =

+

{Pi Fojzpaep. VEE

. i+j<n {Subadditiviry)
i ‘!‘Pn—-! = fu 1 = i < j .

(Complementarity)

The defining knapsack equation, given by pj == i, is a basis for the lineality of this cone.

As with cyclic group facets, we will typically prove an inequality (p, py,) gives a
facet for P(K,) by first showing complementarity and subadditivity are satisfied, and
then giving n - 2 lincarly independent additive relations.

5. Cyclic group facets from knapsack facets

In ection 5.1, we describe the relationship between the master equality knapsack poly-
tope and the master cyclic group polyhedron. Sections 5.2 and 5.3 describe and prove a
method for obtaining facets for cyclic group polyhedra from facets of master knapsack
polytopes.

3.1 The knapsack polytope is a fucet for eyclic group polyhedra P(Cpyq0)
and P(Cy0)

The convex hull P{K,) of master knapsack selutjons is a subsct of the solutions for the
two cyclic group polyhedra P(C,4 ) and P{C, p) because atry solution that satisfies
the defining knapsack equation must satisfy the corresponding defining congruence for
these cyclic group problems.

As discussed in section 3.3, the mixed integer cut

xp2x 4+ x>0

is a facet for the cyclic group polyhedron P(Cy11 ). Bvery integer solution of the cyclic
group problem Cy.,, for which the mixed integer cut holds with equality is a solution
to the knapsack problem K, and visa versa. Thus, the knapsack polytope P(K,,) is pre-
cisely the facet of the cyclic group polyhedron P (Cux1.p) given by the intersection of
the mixed integer cut with the polyhedron P(Cy iy 0).

Also discussed in section 3.3,

Xy 42044~ Dxgey =0

is a facet for the zero-rhs cyclic group problem C, . It may seem that the knapsack
polytope P(K,) cannot be a face of the polyhedron P(C, ) because the dimensions
of the problems are different. However, x, is involved in the master knapsack problem
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trivially: it is only positive in the solution x* = (0, 0, ..., 0, 1}. Thus, the intersection of
(K} with the hyperpiane x,;, = 0 contains all solutions to K (n) excepl x’, and adjoin-
ing that vertex may be done by taking the convex combination of it with the verlices in
the x, = 0 hyperplane. Thus, the polytope P(K;) M {x; = 0} is a facet of P(Cp ).

5.2. Tilting knapsack facets

Because the knapsack polytope is not full dimensional, adding a non-zero multiple of
the defining knapsack equation ¥ _*_, ix; = n (o any facet-defining inequality of P(K,)
gives an equivalent facel. We refer Lo this operation as tifting the facet. Precisely, if
(0. pn) is a knapsack facel and o is any non-zero constant, then

rr
Z(pi +ia)x; = pp + o

i=1

is an equivalent facet given by tilting. We will refer to multiplying an inequality by
a constanl as scaling the inequalily. Note that the tilted facets we will refer 1o do not
necessarily have integer coefficients.

The subadditivity constraints of thcorem 4.1 that define the knapsack polytope arc a
subsel of the subadditivity constraints for the description of the cyclic group polyhedra
in theorems 2.1 and 2.2, Given a facet for P{K,), a facet of P{Cyq1 4 or P{Cy.0) may
he derived by tilting the knapsack facet just enough 1o satisly the additional subadditivity
constraints. The details and proof are given in the next section.

In this way, every facet of a knapsack polytope is identified with a corresponding
tilted facet for P(C,..1,,), and the same facet of P(K,} is identified with a facel for
P(Cy0). Thus, there is a one-lo-one correspondence belween a subset of facets for
P{Cyq1.0) and P(Cy o) through the polytope P(K,;). When combined with Gomery’s
automorphic and homomorphic lifting theorems in section 3.2, this construction identi-
{ics facets for many cyclic group polyhedra, not just these two cases, as liftings of tilled
knapsack facets.

5.3, Tilting using the mixed integer cut

We may generalize the idea of 1ilting so that facets for a knapsack problem K (») give
facets for larger cyclic group problems C(n, ) where n > r. For convenience, we will
represent the mixed integer cut for C{n, r) as a vector i defined as follows:

fort <i =<y

i
=gt )
2L forr<i<n—1

n—r
Lemma 5.1. Forn,r suchthar 1 < < n, choose an (n — -vector

a—r—1 n—i 1

IO = (Iolnpzs“-!pi' = ]9 rorey e )
R—r 7 R 1




Cyclic group and knapsack facets 389

such that the subadditivity and complementarity conditions are satisfied for all pairs
Gopyelb nrV withi +j <r. Set

slow — o0 — ;) Jorl1 =i, jk=r (0

sl e — )+ (=) Jorl <i j=<r )
o = IMaX andr <k <n

Flox — P — 1] forl <ik=<vr 3)

andr < J <n
where k = (i + j) mod n. Then the inequality (n, 7,) defined by
om0,
satisfies all complementarity and subadditivity conditions of P(C, ;).

The complete proof may be found at www.tli gatech.edu/AEGI. Essentially, choos-
ing o to satisfy these conditions ensures that enough of 1 s added to p so that all
additional cyclic group subadditivity relations are satisfied by 7, and al least one new
subadditivity relation holds with equality.

Theorem 5.2 (Tilt), Assume (p, p,) is a facet of the knapsack polytope P(K,) which
is tilted so that p; > O for all | and at least one p; = 0, and scaled so that pr = 1 {this
may be done without loss of generality). For a givenn > r, if the condition in lenima 5.]
sivesw = 0, then (v, m,) constructed as follows s o facet of P(Cy ), where | < v < n.

1. Extend the vector p to the appropriate dimension:

a—r-—1 n—r-2 1

p - (plyp.?.---;pr = 1! N ) X y ooy _)'
B o n oy no—

Choose ¢ as in lemma 5.1, Add « times the mixed integer cut for C(n, #) 10 (o, py).

el =iy
' p,'--i—a%jj% ifr+1=<i<n-—1}

Proof. By lemma 5.1 and the fact that (o, 0,) is a knapsack facet, we know that (7, 7,)
satisfies complementarity and subadditivity. By assumption, it also satisfics non-nega-
livity, (p, o} has » — 2 linearty independent additive relations

Pitpf == i

fori, j,i+ j e {1, .., r}given by the knapsack additive relations, and n — r — 1 of the
form

Pi  Pn—1 = Piey

fori € {r+1,...,n~ 1] by construction, and these relations are still satisfied by 7. The
additional additive relation is 7t; +; = T(i+ fymod o fOr any pair (7, f) that defines o, If
this relation was dependent on the others, then it would also be satisfied by p and o == ()
would be true; therefore, it must be lincarly independent. o
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The tilting procedure for finding facets of the zero-rhs cyclic group problent is similar,
but « is chosen differently because the subadditive constraints for the zero-rhs problem
are different.

Lemma 5.3. Forn = 2, choose an n-vector

o= (01 62, s Pn)

such that subadditivity and complementarity is satisfied for all pairs (i, i) € {1, ..., n}?
with i - j < n. Then the inequality (7, n,) defined by

T = pob O,
where p refers to the mixed integer cut for C(n, 0): p; = ;";ﬁn‘i = |,...,nand
o = mMax{pigjn = pi — o1l i, j<n—landi-t+j> n)
satisfies all complementarity and subadditivity constraints of P(Cy p).
Proof. Complementarity for P{C, o) requires 75; + 7t ; =y for 1 <i <n— 1.

i+ RAp-j = Ay
i -
Pid Q= Oy b e =y b
A n
i + O = P,

which is satisfied by assumption on p. Similarly, for i + j < n, subadditivity of (7, ,)
follows from subadditivity of p. When i + j > n, subadditivity is cquivalent to:

T T2 Wi j) modn
i jn

i J
pita- ot~ = pijonta
H H n

Q= Pjgjon— Pi P
which is satisfied by e given in the lemnma. (1

Theovem 5.4, Assume (p, py) is a facet of the knapsack polytepe P(K,,), which is tilted
sothat p; = O for all i and at least one p; = 0, and scaled so that p, = 1 (this may be
done without loss of generality). Then (i, ) constructed as in lemma 5.3 is a facet of
P(Cyo) ifa > 0.

Proof. By lemma 5.3, (, m,) satisfies complementarity and subadditivity, and non-neg-
ativity is satisfied by assumption. Because (p, p,) is a knapsack facet, there are 1 — 2
linearly independent additive refations with i + j < n. The final necessary relation is
T b jo= Wy jimed n TOr any pair (i, f) that satisfies the definition of o at equality;
again, this relation is lincarly independent from the others because @ > 0. 0
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6. Knapsack facets

Section 6.2 introduces twe lemmas that are useful in proving many classes of facets for
the master knapsack cquality polytope P{K,). In cach of sections 6.2-6.4, a sel of relat-
ed classes of facets for the master knapsack equality problem is given. Unless otherwise
noted, all inequalities 37| pix; = o, in this section are tilted so that py,; = 0.

6.1. Linear segments

We first give two lemmas that will be uscful in proving later theorems.

Lemma 6.1. [f ¢ is a vector of length n, the inequality {p, v) is subadditive, and there
isaset J C {1, ..., n}for which there are || — | linearly independent additive relations
fi o = Py,

with i, j, i+ f € J, then p must be linear on J; i.e. for some constant o,
pj=jo
Jorall j & J.
Proof. A homogeneous system of n — 1 finearly independent equations in n variables
has solution space that is one-dimensional, i.c. every solution is a multiple of some non-

zero solution, Since p; = j Y & J is a solution to the set of equations {p; + pj =
Pirjlly j, i+ j € J}, every other solution to this system must be a multiple of i, £l
The next lemmais a special case of the converse. It gives conditions sufficient 1o ensure
that (p, 3} must be lincar on some subset J of the coefficients.

Lemma 6.2. For a subadditive valid inequality 3%, pix; = y, if there is a set J
satisfying either of the following conditions:

Lod={jrlj =1, .., j'} for some constants j' and k with j'x <n, or

2.0 =1jld < j< D)where3d < D,

where py == jo for all j ¢ J and some constant o, then there are 14| — 1 linearly
independent relations

Bi t0j = Pitj.
with i, j, i+ j e J.
Proof. Case 1: The additive refations p, 1 o i = P for j =1, j =T are lower
triangular in cofurnns 2 through j' and are therefore linearly independent.
Case 2: We construct d lower triangular relations for columns o -+ I, ..., 2d as follows:
(d+ Dpg = dpii
dpg = (d —2)pgy1 +0ds2

Qd+2~Npy = Qd —Dpgs) +pi

3pg = Pd+1 +0d -1
204 = P2d
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lixcept for the last, these relations are the triangularized form of the simpler additive

relations pur1 -+ pi = papi+i. The next 1o last equation is the sum of the
relations:
2p4 = 24
Pd TP = +P3d
O3d = P41 +P2d-)
304 = gl Te2d-

Now fori =d + 1, ..., 2d — 2, we may derive the equation for i from that fori + [ as
foliows:

(2d — i+ Dpy = (2d ~ i ~ D pdy1 F0i+
Pd Pivi = F D i1
DPd+iv1 = Pd+i i
2d — 1) pas1 +pi

I§

2d+2—pa
The remaining relations are simply
Pd + Pi-d = P

fori=2d +1,.., D. )

0.2. (1,0,-1) Facets

Theorem 6.3 (1,0,-1). Choose n and d such that either

1. nandd are even and d < %, or

2. nisoddand d is even, and d < ’%2

Then (p, pn) defined as follows is a facet for P(K,):

1 fori < d, andi odd
pi=43~t forn—i <d, andn —i odd
0 otherwise

Proof. In both cases, complementarity and subadditivity follow from the definition of
7. The following constructions give n — 2 lincarly independent additive relations: For
case 1, lemma 6.2 with Jopen = (2.4, ..., 1} and ¢ = 0 gives & — 1 relations. To find
§ — 1 refations that are independent in columns Jyyy = {3, 5:..., n — 1}, we use the
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following:
0= £2 +01 —p3
= P4 +pi 05
0= py.2+p —Ped 1
0 = 021 =201
0= o2 F P41 = 0d 43
0= 22 oYz PE
0= Pn "'p%«-l """ p%-!»l
D= Py —p ~ Pl

For case 2, we parlition indices 3, ..., » ino six sets:

Jy==(3,..,d}

br={d+ 1}
Ji={d+2,...,2d ~ 1)
Jy={2d,....n—d)}

Js = {n—d |, ., n—1]
o = {n}

We now construct a set of relations for 7 in each set that is almost lower-triangular, and
give a simple argument for linear independence. By a set of fower-triangular relations,
we mean for a refation 7, ail coefficients p ; for j = i are zero in the relation.

S

v I Jodd: O = py + pr — o
If ievem: 0= p2+ pin — pr.
Ja: 0 = 2pgey = pagaany (this relation violates the Towes-triangular properly, and we
wiil return to it Jater).
30 0= py+ pig — pj
Jar 0= pq+pi—g¢ — pi
J5: 0= Pn-i + Ptk pn
Jg: 0= p!L;,'{;l + pg"_j]:']' — Pn
‘To make the relations for .y lower triangular, we subtract the relations for i = 2d + 2
and d + 2 1o find the new relation 0 = —ps — 2p4 4+ 20441. Although the relations for
Js are not lower triangular, clearly they are lincarly independent from the relation for
Jo because they only have the variable p,, in common. [

Corollary 6.4. Given a facet (p, p,) of P(K,) tilted so that py = 0, if p2 = 0, then
(04 pu) must be a (1,0, 1) facet, up to multiplication by a constant.

Progf. Assume p is scaled so that p) = 1. By subadditivity and g2 = 0,0 = py =
o2vkgny fork =1, .., L%J — 1. Also by subadditivity and py = 1,1 > pop > vy for
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k=1, [g—j — 1. Using these Jacts, p, = 0, und complementarity, for 1 </ < | 4],
pi = O wheniisoddand p; € {0, 1} when { is even. Furthermore, using these observa-
ttons and subadditivity again, if g; = 0 fori <[5} — 2 and odd, then g; 4 2 = 0 also.
The remaining coefficients follow from complementarity. O

6.3. Knapsack inequalities with linear pieces

In this section, we wili use the notions of slopes and maximal Jines of inequalities from
scction 3.4, Theorems 6.5 and 6.7 give facets with 3 maximal lines with positive slope.
Theorem 6.8 gives a facet with several maximal tines with positive slope.

Theorem 6.5 (2lin). For any integers n and k such that v = Ak - 1), (p, pu) defined
by

i Jori=1,..k
pi =40 Jori=k+1, ... ,n—-k—1

i—-n fori—=n—-%k .. ¢
is a facet for P{K,).

Proof. Complementarity and subadditivity are clear from construction, Three maximal
lines of p are

LOKY = [0,1,2, ... k)
Lk +1,n—keD={k+1, . .n—k—1

Lemma6.2with /; = {1, ..., k} gives k— 1 additive relations. By the condilion onm and &,
we may again apply lemma 6.2 with Jp = L(k+1) for an additional i — 2k — 2 relations.
Complementarity gives us k independentrelations p, = p;-+ oy fori =n—k, ..., a1,
Finally, the complementarity relation p, = PLay T P is independent from the pre-
vious relations because all previous relations with {’i’j, 31 have all coefficients in
Lik+ 1k~ D,andn ¢ Lk+ 1,0~k 1). 8]

We will use the next lemma in proving theorems 0.7 and 6.8. It essentially says that if
certain conditions are satisfied by the lincar pieces of an inequality, then that inequalily
is a facet.

Lemma 6.6. Assume (0, py) is subadditive and complementary and has the set of max-
imal lines L{fy = 0,6y — 1), L{y, i — 1), ..., Ly, 71) such that the slopes of these
lines are equal to p1: s(i;) = pli; + D —plip) =p1for j = 0,.,m Let K =
{kXlpcd) = w1, 6 = 1, ..., n} be a ser of knapsack points for some constants T and
A Define [* such that L(ij+, i+ — 1) is the line containing the middle element of p:
r%] < L(fj*,l‘jfs_l_| — ])

IFLGj i —DNK E B for j=1,., 7 — I and either

I L(fj*, i'.j*AH = I) nK 75 ﬂ, OF
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2. [J{ij*,,l‘.i , f.j‘?—_!_z - 1) ﬂ K }'L I/),
then (p, pu) is a facet of P(K,).

Proaf. By lemma 6.2 with J = 1, .., i} -~ | there arc (L0, i) — )i —~ 2 relations
with coeflficients within £(1). For the lines L@ ipey— D Torjo=1,., %1, there
are [L(i;, {741 — 1) — 1 lower triangular relations p(1) + pl) = p( -+ D lori =
fjy oo, ijq1 — 1. These relations hold because of the condition on the slopes of the lines.

When condition 1 holds, define X’ to be subset of K which contains exaclly one
knapsack element for lines L (i, is — 1}, oy L(i o, £ =g~ 1), and 1o knapsack elements
from the remaining lincs. By lemma 6.2, there are |K'f — | = J* ~ I relations within
these clements. Because K’ contains only one element from each fine, these relations
are linearty independent from those above that cach contain 2 from a line, $0 we now
have

3

it i
DL = DE = 1D 1+ G = 1 = S Ly, — D=3

j=0 Jbh

lincarty independent relations with coefficients in L{ig, iy — 1) U L{iy, b — DU U
L(ije, i1 — 1), There are

i

> LGy~ D=1

RETAR
lower triangular complementarity refations
i+ i = Py
fori € {ipeyy,ijogr + 1, ..., n — 1), Finally, the complementarity relation
ALart Py = o

is linearly independent from the previous relations because IA%J, 31 € L{ip, ijogy~1)
and n ¢ Liio, iy — DU LW, iz~ DU .U LGijs, i oy — 1),

In the case when condition 1 fails, we define X' (o contain exactly one knapsack

clement for lines L(ig,i; — ), ..., L(ipey,ipe — 1) and L{ijeqr,iprgn —~ 1) and use
similar construction of relations. 0

Theorems 6.7 and 6.8 give cases where the lemma applics when o =1,

Theorem 6.7 (3linlslp). Let n and k be positive integers such thar 5’3«3 <k <X 5'.
Then (p, oy) defined as follows is a facer of P(Ky):

I fori =1 .k
Pi=yl—5 fori=k+1,.,n k-1

i—n fori=n—k, .. n
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Proof. Complementarity fellows from constraction. Three maximal lines in o are

L0 ky=1{0,..., k)
Lk+1n—-k—-1={k4+1,..,0—k—1}
Lin—lk,ny=1{n—k, .., n}

Subadditivity is clear for pairs (i, j) such that ¢, j € L{0, k). The coadition on k from
the theorem guarantees that 2(k + 1) > n—~ bk, soifi +j e Lk+1,n—k - 1)
then either i € L(0, %) or j & L(1), and subadditivity is satisfied for these pairs. If
i-+j € L{n—k,n)ihen withoutloss of generality 7 € L0, D\ {QVUEL G+, n—k—1)
andp;+p; =i+ j—n/2zitj—norp+po;=i+j-~n=1i4+j—n Therclore,
subadditivity 1s satisfied.

We may apply lemma 6.6 withh = landt = . j* = 2andn ¢ KO i{n —k n)
satisly the conditions of the lemma, s¢ (g, p,) is a knapsack facel. O

n

Theorem 6.8 (modlslp). Choose n, d, and k such thar d divides n, 3 < d < 5 and
% <k = lz—l Then (o, pn) defined as follows is a facet for P{K,):

i mod fori=1,..k
O o= r'—% fori =k+1 ..,n—k-1
—l#[(n—iymodd] fori=n—%k, ..,n

Proof. Let B =max{ilid <k, i =1, .., k}. The maximal lincs with positive slope are

LO.d—1)=1{0,....d— 1}

Ligd, k) = {pd, ...k}
Lk+1n—k=Dm=Liij)=(k+1,n—k 1)
Ltk Bdy = L(pyy,ippp—1)={n—-1, .., n-— Bd

Lin—d, ) ={n—d+1,..,n}
{Notice thatif n isodd and k = ”—j—i, n—k=>k<+1,then L¢k+ 1,0 —k — 1} is empty).

Complementarity fotlows from construction of p. Subadditivity isclearfor t < i, j < k.
Hk < j, i+ j <n-k, then by the conditions on d and k., i < 4. Therefore,

R .oon
pi b pj =i+ — )

=G+ ) n
=7 3
= Pisj
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Fork-+1 =i, j<n—k<i-j bytheconditionsonnandd, i+ j > n —d, so

N e R R
pitpp=(i=5) 0~ 3
=i+ f—n

= Piij

Forl <izk<j<n—kandn—k <i4 j < n,theconditions on n, d, and k ensure
min{g;lk+1<j<n—k~1}> min{g;[j > n —k}.

Also, p; = 0fori e {1, ..., k). Thus, subadditivity trivially holds for these pairs (i, It
Therelore, subadditivity holds for all pairs (7, j). We now apply lemima 6.6 with

A= d and v = 0. There is a knapsack point in cach line L, iy 1) for i =

1, d,2d, .., Bd and L{n -k, n — B), su (p, py) is & lacel. N}

G.4. Facets from cyelic groups

The following theorems show how facets for a knapsack polytope may be obtained from
facets for master cyclic group polyhedra in fower dimension.

Theorem 6.9 (cyc). A facet (p, p,) of the knapsack polviope P(K,) is given from a
Jacet (7, 70, of the master cyclic group polyhedron P (Cy,r) by

Pio= T,

where k =i mod d and mg = 0, provided that

1. d does not divide n
7111

2.d = 5,

3. r=nmodd.

Proof. Complementarity and subadditivity follow from the group compicmentarity and
subadditivity of or. Because i is a cyclic group facet, there are of 2 lineatly independent
additive relations m; - 77 = TG pymode fOr 1 <0, j < d — . By condition (2), these
refations also hold for the knapsack lacel as g; + o i = Pid = Pt fmodn-

The remaining n — d relations are lower triangular and define cach element in terms
of the first o elements. Fori = d + 1, ..., n, the relation

Pi = i b pa

holds. These relations we lincarty independent from the previous relations because no
previous relation included oy, |

The following theorem is similar to theorem 6.9. It gives a second class of knapsack
facets, tilted so that p, = 0, that may be derived from cyclic group facets.
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Theorem 6,10 (cycl).
Choose r and d such that d divides n and d < 5. Let (7, 7} be a facet of P(Cy )
Jorany | < v <d. Then {p, pp) defined as follows is a facet of P{K,):

i3 fori < {%_! and k=i mod d
pi=10 Jori =1 ifniseven
iy fori > [%} andk = (n — i)y mod d,

where wrg = 0 for convenience.

Proof. Complemeniarily follows [rom construction, and subadditivity follows from the
cyclic group subadditivity of =,

By lemma 6.2 with Jy = {d,2d, ..., n}, there are 5}— — 1 additive rclations within
those columns. For Jo = {d - 1, ..., Lﬂéﬂj} \ J1, the relations

Oi = P+ Pied

hold fori =€ .J and are lower triangular, Additionally, fori € J3 = {l'%], e IAVS
the complementarily relations

Py = Poi i

hold and are independemt from all previous refalions. We have n — o relations so far. The
remaining ¢ — 2 additive relations come from the  — 2 necessary cyclic group relations
T Tj = T+ jymodd

= Oi -+ P = PG Hmodd 5 Pidg

by the condition on ¢ that ensures 7 is repeated at least twice al the beginning of . O

7. Knapsack cover facets
7.1 The master covering knapsack problem

Another related problem is the master covering knapsack problem of size n, which is
defined as:

i n
min{z CiXil Z ix; > n,x > Oand integer). (G,

il i=1

Section 7.2 gives two subadditive characterizations for facet-defining inequalitics of the
master knapsack covering problem. Section 7.3 describes the refationship between (he
covering polyhedra and knapsack equality polytopes. Finally, section 7.4 gives two new
classes of facets for this problem.
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7.2. Subadditive characterizaiion of covering fucets

Denote the convex hull of solutions to the master covering knapsack preblem by P(G),).
This polyhedron is unbounded and its recession cone is the non-negative orthant. Ardoz
[17 gave two subadditive characterizations of ils facet-defining inequalities.

Theorem 7.1. The facet-defining inequalities (o, 0y) of the knapsack covering polyhe-
dron P{G,) are exactly the extreme rays of the cone

g =0, i=1,..n (Nonnegativity)

Uy, = o+ o oy, 1= r.', IR S.n . (Subadditivity 1)
: oatojzo,, 1<i,j<n<idj {Subadditiviry 2)
op oy =09, 1 <i<|%] {Complementariry)

Theorem 7.2, The facet-defining inequalities (o, 0,,) of the knapsack covering polyhe-
dron P(Gy) are exactly the extremne rays of the cone

g=0, i=1..n {Nonnegativity)

Vo - op+ oz oy, < jid4j<n (Subadditivity 1)
e o =0y, 1 <i<n-—| {(Monotonicity}
O+ Opp =0g, | <i <{¥] {Complementarity)

The cones described by the two theorems are actually identical, so either theorem may
be used when proving inequalitics are facet-defining for the master knapsack covering
polyhedron. As with the previous problems, we will show (o, ,,) is a facet for P (G0
by showing i satisfies the necessary complementarity, subadditivity, menolonicity, and
non-negativity conditions, and then constructing n — [ tincarly independent additive
relations.

7.3. Relationship with equality knapsack and cyclic group polyhedra

The equality knapsack problem shares a relationship with the covering problem simi-
lar Lo the refationship we showed in section 5 for cyclic group problems. The equality
knapsack polytope is a facet of the knapsack cover polyhedron. The facet in question
is formed by intersecting the polyhedron with the defining knapsack cover ineguality,
which also gives a facet for the knapsack cover polyhedron. Every knapsack cover so-
lution that satisfies the defining incquality with equality is a solution 1o the equality
knapsack problem, and visa versa.

The implication is that every equality knapsack facel may be tilted to give a fac-
et for three different polyhedra: two cyclic group polyhedra and the knapsack cover
polyhedron. Furthermore, it gives all the facets of the knapsack packing polytope.

There is another relationship between the knapsack cover polyhedron £(G,) and
the two cyclic group polyhedra P(C),.1.; ) and P(C, ¢): both polyhedra are contained
in P(Gy). Any non-negative solution x (o the problem C,, ¢ satislics

n—1 n-

Zix,- =0modnr and Zx; > 0,

i=1 f=1
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50 Z:";]] ix; > n,and x is also a solution to the knapsack covering problem, A similar
proof holds for Cyqq .

Given an equality knapsack facet (p, p,), note that it satisfics the non-negativity, sub-
additivity (1), and complementarity conditions of theorem 7.2, Therefore, to find a cov-
ering facel by tilting p, we must ensure monotonicity is satisfied. o« = max{p; — p; 11 ]i =
1, ..., — 1} guarantees that p + ap gives a facet for P(G),).

7.4. Inequalities with coefficients 1,...,G

Lemma 7.3. If a vector (o, ..., 0, = G) satisfies complementarity, subadditiviry, and
manotonicity, and has some [ satisfving oy = j for each j = 1, ..., G then (o, o,) is
Jacet-defining for P(G,).

Proof. For k =1, ..., G, let i = max{i|g; = k}]. By the conditions of the lemma,
kg < igyy fork = 1,..,G —~ [. By theorem 7.2, we must find # — 1 lincarly in-
dependemnt additive relations and monotenicity relations at eguality, There are n — @
monotonicity conditions at holds at equality for i 5

0 = Gi4l.
Fori € {ky, ..., k-1 }, the additive relation:
o Ao = 0; .h
holds. These n — | relalions are lower triangular and clearly lincarly independent. O

Theorem 7.4 (allGG). If a vecior (o4, ..., 0y = G) satisfies monotonicity and has some
L salisfying oi = j foreach j = 1, ..., G then (o, 0y,) is facet-defining for P(G,) if and
only if

Lodtiny > +ugfor 1 <4, j i+ j < Gand

2okpog == — (g 4 D fori =1, {%_’j.

Progf. We will apply lemma 7.3 by showing condition 1 is sufficient for subadditivity

and condition 2 s sufficient for complementarity.
Subadditivity: For 1 <, j, i + j < n and

o (i) +0()) = 0ka(iy) + 0 (ke j))
a{ks(ie(iy) (because oy + Koy < Kogii4o))
= o(i + J) (because monotonicity and o (i) + o (f) < kg (4o (j3)

%

Complementarity: The condition x;_; = 1 — (k;_j + 1) ensures that the first vector
element with value 7, o{x;_) + 1), is the complementarity pair with the last element
with value G — i, o (k¢..i ), which implies complementarity. ]

Notice that o facets for even n may have odd & if all coefficients are integer. To consider
odd G, we Jook at a class of facets for even » scaled so that o) == [ and o is hall-integer.
When these inequalitics are scaled to have all integer coefficients, then all coefficients
excepl oy are even, as in V23 of lable B.5.
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Theorem 7.5 (allGhalf). For odd G and even n, if (o, ..., 0 = () satisfies monot-
onicity, has some i satisfying o; = j for each j = 1, ..., G, and (U%,,, oL, Gugp) =
{9'2:—1, —(,;—, -(—’nz'wl) then (a, on) is facet-defining for P(Gy) if and only if

Iokigg 2ok bacg for 1 <0 joi+ j <G,
2. icGi == kit D) fori = 1,0, 1S, and
3. e > 2

Proof. The proolis the same as the previous theorer, with a minor alteration to lemma
7.3: (7.1yno longer holds for f = ¢ and icg. . Instead, use the two relations 2oy = oy
and o7 + ORp = oLy, which is guarantced by the thied condition of the theorem. O

A. Proof of Hifting theorem
A. L Notation

Let Cf denote the set of elerments {1, 2, ..., n — 1).
Givenan inequality (77, ) scaled so that = 1 For amaster cyclic group polyhedron
P{C, ), define the matrix

M = M(Clt.i".- H, V}

corresponding o the set of additive relations of (7, ). M has a row for cach non-zero
clement i € O If r = 0, M alse has an n-th row 1o represent the right hand side
clement. M has a column §; + §; - §, for each additive relation 7; + 7 ;7w satisfied
at equality for 7, j ¢ C;Fand h = (i + /) mod n not equal (o zero. If r = 0, then M
also has a column §; + 8,y = g for i € C,',‘“. Finally, M has a column §; lor each zero
coefficient r; = O fori € C). 1t is well known that (;r, ) is an exlreme ray of P{Cy ;)
if and only if the set L = {(AAM{(C, ., 7, y) = ﬁ] has dimension 1, since that implies
that (7, y) satisfics a set of n — 1 linearly independent additive relations.

For some d that divides n, let ¢ @ €, — Cy represent the homomorphism defined
by ¢ (i) =i (mod d). Let

K={ieCldg(i) =0} ={0,d,2d,....00 ~ e}
and, for cach i € C,, let
P= 1] € Culop(j) = ¢ ().

(K is the kernel of ¢ and the scts 7 are the cosets in C,, \ K.

A2, The theorem

The following is a restatement of theorem 3.4, aliered so that all facets (7, ) are scaled
o have ¥ = 1. For simplicity of notation, we will sometimes refer to the coefficient 7
as (i),
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Theorern A.1 (Hiffing). Let

Eol
ZJTI-I.X,' >
{2

be any fucet of P{Cy ), and let
o1

2 2
E X E Y

(=3
be any facet of P(Cy4.0) such that either

— d is odd, or
— there is some additive ?'(?e'ml'(?il?r% *i"fa“!?-‘ = fr,,:;' where % -+ j =h (mod d) and neither
: 6L e d
Jnor his equal to 5.
Letn =kd, r = sd, and K = {0,d, 24, ..., (k — 1)d}. Define the (n — D-length vector
n as follows:

7 () ifi € K\ {0)
riimoddy ifi¢K

Ty ==

Then (m, w,) is a facet of P(Cy ).

Proof. Define the homomorphism ¢ @ €, — Cy, the sets iforie C, and the matrix
M = M{Cy,,m, y)asin the previous section.
We will prove the theorem in three steps:
1. Show (m, ,) satisfies complementarity, subadditivity, and non-negativity.
2. Show that AM = 0 implics that for any ip ¢ K, A(ip) == A(/) forany i & io.
3. Show that (1) and (2) imply that (7, 7)) is a facet of P{Cy ).
1. " and 72 must satisfy non-negativity because they are both facets of master cyclic
group polyhedra. Therelore, by construction, m satisflies non-negativity,
To show complementarity, choose any two elements i, j € C;F so that (i + j) = r
(mod r). Because » € K, either both i and j are in K or neither is. If both are, then

w(r) = m{sd)

= ' (s)

I

tely nted
d {d} o (d}
(i) 4+ (j)

because / 4 J = r (mod #) implies (’;. + ;ff =s (mod k), and 77 satisfics complemen-
tarity for P(Cy o). If neither 7 nor J is in K, then

a{ry =1

i

i

= ;rrz(i mod o) + Ir?‘(j mod d}
=i}y +n(j)
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The third equatity follows from the fact that i + j = sd (mod kd) implies that i + j=0
(mod o).

To show subadditivity, choose any triple (7, j, h) € (C,}'f sothati+j = h (mod n).

IFi, f e K, then 2 must also be in X', and subadditivity follows from the subaddi-
tivity of 7! using an as gument similar 10 the complementarity as gumcm Simitarly, if
i, j,h ¢ K, then subadditivity follows from the subadditivity of 7>,

HieKandj hé K, then (i + j) mod kef) mod d = (i + Jymod d = j mod 4.
Therefore

a(h) = 7w {(i 4 j} mod kd)
= J'{z(((f + j)y mod kd) mod o)
= rrz(j mod ¢)

< ! (r_l) + frz(j mod ) (by non-negativity of 1)
£
= (i) +m(j).

Ifi, j ¢ K and h € K, then there is some j' = j (mod d) such that (i + =y
{mod n). Therefore

7)) +a(j) = nm()+rx{(j")
=7{r)
> m(h),

Any other triples (/, f, /) arc either impossible or equivalent to those listed above,
Therefore, (7, 7r,) satisfies subadditivity, and (1) is proven.

2. 1leth El(’f},"'l salisfy AM = (). Choose any iy € C,\ K, By the condition of the theorem
and complementarity of 73, there exists some jy, f1g such that w{ig) + w(jo) = m{hy)
where (ip + jo) = hg (mod d) and ip is nol equal 1o either jg or Ag.

Foranyi € ip, j € jo.h = (i + jymodd € g

(i) +m(jy - w(h) = wig) + m(jo) — w(hg) =0,
50
AEY A7) = M) = .
Furthermore, for any element « € K and positive integer o,
A(E o) mod i) 4 A7) = A + ax) mod )
and
A+ ax) mod n) + A((j 4+ x) mod r) = A((h + wk + &) mod n),
By subtracling the second equalily from the first, we find

MY = A({J + ) mod n) = A 4 o) — A((h 4 @k + k) mod #).
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Choose an infeger ¢ > 0 so (hat e == (). Such a j must exist because i € K and K is
a finite group (it is isomorphic 1o the cyclic group Cy). Then

e
ZA((!: +oak) mod 1) — A(h + (1 + o) mod #)
o ==f)

= A1) — A((h + px) moed #)

=2 (),

Therefore,

1
> L) = (G + i) mod n)) = 0

or=={)
which implies A{f) = A{(j + «) mod ») for all & € K, which proves (2).

3Let L o= {h e R 'pm 0) = (X e RF-! EiM{C;‘ ol ¥ = 0), and
L o= {A € R‘!IAM(C(; 0.7,y = ()} Because (!, 1) is a facet of P{Cr ),
dim(L) = 1. Similar ly, dim(i)=1.

Choese any A & L. Dc{inc i(f') = Adi) for i == 1,...,k - 1. For every column
ig + 8y — 8y In M (Ch s, a!,yh), there is a column 5(1,(, ~I Sdﬂ, - 8apy in M by defini-
tion of . Therelore, }L(fo} + A o) — AlhgY = 0, 50 A E i.

Similarly, define A(r) = X(i) 101 i = 1,..,d—1,and A((]) = A{r). For every
column &, ;,5}‘) Spey i M (Cyp, 72 ¥ ) Ehuc is a column &; + 6}, — 8 in M for some
ieiy, j€ jo,and h e hy. Using (2), this implics A(fg) -+ A(m) ~iho) = 0,504 € L.

Therefore, A’ € L must have the form

Wiy o | M) fori € KA{0)

(AR el
BaLiy fori ¢ K.

But then /(1) = BA@) fori = 1,....d — 1, and M(d) = ah(d). Since dim(f) = 1,

this implies @ == 8. Thercfore, dim (L) = 1, which proves (i, 7, ) is a facet of P(C, ).

B. Summary of classes: seeds and mappings

‘Table B. T summarizes the seeds and mappings used for explaining facets of cyclic group
and knapsack problems. Tables B.2-B.5 list facets for some small problems, Hach facet
is given an identification number, which is listed in the first column. If a facet belongs
to more than one class, the most simple class is Iisted. Cyclic group facets explained
by homomorphisims are not included in table B.2. I a group or covering facet may be
derived by tilting a knapsack equality facet, the identification number of the knapsack
eqguality facet is listed.
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Table B.1, Semmary of facet classes

SEEDS
Abbrev flor Condition Reference
mic P(Chr)  None Section 3.3
Zslope P(Cy,) None Theorem 3.5
3stope P(Chr) r=it Theorem 3.7
1,0,-1 P(K,) nevenorn > 7 Theoren: 6.3
2lin P(K,) n>§ Theorem 6.5
3tinlslp P(K,) n=35 Theorem 6.7
mod]slp P{K,) n=s Theorem 6.8
altG P(CG,) None Theorem 7.4
allGhalf PG neven Theorem 7.5
MAPPINGS
Abbrev Frem Fo Condition Reference
auto (a) P(Cy.) P(Casy  rosinsame cosetof O, Theorem 3.2
homo P{Cyry P(Cys)  dinands =r (mod d) Theorem 3.3
Ofifting P(Cap), P(Cpy)  din, dir Theorem 3.4
P(Cn,"d_r/d}

cyc P(Cy,) P(Ky) d = % din,re=n (mod d) Theorcm 6.9
cycl PLCye} PR d = 4 anddin Theorem 6.10
tilt PES) PCyy) ozl Theorem 5.2
tilt P{K:} P(Cro) Nonog Theorem 5.4
tile FP(K,) PG None Section 7.3
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Fable B.2. Non-zere rhs eyelic group facets 0 mixy = my

Til
d#¢ {n r Class From | my wy Wy W4 As A Wy my | owy
Cl 2 1 mic 1 |
c2 13 2 mic { 2 2
C3 4 2 mic | 2 I 2
C4 4 3 mic 1 2 3 3
5 5 4 e Kl | 2 3 4 4
o6 |5 4 & mic K2 4 3 2 G 4]
7 6 2 nie 2 4 3 2 | 4
g8 |6 3 mic H 2 3 2 | 3
co |16 3 2slope I 2 3 | 2 3
cigloe 3 2siope 2 I 3 2 i 3
Cir 6 5 ¢ 1 2 3 4 5 5
cizi{7 6 mic K2 1 2 3 4 5 G 6
C13 7 05 a, nic K5 4 8 5 2 [} 10 10
Cl4 17 6 3slope Ki 6 5 4 3 2 8 8
CIs |7 6 1. mic K6 9 4 6 8 3 12 12
Cle } 8 2 mic K6 3 6 35 4 3 2 i 5
ci7 18 2 a. mic Ko 3 G 1 4 3 2 5 ¢
cig {8 4 mic t 2 3 4 3 2 1 4
Clo| 8 4 . MiC 3 2 i 4 { 2 3 4
C00 8 4 2slope K2 H Z 3 4 I 2 3 4
c21 18 4 Zslope K2 3 2 | 4 3 Z 1 4
c22 08 7 mic I 2 3 4 5 6 7 7
c23 18 7 a. mic 9 10 3 12 5 ¢] 15 15
C24 18 71 a 2slope K10 i 2 ! 2 f 2 3 3
C25 1 8 7 0 a Zslope K8 3 2 H 4 3 2 5 ]
C26 1 8 7 3stope K3 7 4] 5 4 3 2 9 9
c27 09 3 mic 2 4 6 5 4 3 2 | 6
c28 19 3 A, i 2 4 §] 2 I 3 3 4 4]
c29 19 3 A mic 5 I 6 2 4 3 2 4 {]
C36 1 9 3| a Zslope K} 4 8 12 7 2 6 1 5 12
3 g 3 2slope Kl 7 5 12 10 8 G 4 2 12
C32 19 3 1 a 2stope K1 1 2 12 4 5 G 7 8 12
3379 3 (Hifting K6 2 4 6 2 4 3 2 4 6
9 03 Hifting 4 2 6 4 2 3 4 2 6
Cis ]9 8 mic K7 | 2 3 4 ] 6 7 8 8
C36 | 9 8| a 2slope K3 2 i 3 2 i 3 2 4 4
C37 19 8 a. mic K12 4 8 12 7 2 6 16 14 | 14
c3g o 8 3slope 8 7 G 5 4 3 2 1}
c3g 9 8| gh1,0,-1 K4 11 4 ¢} 3 H) 12 5 16 o
C40 19 8 a. mHe 16 5 1210 8 15 4 20 | 20
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Table B.3. Zero ths eyelic gronp faces Y7 ey = v

Tilt T ry A3 M AS g "3 | ¥
1d# | n Class From
Z1 3 mic i 2 3
z2 3 | auto mic Kl 2 ! 3
3 4 mic | 2 3 4
74 4 | auto mic K2 3 2 I 4
z5 5 mic 1 2 3 4 5
Z6 3 | anto mic K4 2 4 ] 3 5
77 5 | auto mic K3 3 | 4 2 3
Z8 5 | aulo mic 4 3 2 ] 5
79 6 mic i 2 3 4 5 [
Z10 | 6 } automic 5 4 3 2 I 6
ZIL |6 tilt K3 2 4 3 2 4 6
Z12 1 6 Hill K6 4 2 3 4 2 6
Z13 |7 mic 1 2 3 4 5 6 7
Zi4 | 7 | auto mic K9 2 4 6 1 3 3 7
Z15 1 7 | avo mic K10 3 6 2 5 H 4 7
Z16 | 7 | auto mic K7 4 1 3 2 G 3 7
ZET { 7 | auto mic K8 5 3 | 6 4 2 7
218 |7 | awo mic G 5 4 3 2 i 7
Z19 | 8 tilt Ki2 i 2 3 2 1 2 3 4
Z20 | 8§ awtoi1ill 3 2 | 2 3 2 | 4
2 8 mic | 2 3 4 5 0 7 8
Z22 1 8% | auto mic K1l 3 ¢ I 4 7 2 3 8
Z33 1 8 | aulo mic Kil 5 2 7 4 | 6 3 8
Z24 | 8 | auto mic 7 §] 5 4 3 2 | 8
225 1 8 auto til 3 6 5 4 3 2 5 8
726 | 8 till Ki4 5 2 3 4 5 6 3 8
Table B.4, Knapsack equality facets Y% | pivi = py
Id4 i n Class Py mope P e P70 Py & | fa
Ki 3 cyc ! G | !
Kz | 4 1,0,- 2 i 0 2 2
K3 |5 cye | 0 1 0 i 1
K4 5 cyc I 2 0 1 2 2
K5 | 6 | 3lnisip 1 2 i 0 I 2 2
K6 | 0 1,0,-1 6 2 3 4 0 6 6
K7 |7 cye I 0 i 0 1 0 i 1
K8 | 7 cye 2 1 G 2 i 0 2 2
K9 7 cye | 2 3 0 | 2 3 3
K10 7 7 1 3linlslp 2 4 | 3 4] 2 4 4
KIt | 8 Ve i 2 0 i 2 0 1 2 2
K12 | 8 | 3iinlslp 2 4 G 3 0 2 4 6 6
Ki3 ; 8 1,0,-1 3 1 4 2 0 3 | 4 4
Kid4 | 8 1,0,-1 8 2 3 4 3 6 0 8 8
Kis | 9 cye i [4] 1 0 i 0 1 0 1 i
Ki6 | 9 cye 3 2 i 0 3 2 H 0 3 3
Ki? | ¢ cye i 2 3 4 {) 1 2 3 4 4
K18 ;9 cye 4 3 2 6 0 4 3 2 6 6
K19 | 9 1 3linlslp i 2 3 1 2 9} i 2 3 3
K20 1 9 | modlslp | 3 6 2 5 | 4 G 3 ] [{
K21 | 9 | modlslp | 6 124 3 9 8 0 6 i2 | 12
K22 1 ¢ 1,0,-1 9 2 3 4 5 6 7 0 9 9
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Table B.5. Knapsack covering facels) 7 _f}' aix; = oy
iG# | n Class TiltFrom | oy | o2 | o3 oa4 o5 o o7 | O,
Vi 3 allG; { H 2
V2 | 3 allG | 2 3
VERE allG | { 1 2
\E] 4 allG 1 2 3 4
V3 5 allG I 1 | 1 2
V6 5 allG K3 | | 2 2 3
V71 15 allG K4 i 2 2 3 4
V8 | 5 allG 1 2 3 4 5
Ve | 6 allG 1 i | i ] 2
VIO | 6 allG K5 1 2 2 2 3 4
VIl | 6 alG i 2 3 4 3 6
Vi2 | 6 | allGhatf KG 2 2 3 4 4 6
Vid | 7 allGr [ i 1 1 i H 2
Vid | 7 allG K8 1 1 H 2 2 2 3
VIS |7 allG K7 | I 2 2 3 3 4
Vi |7 aliG 1 2 2 2 2 3 4
Vi7 7 allG Ki0 1 2 2 3 3 4 5
Vig | 7 allG K i 2 3 3 4 5 4]
vIg | 7 allG 1 2 3 4 5 6 7
V20 | 8 allG ] 1 | ! 1 1 I 2
V21 | 8 aliG K13 1 1 2 2 2 3 3 4
V2Z | 8 aliG I 2 2 2 2 2 3 4
V23 | 8 aiGG Kii i 2 2 3 4 4 5 ¢
V24 | 8 allGG Kz [ 2 3 3 3 4 5 6
V25 | 8 | allGhalf 2 2 2 3 4 4 4 6
V26 | 8 allG | 2 3 4 5 6 7 8
V2118 Ll K14 2 2 3 4 5 0 6 8
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